71504

Исследование зависимости жёсткости тела от его размеров

Лабораторная работа

Физика

Цель работы: пользуясь зависимостью силы упругости от абсолютного удлинения вычислить жёсткости пружин разной длины. Поэтому силы упругости имеют электромагнитную природу. Сила упругости всегда направлена к положению равновесия и стремится вернуть тело в исходное состояние.

Русский

2014-11-08

176 KB

3 чел.

Лабораторная работа №1.

Исследование зависимости  жёсткости тела от его размеров.

Цель работы: пользуясь зависимостью силы упругости от абсолютного удлинения, вычислить жёсткости пружин разной длины.

Оборудование: штатив, линейка, пружина, грузы массой по 100г.

Теория. Под деформацией понимают изменение объема или формы тела под действием внешних сил. При изменении расстояния между частицами вещества (атомами, молекулами, ионами) изменяются силы взаимодействия между ними. При увеличении расстояния растут силы притя жжения, а при уменьшении – силы отталкивания. которые стремятся вернуть тело в исходное состояния. Поэтому силы упругости имеют электромагнитную природу. Сила   упругости всегда направлена к положению равновесия и стремится вернуть тело в исходное состояние.  Сила упругости прямо пропорциональна абсолютному удлинению тела:              . 

Закон  Гука: Сила упругости, возникающая при деформации тела, прямо пропорциональна его удлинению (сжатию) и направлена противоположно перемещению частиц тела при деформации ,                 , х = Δl -удлинение тела, k – коэффициент жесткости   [k] = Н/м . Коэффициент жесткости зависит от формы и размеров тела, а также от материала.  Он численно равен силе упругости при удлинении (сжатии)  тела на 1 м.

 График зависимости проекции силы упругости Fx  от удлинения тела.

 Из графика видно, что  tgα = к.  Именно по этой формуле вы будете определять жёсткость тела в данной лабораторной работе.

Порядок выполнения работы.

1.Закрепить пружину в штативе  на половину длины.

2.Измерить линейкой первоначальную длину пружины l0 .

3.Подвесить груз массой 100г.

4.Измерить линейкой  длину деформированной пружины l.

5.Вычислить удлинение пружины  x1 =Δl = ll0  .                

6. На покоящийся относительно пружины груз действуют две

компенсирующие друг друга силы:  тяжести и упругости  

7.Вычислить силу упругости по формуле   ,  g = 9,8 м/c2 -  ускорение свобдного падения
8. Подвесить груз массой 200г и повторить опыт по пунктам 4-6.

9.Результаты занести в таблицу.

 Таблица.

№п/п

Начальная длина , м

Конечная длина ,м

Абсолютное удлинение

               

Сила упругости

      , Н

Жёсткость,

tgα =k, Н/м  

1.

2.

 

10. Выбрать систему координат и построить график зависимости проекции силы упругости F упр от удлинения пружины.

11. Измерить транспортиром угол между прямой  и осью абсцисс.

12.По таблице найти тангенс угла.

13.Сделать вывод о величине жёсткости к1 и занести результат в таблицу.

14.Закрепить пружину в штативе  на полную длину и повторить опыт по пунктам 4-13.

15.Сравнить значения k1  и k2.

16.Сделать вывод о зависимости жёсткости от параметров пружины.

Контрольные вопросы.

1. На рисунке приведен график зависимости модуля силы упругости от удлинения пружины. По закону Гука определите жесткость пружины.

Указать физический смысл тангенса угла между прямой  и осью абсцисс, площади треугольника под участком ОА графика.  

2.Пружину  жесткостью 200 H\м разрезали на 2 равные части. Какова жесткость каждой пружины.

3.Указать точки приложения силы упругости пружины, силы тяжести  и веса груза.

4.Назовите природу силы упругости пружины, силы тяжести  и веса груза.

5.Решите задачу. Для растяжения пружины на 4мм нужно совершить работу 0,02Дж.  Какую  работу нужно совершить, чтобы растянуть пружину на 4см?


