7163

Мехатронная система регулирования положения стрелы, которая должна обеспечить заданную точность угла регулирования

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

Введение Целью курсового проекта является расширение, углубление и закрепление знаний, полученных на лекциях и лабораторных занятиях по проектированию мехатронных систем, а результатом должна стать система регулирования положения заданного объекта....

Русский

2013-01-17

371 KB

24 чел.

Введение

Целью курсового проекта является расширение, углубление и закрепление знаний, полученных на лекциях и лабораторных занятиях по проектированию мехатронных систем, а результатом должна стать система регулирования положения заданного объекта.

В данном курсовом проекте рассматривается мехатронная система регулирования положения стрелы, которая должна обеспечить заданную точность угла регулирования φ. Перемещение стрелы осуществляется гидравлическим приводом, расположенным снизу.

Будут рассмотрены основные принципы построения мехатронных систем, произведен расчет геометрических параметров кинематической схемы, разработаны функциональная и структурная схемы, проведено моделирование с помощью ЭВМ и анализ погрешностей по полученным графическим зависимостям.

  1.  Анализ кинематической схемы мехатронного модуля движения подъемного механизма

Рассмотрим кинематическую схему мехатронного устройства движения подъемного механизма, изображенную на рисунке 1.1., и найдем φ=f(L), для чего решим прямую задачу кинематики.

Рисунок 1.1 Кинематическая схема мехатронного устройства движения подъемного механизма

Из равнобедренного треугольника АОВ (рис1.2) по теореме косинусов следует:

,

Для нахождения L=f(φ) решим обратную задачу кинематики.

Из полученной зависимости определим значения Lmin и Lmax при а=0.5 м.

Шток выдвинется на максимальную длину при максимальном угле φmax=85°:

         

Аналогично найдем Lmin при φmin=10°:

    

Рассчитаем длину выдвижения штока Lход:

(м)

Определим зависимость j (L):

2. Выбор параметров гидроцилиндра

Проведем выбор гидроцилиндра в соответствии с исходными данными. Для обеспечения перемещения механизма в заданных пределах и при длине а=1.7 м подходит гидравлический цилиндр типа ЦРГ, технические характеристики  которого представлены в таблице 2.1.

Таблица 2.1.

Наименование параметров

Значение

Давление, МПа:

номинальное

максимальное

16

20

Диаметр цилиндра, мм

40

Диаметр штока, мм

28

Ход поршня, мм

800

Усилие на штоке, кгс:

тянущее

толкающее

1008

2000

Масса, кг

9.6

Габаритные размеры, мм(ширина×высота×длина)

60×90×1139

Рассчитаем площадь поршня в поршневой и штоковой полостях:

(м)

(м)

Рассчитаем нагрузку на шток гидроцилиндра:

Определим давление Р в гидросистеме при нагрузке на шток равной Gпр:

(Па)

3. Математическое описание системы управления мехатронного модуля движения подъемного механизма

Рассмотрим динамический расчет следящего электрогидропривода поступательного действия, гидравлическая схема которого приведена на рис. 3.1. Исходными данными для расчета  являются требуемые перемещение штока гидроцилиндра , скорость перемещения  или время перемещения , а также заданная погрешность позиционирования  .

При расчете будем считать, что в насосной станции поддерживается постоянное давление питания =159 МПа, давление на сливе равно . Верхний предел давления ограничивается работой предохранительного клапана ПК. Реверс работы исполнительного гидродвигателя ГЦ осуществляется за счет трехпозиционного электрогидрораспределителя  ЭГР. При использовании электрогидрораспределителей время их переключения из нейтрального положения в одно из рабочих, приведенное в паспорте, распределяется примерно в следующем соотношении: (80 – 85) % уходит на процесс нарастания тока и тягового усилия в электромагнитной системе, а остальное время – на движение золотника. Поэтому при анализе динамических характеристик привода можно рассчитывать процесс нарастания усилия в электромеханическом преобразователе (ЭМП) ЭГР, считая при этом, что само смещение золотника осуществляется мгновенно. В этом случае значение площади проходного сечения ЭГР принимает только два значения:  и  .

Процесс нарастания тягового усилия в ЭМП можно описать следующим уравнением:

,  (3.1)

где   – тяговое усилие на одном из двух электромагнитов ЭМ1 или ЭМ2;  – напряжение питания электромагнитов, определяемое в общем случае как  ( () – сигнал рассогласования,  – передаточная функция регулятора);  – коэффициент усиления (преобразования) ЭМП, который можно определить из технической характеристики на  ЭГР  как

,    (3.2)

– номинальное тяговое усилие электромагнита (из технической характеристики).

