7163

Мехатронная система регулирования положения стрелы, которая должна обеспечить заданную точность угла регулирования

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

Введение Целью курсового проекта является расширение, углубление и закрепление знаний, полученных на лекциях и лабораторных занятиях по проектированию мехатронных систем, а результатом должна стать система регулирования положения заданного объекта....

Русский

2013-01-17

371 KB

23 чел.

Введение

Целью курсового проекта является расширение, углубление и закрепление знаний, полученных на лекциях и лабораторных занятиях по проектированию мехатронных систем, а результатом должна стать система регулирования положения заданного объекта.

В данном курсовом проекте рассматривается мехатронная система регулирования положения стрелы, которая должна обеспечить заданную точность угла регулирования φ. Перемещение стрелы осуществляется гидравлическим приводом, расположенным снизу.

Будут рассмотрены основные принципы построения мехатронных систем, произведен расчет геометрических параметров кинематической схемы, разработаны функциональная и структурная схемы, проведено моделирование с помощью ЭВМ и анализ погрешностей по полученным графическим зависимостям.

  1.  Анализ кинематической схемы мехатронного модуля движения подъемного механизма

Рассмотрим кинематическую схему мехатронного устройства движения подъемного механизма, изображенную на рисунке 1.1., и найдем φ=f(L), для чего решим прямую задачу кинематики.

Рисунок 1.1 Кинематическая схема мехатронного устройства движения подъемного механизма

Из равнобедренного треугольника АОВ (рис1.2) по теореме косинусов следует:

,

Для нахождения L=f(φ) решим обратную задачу кинематики.

Из полученной зависимости определим значения Lmin и Lmax при а=0.5 м.

Шток выдвинется на максимальную длину при максимальном угле φmax=85°:

         

Аналогично найдем Lmin при φmin=10°:

    

Рассчитаем длину выдвижения штока Lход:

(м)

Определим зависимость j (L):

2. Выбор параметров гидроцилиндра

Проведем выбор гидроцилиндра в соответствии с исходными данными. Для обеспечения перемещения механизма в заданных пределах и при длине а=1.7 м подходит гидравлический цилиндр типа ЦРГ, технические характеристики  которого представлены в таблице 2.1.

Таблица 2.1.

Наименование параметров

Значение

Давление, МПа:

номинальное

максимальное

16

20

Диаметр цилиндра, мм

40

Диаметр штока, мм

28

Ход поршня, мм

800

Усилие на штоке, кгс:

тянущее

толкающее

1008

2000

Масса, кг

9.6

Габаритные размеры, мм(ширина×высота×длина)

60×90×1139

Рассчитаем площадь поршня в поршневой и штоковой полостях:

(м)

(м)

Рассчитаем нагрузку на шток гидроцилиндра:

Определим давление Р в гидросистеме при нагрузке на шток равной Gпр:

(Па)

3. Математическое описание системы управления мехатронного модуля движения подъемного механизма

Рассмотрим динамический расчет следящего электрогидропривода поступательного действия, гидравлическая схема которого приведена на рис. 3.1. Исходными данными для расчета  являются требуемые перемещение штока гидроцилиндра , скорость перемещения  или время перемещения , а также заданная погрешность позиционирования  .

При расчете будем считать, что в насосной станции поддерживается постоянное давление питания =159 МПа, давление на сливе равно . Верхний предел давления ограничивается работой предохранительного клапана ПК. Реверс работы исполнительного гидродвигателя ГЦ осуществляется за счет трехпозиционного электрогидрораспределителя  ЭГР. При использовании электрогидрораспределителей время их переключения из нейтрального положения в одно из рабочих, приведенное в паспорте, распределяется примерно в следующем соотношении: (80 – 85) % уходит на процесс нарастания тока и тягового усилия в электромагнитной системе, а остальное время – на движение золотника. Поэтому при анализе динамических характеристик привода можно рассчитывать процесс нарастания усилия в электромеханическом преобразователе (ЭМП) ЭГР, считая при этом, что само смещение золотника осуществляется мгновенно. В этом случае значение площади проходного сечения ЭГР принимает только два значения:  и  .

Процесс нарастания тягового усилия в ЭМП можно описать следующим уравнением:

,  (3.1)

где   – тяговое усилие на одном из двух электромагнитов ЭМ1 или ЭМ2;  – напряжение питания электромагнитов, определяемое в общем случае как  ( () – сигнал рассогласования,  – передаточная функция регулятора);  – коэффициент усиления (преобразования) ЭМП, который можно определить из технической характеристики на  ЭГР  как

,    (3.2)

– номинальное тяговое усилие электромагнита (из технической характеристики).