 

А также другие работы, которые могут Вас заинтересовать

19235. ПЕРЕНОСЫ В ЗАМАГНИЧЕННОЙ ПЛАЗМЕ 110.5 KB
  Переносы в замагниченной плазме В начале работ по управляемому термоядерному синтезу возникла проблема предохранения стенок камеры от высокотемпературной плазмы известным решением которой явился принцип магнитной термоизоляции плазмы. Огромное значение д
19236. УСТОЙЧИВОСТЬ ПЛАЗМЫ 98.5 KB
  Устойчивость плазмы Вопросы устойчивости плазмы важны для установок содержащих низкотемпературную и высокотемпературную плазму ввиду того что потеря устойчивости может означать разрушение плазмы исчезновение рабочих параметров и т.д. При проблеме управляемого т
19237. РАДИАЦИОННЫЕ ПОЯСА ЗЕМЛИ 93.5 KB
  Радиационные пояса Земли При запуске первых спутников был установлен факт существования радиационных поясов состоящих из заряженных частиц высоких энергий. Данные пояса можно объяснить исходя из представлений о структуре магнитного поля Земли и движении заря
19238. ТЕРМОЯДЕРНЫЙ СИНТЕЗ 1.14 MB
  Лекция № 1. Термоядерный синтез Условие необходимое для термоядерного синтеза. Термоядерные реакции сечения и скорость реакции формула Гамова. Критерий Лоусона. Оценка оптимальной температуры и произведения плотности на время удержания для циклов ДД и ДТ. Тер
19239. ПУТИ РЕШЕНИЯ ПРОБЛЕМЫ ТЕРМОЯДЕРНОГО СИНТЕЗА 72 KB
  Лекция № 2. Пути решения проблемы термоядерного синтеза Основные направления исследований по ядерному синтезу: а системы с магнитным удержанием; б квазистационарные открытые и закрытые; импульсные; в системы с инерциальным удержанием лазерные с различными пучк...
19240. СИСТЕМЫ ЭНЕРГОСНАБЖЕНИЯ ТЕРМОЯДЕРНЫХ УСТАНОВОК 731.5 KB
  Лекция 3 СИСТЕМЫ ЭНЕРГОСНАБЖЕНИЯ ТЕРМОЯДЕРНЫХ УСТАНОВОК Оценка требуемых параметров систем энергоснабжения термоядерных установок. Способы нагрева плазмы: омический или джоулев нагрев плазмы адиабатический нагревинжекция пучков быстрых нейтралов ВЧ методы н
19241. ТИПЫ ДРЕЙФОВЫХ ДВИЖЕНИЙ ЧАСТИЦ В ПЛАЗМЕ ТЕРМОЯДЕРНЫХ УСТАНОВОК ТИПА ТОКАМАК 850 KB
  Лекция № 4. типы дрейфовых движений частиц в плазме термоядерных установок типа токамак Дрейф в неоднородном поле центробежный и градиентный поляризационный дрейф тороидальный дрейф и вращательное преобразование тороидальной магнитной конфигурации Ра...
19242. АДИАБАТИЧЕСКИЕ ИНВАРИАНТЫ ДЛЯ ДВИЖЕНИЯ ЧАСТИЦ В МАГНИТНОМ ПОЛЕ 967.5 KB
  Лекция 5 Адиабатические инварианты для движения частиц в магнитном поле Инвариантность магнитного момента частицы во времени инвариантность частицы в постоянном во времени и неоднородном в пространстве магнитном пол инвариантность величины vl ...
19243. ПРИМЕНЕНИЕ АДИАБАТИЧЕСКОГО И ДРЕЙФОВОГО ПРИБЛИЖЕНИЙ. ОТКРЫТЫЕ МАГНИТНЫЕ ЛОВУШКИ 716.5 KB
  Лекция 6 Применение адиабатического и дрейфового приближений. Открытые магнитные ловушки. Квазистационарные открытые системы: пробкотрон. Желобковая неустойчивость. Принцип €œMin.B€. Плазменные центрифуги. Зеркальные ловушки пробкотроны На использовании ад