Постоянную времени  можно определить, исходя из общего решения дифференциального уравнения (3.1):

,

где  – время срабатывания (переключения) ЭГР (из технической характеристики), и соотношения (3.2). Тогда получим:

.    (3.3)

Следует также учитывать, что время срабатывания электромагнитов постоянного тока, как правило, почти на порядок больше времени срабатывания электромагнитов, работающих на переменном токе. Для снижения  постоянной времени  можно после регулятора установить реальное форсирующее звено с передаточной функцией вида

,

где  –  желаемая постоянная времени ЭМП.

Учитывая, что в трехпозиционном ЭГР два электромагнита (ЭМ1 и ЭМ2), следует определять суммарное усилие   от действия двух ЭМП:

.

При этом следует учитывать, что при положительном сигнале рассогласования должен сработать электромагнит ЭМ1, а при отрицательном – электромагнит ЭМ2. В последнем случае напряжение питания ЭМП и расчетное  усилие  принимают также отрицательные значения.

Величины давлений на условных входах в ЭГР определятся следующим образом:

  

Как известно, потери давления  складываются из потерь при ламинарном режиме течения жидкости , зависящих от протяженности гладких гидролиний, и турбулентном режиме , наблюдаемом при течении жидкости через различные сопротивления. Учитывая, что расход в любом сечении один и тот же, можно записать:

.

Исходя из последних выражений, можно записать:

 

Решая последнее уравнение относительно расхода Q, получим:

.    (3.4)

На основании выражения (3.4) получим систему уравнений, определяющих расходы  и  поршневой и штоковой магистралей ГЦ:

    (3.5)

где  – функция положения золотника ЭГР, определяемая как

– суммарные потери давления в магистрали, определяемые как

,

– давление нагрузки в поршневой или штоковой полостях ГЦ.

В выражениях (3.5) значения   можно оценить из уравнения Пуазейля:

,

в котором  – протяженность гидролинии, и ж – кинематическая вязкость и плотность рабочей жидкости,  – внутренний диаметр гидролинии.

Величина , включающая в себя все турбулентные сопротивления, в том числе и дроссели для регулирования скорости потока, определяет скорость движения выходного звена или рабочего органа. Ее значение определяется на основании  требований к скорости и быстродействию привода.

Исходя из условия неразрывности потока жидкости, записываются уравнения для двух полостей ГЦ:

(3.6)

где  и  – площади поршневой и штоковой полостей ГЦ:

; ,

– диаметр поршня,  – диаметр штока;

– коэффициент утечек и перетечек, определяемый ориентировочно из условия, что расход на утечки   не должен превышать 5 % расхода, идущего на перемещение штока, определяемого исходя из требования к быстродействию привода:

,

– заданная или требуемая скорость перемещения штока ГЦ,  – сумма приложенных к выходному звену привода активных сил;

bсi  – эквивалентная жесткость гидролинии, определяемая как:

,

V0  – неизменяемый объем жидкости в гидролинии; х – перемещение штока ГЦ; Епр  – приведенный модуль упругости жидкости, трубопровода и цилиндра:

,

Еж , Етр , Ец  – модули упругости жидкости, стенок трубопровода и цилиндра соответственно; dтр , dц  – толщины стенок трубопровода и  цилиндра  соответственно; тр , ц  – толщины стенок трубопровода и цилиндра соответственно.

Далее из уравнения (3.6) определяются давления нагрузки  в обеих полостях ГЦ:

 

Величина перемещения штока ГЦ определятся из уравнений движения поршня:

где kтр  – коэффициент вязкого трения; Fтр  – сухое трение поршня и штока; – удельная сила трения; dп , dш – диаметры поршня и штока; hп , hш  – ширина уплотнения на поршне и штоке;

– сумма активных сил, включающая силы тяжести, статические силы сопротивления, различные пружинные (жесткостные) нагрузки.

Тормозные клапаны ТК позволяют добиться приемлемых динамических характеристик. Моменты срабатывания тормозных электромагнитов ЭМ3 и ЭМ4 определяются динамическими параметрами привода и определяется условиями:

 

где  – напряжение питания электромагнитов ЭМ3 и ЭМ4;  – расстояние, на котором происходит срабатывание тормозных клапанов.

 При срабатывании ТК жидкость течет через дополнительные гидродроссели ГД. В этом случае в уравнении (3.5) следует заменить значения турбулентных сопротивлений .

На основе математической модели составим функциональную схему системы управления модулем, рисунок 3.2.

Структурная схема проектируемой мехатронной системы изображена на рисунке 3.3.


Рисунок 3.2  Функциональная схема системы управления мехатронного модуля движения подъемного механизма

Рисунок 3.3 Структурная схема системы управления мехатронного модуля движения подъемного механизма


4. Результаты моделирования

 

Полученная математическая модель была реализована с помощью языка программирования Turbo Pascal 7.1, листинг которой представлен в приложении 1. Результаты моделирования представлены в виде зависимостей параметров системы от времени. На рисунке 4.1 изображены графики зависимостей скорости выдвижения штока V и длины звена L.

На рисунке 4.2 показаны зависимости давлений в поршневой и штоковой полости, на рисунке 4.3 – зависимости углового перемещения φ .

