71565

ХАРАКТЕРИСТИКА СПОСОБОВ ГЕНЕТИЧЕСКОГО ОБМЕНА У БАКТЕРИЙ

Лекция

Биология и генетика

Трансформация имеет практическое использование: для картирования бактериальной хромосомы; для конструирования промышленнополезных штаммов микроорганизмов; для введения в геном бактерий определенных маркеров или элиминирования нежелательных мутаций; как один из этапов получения...

Русский

2014-11-08

755.5 KB

7 чел.

ТЕМА 21 «ХАРАКТЕРИСТИКА СПОСОБОВ ГЕНЕТИЧЕСКОГО ОБМЕНА У БАКТЕРИЙ»

1. Способы генетического обмена у бактерий

2. Бактериальная трансформация

3. Бактериальная конъюгация

4. Бактериальная трансдукция

1. Способы генетического обмена у бактерий

Рис. 1 - Схема мерозиготы

2. Трансформация

  •  Трансформация – перенос генетической информации, при котором ДНК, выделенная из клетки-донора, поступает в клетку-реципиент.
  •  Явление трансформации было открыто Ф. Гриффитом в 1928 г. в опытах на пневмококках (Streptococcus pneumoniae). В классической работе О. Эвери, К. Мак-Леода и М. МакКарти, опубликованной в 1944 году, было установлено, что трансформирующим началом является ДНК.

Рис. 2 - Схема процесса трансформации

  •  Трансформация имеет практическое использование:

для картирования бактериальной хромосомы;

для конструирования промышленно-полезных штаммов микроорганизмов;

для введения в геном бактерий определенных маркеров или элиминирования нежелательных мутаций;

как один из этапов получения трансгенных растений;

может выступать в качестве модели в различных генетических и молекулярно-биологических экспериментах на изолированной ДНК

3. Конъюгация

  •  Конъюгация генетический обмен, который сопровождается переносом генетической информации от клетки-донора к клетке-реципиенту, он происходит при их непосредственном контакте.

Рис. 3 - Схематическое изображение классического опыта по скрещиванию

ауксотрофных мутантов, проведенного Дж. Ледербергом и Э. Татумом

  •  Явление конъюгации было открыто Дж. Ледербергом и Э. Татумом в 1946 г. в экспериментах с полиауксотрофными штаммами бактерий E. сoli (рис. 3). В 1949 г. Б. Дэвис получил дополнительные данные, которые также доказывали, что для образования прототрофов необходим контакт родительских клеток (рис.4).

Рис. 4 - Схема эксперимента Б. Дэвиса

  •  Позднее У. Хейс показал, что существуют бактерии мужского и женского типа и вклад их в конъюгацию не равнозначен. Рекомбинанты наследуют большинство своих признаков от реципиента, а от донора получают только отдельные фрагменты генома.

Женская бактериальная клетка, обозначается как F--штамм [бактерии]. (F- fertility). Это бактериальная клетка, которая не содержит F-фактора и участвует в конъюгации в качестве рецепиента; рекомбинация может происходить только в Ж.б.к.

Мужская бактериальная клетка, F+-штамм [бактерии]. Обозначается как бактериальная клетка, которая несет половой F-фактор и участвует в процессе конъюгации в качестве донора генетического материала; рекомбинация в М.б.к. никогда не происходит.

  •  F-фактор представляет собой внехромосомную кольцевую двухцепочечную молекулу ДНК, которая автономно реплицируется, его относят к плазмидам. При конъюгации частота передачи F-фактора близка к 100%. Таким образом, клетки-реципиенты превращаются в потенциальных доноров.
  •  В зависимости от состояния F-фактора различают два типа донорных клеток:

- F+-доноры, у которых F-фактор находится в автономном от хромосомы состоянии. При скрещивании обычно передается только F-фактор;

- Доноры Hfr- типа (high frequency of recombination (высокая частота рекомбинации), у которых F-фактор интегрирован в хромосому. При скрещивании передаются хромосомные гены. Интеграция F-фактора в бактериальную хромосому обратима.

  •  F- факторы, которые содержат фрагменты хромосомной ДНК, получили название  - факторы (прим). Такие факторы могут нести в своем составе один ген – это малые  F́-факторы, если несут до половины бактериальной хромосомы – это большие. F́- факторы с высокой эффективностью передаются при конъюгации клеткам – реципиентам, и переносят при  этом бактериальные гены, которые включены в их состав. Такой тип передачи генов получил название сексдукции, или F- дукции.

Рис. 5 -  Микрофотография конъюгирующих клеток E. coli

  •  Конъюгация используется в следующих направлениях:

1. Передача многих генетических маркеров из одних клеток в другие. Показано, что при конъюгации вся хромосома бактерий E. coli передается за 100 мин.

2. Метод конъюгационного скрещивания удобен для картирования хромосомы. Он был первым методом, который использовался для этих целей. Карта хромосомы у бактерий строится в минутах (рис. 6). 

3. Изучение генетического аппарата у бактерий.

4. Конъюгация эффективно происходит в природе и поэтому является одним из факторов изменчивости бактерий.