Постоянную времени  можно определить, исходя из общего решения дифференциального уравнения (3.1):

,

где  – время срабатывания (переключения) ЭГР (из технической характеристики), и соотношения (3.2). Тогда получим:

.    (3.3)

Следует также учитывать, что время срабатывания электромагнитов постоянного тока, как правило, почти на порядок больше времени срабатывания электромагнитов, работающих на переменном токе. Для снижения  постоянной времени  можно после регулятора установить реальное форсирующее звено с передаточной функцией вида

,

где  –  желаемая постоянная времени ЭМП.

Учитывая, что в трехпозиционном ЭГР два электромагнита (ЭМ1 и ЭМ2), следует определять суммарное усилие   от действия двух ЭМП:

.

При этом следует учитывать, что при положительном сигнале рассогласования должен сработать электромагнит ЭМ1, а при отрицательном – электромагнит ЭМ2. В последнем случае напряжение питания ЭМП и расчетное  усилие  принимают также отрицательные значения.

Величины давлений на условных входах в ЭГР определятся следующим образом:

  

Как известно, потери давления  складываются из потерь при ламинарном режиме течения жидкости , зависящих от протяженности гладких гидролиний, и турбулентном режиме , наблюдаемом при течении жидкости через различные сопротивления. Учитывая, что расход в любом сечении один и тот же, можно записать:

.

Исходя из последних выражений, можно записать:

 

Решая последнее уравнение относительно расхода Q, получим:

.    (3.4)

На основании выражения (3.4) получим систему уравнений, определяющих расходы  и  поршневой и штоковой магистралей ГЦ:

    (3.5)

где  – функция положения золотника ЭГР, определяемая как

– суммарные потери давления в магистрали, определяемые как

,

– давление нагрузки в поршневой или штоковой полостях ГЦ.

В выражениях (3.5) значения   можно оценить из уравнения Пуазейля:

,

в котором  – протяженность гидролинии, и ж – кинематическая вязкость и плотность рабочей жидкости,  – внутренний диаметр гидролинии.

Величина , включающая в себя все турбулентные сопротивления, в том числе и дроссели для регулирования скорости потока, определяет скорость движения выходного звена или рабочего органа. Ее значение определяется на основании  требований к скорости и быстродействию привода.

Исходя из условия неразрывности потока жидкости, записываются уравнения для двух полостей ГЦ:

(3.6)

где  и  – площади поршневой и штоковой полостей ГЦ:

; ,

– диаметр поршня,  – диаметр штока;

– коэффициент утечек и перетечек, определяемый ориентировочно из условия, что расход на утечки   не должен превышать 5 % расхода, идущего на перемещение штока, определяемого исходя из требования к быстродействию привода:

,

– заданная или требуемая скорость перемещения штока ГЦ,  – сумма приложенных к выходному звену привода активных сил;

bсi  – эквивалентная жесткость гидролинии, определяемая как:

,

V0  – неизменяемый объем жидкости в гидролинии; х – перемещение штока ГЦ; Епр  – приведенный модуль упругости жидкости, трубопровода и цилиндра:

,

Еж , Етр , Ец  – модули упругости жидкости, стенок трубопровода и цилиндра соответственно; dтр , dц  – толщины стенок трубопровода и  цилиндра  соответственно; тр , ц  – толщины стенок трубопровода и цилиндра соответственно.

Далее из уравнения (3.6) определяются давления нагрузки  в обеих полостях ГЦ:

 

Величина перемещения штока ГЦ определятся из уравнений движения поршня:

где kтр  – коэффициент вязкого трения; Fтр  – сухое трение поршня и штока; – удельная сила трения; dп , dш – диаметры поршня и штока; hп , hш  – ширина уплотнения на поршне и штоке;

– сумма активных сил, включающая силы тяжести, статические силы сопротивления, различные пружинные (жесткостные) нагрузки.

Тормозные клапаны ТК позволяют добиться приемлемых динамических характеристик. Моменты срабатывания тормозных электромагнитов ЭМ3 и ЭМ4 определяются динамическими параметрами привода и определяется условиями:

 

где  – напряжение питания электромагнитов ЭМ3 и ЭМ4;  – расстояние, на котором происходит срабатывание тормозных клапанов.