Графики зависимостей скорости выдвижения штока V и длины звена L

Рисунок 4.1

Графики зависимости давления в штоковой и поршневой полости P1 и P2(Па)

Рисунок 4.2

График изменения угла φ во времени

Рисунок 4.3

5. Анализ погрешностей позиционирования

Определим характер погрешности поворота привода.

Используя обратную задачу кинематики имеем:

Рассчитаем погрешности позиционирования:

Предварительно принимаем:

ì

Следовательно, из полученной зависимости можно сделать вывод, что с ростом угла, погрешность поворота привода увеличивается.

Рассчитаем нагрузку на шток в зависимости от угла j:

Расчёт скорости стрелы:

Рисунок 5.1


 

А также другие работы, которые могут Вас заинтересовать

39168. Фактори, чинники та критерії конкурентоспроможності товару 109.5 KB
  Найчастіше під конкурентоспроможністю товару мають на увазі: властивість сукупність властивостей товару та його сервісу яка характеризується ступенем реального або потенційного задоволення ним конкретної потреби порівняно з аналогічними товарами представленими на цьому ринку; характеристику товару що відображає його відмінність від товаруконкурента за ступенем відповідності конкретній суспільній потребі та за витратами на її задоволення; спроможність товару відповідати вимогам даного ринку у період що аналізується; здатність...
39169. Конституционное право зарубежных стран 4.56 MB
  В учебнике освещаются основные понятия и институты зарубежного конституционного права раскрываются его предмет система источники. Предмет источники и система конституционного права зарубежных стран. Предмет конституционного права зарубежных стран. Источники конституционного права зарубежных стран.
39170. Базова апаратна конфігурація 68.75 KB
  Персональний компютер - універсальна технічна система. Його конфігурацію (склад устаткування) можна гнучко змінювати в міру необхідності. Тим не менш, існує поняття базової конфігурації, яку вважають типовою. У такому комплекті комп'ютер зазвичай поставляється. Поняття базової конфігурації може змінюватися. В даний час в базовій конфігурації розглядають чотири пристрої
39171. Основные положения по нормоконтролю и предварительной защите дипломных работ 729 KB
  Общие требования кафедры к содержанию и структуре дипломной работы 10 4.Общие требования кафедры к оформлению дипломной работы 11 5.Образцы оформления и требования к оформлению отдельных фрагментов дипломной работы: 13 титульный лист образец 1 14 реферат...
39172. ДЕРЖАВНЕ ПРАВО ЗАРУБІЖНИХ КРАЇН 3.29 MB
  Тимченко ДЕРЖАВНЕ ПРАВО ЗАРУБІЖНИХ КРАЇН Рекомендовано Міністерством освіти і науки України як навчальний посібник для студентів КИЇВ2005 вищих навчальних закладів УДК342187075. Б 86 Державне право зарубіжних країн: Навчальний посібник. 504 с ISBN 9663640545 Навчальний посібник являє собою комплекс навчальнометодичних матеріалів до курсу Державне конституційне право зарубіжних країн який є обов'язковим для викладання у вищих юридичних закладах IIIIV рівня акредитації. 2005 Центр навчальної літератури 2005...
39173. Аудит финансовых результатов предприятий торговли ООО «Рассвет» 513.5 KB
  Прибыль – конечный финансовый результат слагается из финансового результата от реализации продукции работ услуг основных средств и иного имущества предприятия и доходов от прочих операций уменьшенных на сумму расходов по этим операциям. Они более полно чем прибыль отражают окончательные результаты хозяйствования потому что их величина показывает соотношение эффекта с наличными или использованными ресурсами. В результатах деятельности предприятия заинтересованы учредители предприятия которые получают дивиденды инвесторы...
39174. ПРАКТИЧЕСКИЙ АСПЕКТ ВЗАИМОДЕЙСТВИЯ СЕМЬИ И ШКОЛЫ 408 KB
  Это прежде всего падение жизненного уровня большинства семей решение проблем экономического а порой и физического выживания усилило социальную тенденцию самоустранения многих родителей от решения вопросов воспитания и личностного развития ребенка. Процесс взаимодействия семьи и школы направлен на активное включение родителей в учебновоспитательный процесс во внеурочную досуговую деятельность сотрудничество с детьми и педагогами. Это семьи где ребёнок живет в постоянных ссорах родителей где родители употребляют спиртные напитки и...
39175. Мектептерде музыка пәні арқылы халықтың тәрбие берудің мән-мағынасы 463.5 KB
  3 Музыка мен әдебиеттің байланысы 2 Тәжірибелік жұмыстағы әдістер 2.1 Музыкалық тәрбие берудің маңызы мен міндеттері 2.1 Музыкалық білім мен тәрбие берудің қалыптасуы мен дамуы 3.2 Музыка мектебінде білім мен тәрбие беру 3.