Рис. 6 - Генетическая карта E. coli 

4. Трансдукция

  •  Трансдукция – перенос генетической информации (хромосомных генов или плазмид) от клетки-донора к клетке-реципиенту; происходит при участии бактериофагов.
  •  Трансдукция была открыта Дж. Ледербергом и Н.Циндером в 1952 у Salmonella typhimurium и фага Р22.
  •  Принято выделять два типа трансдукции: 1) общая (генерализованная, неспецифическая) (рис. 7); 2) специфическая (или ограниченная) (рис. 8).
  •  При общей трансдукции может переноситься любой фрагмент бактериальный хромосомы с частотой 10–5–10–6. Количество бактериальной ДНК, которое может переноситься фагом, обычно составляет 1–2 % от всей клеточной ДНК. Исключение составляет бактериофаг РBS1 B. subtilis, который может трансдуцировать до 8 % генома хозяина. В процессе общей трансдукции бактериальный вирус является только «пассивным» переносчиком генетического материала бактерий и содержит только фрагменты бактериальной ДНК. Механизм рекомбинации у трансдуцируемых бактерий соответствует общепринятой схеме (гомологичной рекомбинации).

 

Рис. 7 - Схема генерализованной трансдукции

  •  Специфическая трансдукция была открыта в 1956 г. М. Морзе и супругами Е. и Дж. Ледерберг.
  •  Для специфической трансдукции характерно:

1) каждый трансдуцирующий фаг передает только определенную, строго ограниченную область бактериальной хромосомы;

2) фаг не только переносит генетический материал, но и обеспечивает его включение в бактериальную хромосому;

3) вирус включает фрагмент ДНК бактерий-доноров  в свой геном и передает ее в ДНК бактерий-реципиентов в результате встраивания в хромосому.  

  •  Наиболее известным примером специфической трансдукции является трансдукция, которая выполняется фагом λ, который способен заражать клетки бактерий E. coli с последующей интеграцией его ДНК в геном бактерий.

Рис. 8 -  Схема специфической трансдукции

  •  Использовать трансдукцию можно в следующих направлениях:

для трансдуцирования плазмид и коротких фрагментов хромосомы донора;

для конструирования штаммов заданного генотипа;

для точного картирования бактериальных генов, установления порядка их расположения в оперонах, что осуществляют с помощью комплементационного теста.

PAGE  6


 

А также другие работы, которые могут Вас заинтересовать

43469. Синтез регулятора методом желаемых ЛАЧХ 73.5 KB
  Задан объект управления описание которого определяется Wнчs передаточной функцией неизменяемой части системы. Структурная схема следящей системы представлена на рис. Требуется спроектировать регулятор включенный последовательно с неизменяемой частью системы в контуре ошибки с передаточной функцией Wрегs который обеспечивает в замкнутой следящей системе с единичной обратной связью заданный набор показателей качества. Структурная схема проектируемой следящей системы.
43470. Транспортная задача. Общая постановка, цели, задачи. 723 KB
  В общей постановке транспортная задача состоит в отыскании оптимального плана перевозок некоторого однородного груза с баз потребителям . Различают два типа транспортных задач: но критерию стоимости план перевозок оптимален если достигнут минимум затрат на его реализацию и по критерию времени план оптимален если на его реализацию затрачивается минимум времени. План перевозок с указанием запасов и потребностей удобно записывать в виде следующей таблицы называемой таблицей перевозок: Пункты Отправления Пункты назначения Запасы ...
43471. Ремонт и техническое обслуживание стератера 279.33 KB
  Устройство стартера Назначение и виды стартера Стартер представляет собой электродвигатель постоянного тока, прокручивающий коленчатый вал с частотой необходимой для пуска двигателя. При прокручивании маховика двигателя стартер должен преодолеть момент сопротивления, создаваемый силами трения и компрессией.
43472. Проект спеціального ЕРЕ – кварцового резонатора на частоту 3,58 МГц 711 KB
  Вимоги, що ставляться до параметрів, властивостей та характеристик електрорадіоелементів, і, як наслідок, обмеження на їхні типи, визначаються функціональним призначенням схем та ланцюгів, у яких вони використовуються. При виборі елементної бази до певної ЕА також необхідно враховувати умови експлуатації цієї ЕА. Для даного варіанту курсової роботи задані наступні умови експлуатації:
43473. Обобщенная характеристика и особенности системы права Республики Беларусь 179 KB
  Поэтому и нормы права регулирующие эти интересы группируются по отраслям права а отрасли соединяются в систему права взаимно согласуются и дополняют друг друга. А само понятие системы права пришло в юриспруденцию из философии где под ним подразумевалось нечто ценное представляющее собой единство закономерно расположенных и находящихся во взаимной связи частей. Римские юристы ввели это понятие для того чтобы свести в единое целое различные нормы права которые существовали в Древнем Риме. Система права изначально основывалась на...
43474. Программирование приложений Windows. Методические указания 71 KB
  К защите курсовой работы представляется: пояснительная записка; реализация программы в виде законченного приложения; информация на диске. Создание демонстрационнообучающей программы по методом численного интегрирования. Создание демонстрационнообучающей программы по методам аппроксимации функций многочлены Ньютона Лагранжа интерполяционный многочлен. Создание обучающей программы по WIN PI раздел многопоточные приложения.
43475. Подземная гидромеханика. Методические указания 188 KB
  Фильтрационноемкостные параметры коллекторов Задание 1 Для величины пористости m=30 для 1 варианта и диаметра частиц d=020 мм определить удельную поверхность Sуд фиктивного грунта радиус пор идеального грунта R проницаемость k идеального грунта удельную поверхность и проницаемость реального грунта. Задание 2 Куб с ребром 1м наполнили шарами диаметром 10 см каждый а куб с ребром 1 см точно также уложили шарами диаметром 1 мм каждый.