 При срабатывании ТК жидкость течет через дополнительные гидродроссели ГД. В этом случае в уравнении (3.5) следует заменить значения турбулентных сопротивлений .

На основе математической модели составим функциональную схему системы управления модулем, рисунок 3.2.

Структурная схема проектируемой мехатронной системы изображена на рисунке 3.3.


Рисунок 3.2  Функциональная схема системы управления мехатронного модуля движения подъемного механизма

Рисунок 3.3 Структурная схема системы управления мехатронного модуля движения подъемного механизма


4. Результаты моделирования

 

Полученная математическая модель была реализована с помощью языка программирования Turbo Pascal 7.1, листинг которой представлен в приложении 1. Результаты моделирования представлены в виде зависимостей параметров системы от времени. На рисунке 4.1 изображены графики зависимостей скорости выдвижения штока V и длины звена L.

На рисунке 4.2 показаны зависимости давлений в поршневой и штоковой полости, на рисунке 4.3 – зависимости углового перемещения φ .

Графики зависимостей скорости выдвижения штока V и длины звена L

Рисунок 4.1

Графики зависимости давления в штоковой и поршневой полости P1 и P2(Па)

Рисунок 4.2

График изменения угла φ во времени

Рисунок 4.3

5. Анализ погрешностей позиционирования

Определим характер погрешности поворота привода.

Используя обратную задачу кинематики имеем:

Рассчитаем погрешности позиционирования:

Предварительно принимаем:

ì

Следовательно, из полученной зависимости можно сделать вывод, что с ростом угла, погрешность поворота привода увеличивается.

Рассчитаем нагрузку на шток в зависимости от угла j:

Расчёт скорости стрелы:

Рисунок 5.1


 

А также другие работы, которые могут Вас заинтересовать

66523. Сетевые службы. Защита сетевых ресурсов 27.84 KB
  Шлюз по умолчанию и DNS-сервер имеют IP-адрес 192.168.123.1 В качестве DNS-сервера используется сервер bind9, сконфигурированный в ОС Ubuntu GNU/Linux. Исходная конфигурация не изменялась, были добавлены зоны для компьютеров сети
66524. ДОСЛІДЖЕННЯ ЛІНІЙНОГО НЕРОЗГАЛУЖЕНОГО ЕЛЕКТРИЧНОГО КОЛА СИНУСОЇДНОГО СТРУМУ 616 KB
  Експериментально визначити параметри резистора, котушки індуктивності та конденсатора в колі синусоїдного струму. Експериментально дослідити явище резонансу напруг, фазові та енергетичні співвідношення в колі з послідовним з’єднанням резистора...
66525. База даних і база знань як складовічастини експертноїсистеми 25.7 KB
  Вивчення основних можливостей представлення знань з використанням технічних засобів. На цій лабораторній роботі я вивчив основн іможливості представлення знань з використанням технічних засобів.
66526. СОБЫТИЙНЫЕ МОДЕЛИ ДИСКРЕТНЫХ СИСТЕМ. ЯЗЫК МОДЕЛИРОВАНИЯ ESimPL 985 KB
  Ресурс может одновременно выделяться нескольким транзактам процессам. К статическим характеристикам процесса относятся: длительность; результат; потребляемые ресурсы; условия запуска активизации; условия останова прерывания.
66527. Итерационные алгоритмы 61 KB
  Дана целочисленная квадратная матрица N*N. Определить: Количество строк, содержащих только различные элементы. Матрицу N*N заполнить натуральными числами от 1 до N*N по спирали, начинающейся в верхнем левом углу и закрученной по часовой стрелке.
66528. Реализация функций времени 200.77 KB
  Карта распределения ресурсов R0 – количество отрезков времени R1 - текущее значение адреса ячейки РПД Ячейки РПД 20h – 29h – ячейки для записи результата
66529. Интерполирование с помощью многочленов 369.88 KB
  В соответствии с вариантом исходное уравнение имеет вид: По узлам и соответствующим значениям функции построить интерполяционный многочлен, представив его в виде линейной комбинации значений.
66531. УПРАВЛЕНИЕ ПАМЯТЬЮ В ОС UNIX И WINDOWS 148.11 KB
  Цель работы — изучение аспектов организации работы с внутренней и внешней памятью в операционных системах семейств Unix и Windows. Использованные теоретические сведения Материалы из методического пособия...