7163

Мехатронная система регулирования положения стрелы, которая должна обеспечить заданную точность угла регулирования

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

Введение Целью курсового проекта является расширение, углубление и закрепление знаний, полученных на лекциях и лабораторных занятиях по проектированию мехатронных систем, а результатом должна стать система регулирования положения заданного объекта....

Русский

2013-01-17

371 KB

24 чел.

Введение

Целью курсового проекта является расширение, углубление и закрепление знаний, полученных на лекциях и лабораторных занятиях по проектированию мехатронных систем, а результатом должна стать система регулирования положения заданного объекта.

В данном курсовом проекте рассматривается мехатронная система регулирования положения стрелы, которая должна обеспечить заданную точность угла регулирования φ. Перемещение стрелы осуществляется гидравлическим приводом, расположенным снизу.

Будут рассмотрены основные принципы построения мехатронных систем, произведен расчет геометрических параметров кинематической схемы, разработаны функциональная и структурная схемы, проведено моделирование с помощью ЭВМ и анализ погрешностей по полученным графическим зависимостям.

  1.  Анализ кинематической схемы мехатронного модуля движения подъемного механизма

Рассмотрим кинематическую схему мехатронного устройства движения подъемного механизма, изображенную на рисунке 1.1., и найдем φ=f(L), для чего решим прямую задачу кинематики.

Рисунок 1.1 Кинематическая схема мехатронного устройства движения подъемного механизма

Из равнобедренного треугольника АОВ (рис1.2) по теореме косинусов следует:

,

Для нахождения L=f(φ) решим обратную задачу кинематики.

Из полученной зависимости определим значения Lmin и Lmax при а=0.5 м.

Шток выдвинется на максимальную длину при максимальном угле φmax=85°:

         

Аналогично найдем Lmin при φmin=10°:

    

Рассчитаем длину выдвижения штока Lход:

(м)

Определим зависимость j (L):

2. Выбор параметров гидроцилиндра

Проведем выбор гидроцилиндра в соответствии с исходными данными. Для обеспечения перемещения механизма в заданных пределах и при длине а=1.7 м подходит гидравлический цилиндр типа ЦРГ, технические характеристики  которого представлены в таблице 2.1.

Таблица 2.1.

Наименование параметров

Значение

Давление, МПа:

номинальное

максимальное

16

20

Диаметр цилиндра, мм

40

Диаметр штока, мм

28

Ход поршня, мм

800

Усилие на штоке, кгс:

тянущее

толкающее

1008

2000

Масса, кг

9.6

Габаритные размеры, мм(ширина×высота×длина)

60×90×1139

Рассчитаем площадь поршня в поршневой и штоковой полостях:

(м)

(м)

Рассчитаем нагрузку на шток гидроцилиндра:

Определим давление Р в гидросистеме при нагрузке на шток равной Gпр:

(Па)

3. Математическое описание системы управления мехатронного модуля движения подъемного механизма

Рассмотрим динамический расчет следящего электрогидропривода поступательного действия, гидравлическая схема которого приведена на рис. 3.1. Исходными данными для расчета  являются требуемые перемещение штока гидроцилиндра , скорость перемещения  или время перемещения , а также заданная погрешность позиционирования  .

При расчете будем считать, что в насосной станции поддерживается постоянное давление питания =159 МПа, давление на сливе равно . Верхний предел давления ограничивается работой предохранительного клапана ПК. Реверс работы исполнительного гидродвигателя ГЦ осуществляется за счет трехпозиционного электрогидрораспределителя  ЭГР. При использовании электрогидрораспределителей время их переключения из нейтрального положения в одно из рабочих, приведенное в паспорте, распределяется примерно в следующем соотношении: (80 – 85) % уходит на процесс нарастания тока и тягового усилия в электромагнитной системе, а остальное время – на движение золотника. Поэтому при анализе динамических характеристик привода можно рассчитывать процесс нарастания усилия в электромеханическом преобразователе (ЭМП) ЭГР, считая при этом, что само смещение золотника осуществляется мгновенно. В этом случае значение площади проходного сечения ЭГР принимает только два значения:  и  .

Процесс нарастания тягового усилия в ЭМП можно описать следующим уравнением:

,  (3.1)

где   – тяговое усилие на одном из двух электромагнитов ЭМ1 или ЭМ2;  – напряжение питания электромагнитов, определяемое в общем случае как  ( () – сигнал рассогласования,  – передаточная функция регулятора);  – коэффициент усиления (преобразования) ЭМП, который можно определить из технической характеристики на  ЭГР  как

,    (3.2)

– номинальное тяговое усилие электромагнита (из технической характеристики).

Постоянную времени  можно определить, исходя из общего решения дифференциального уравнения (3.1):

,

где  – время срабатывания (переключения) ЭГР (из технической характеристики), и соотношения (3.2). Тогда получим:

.    (3.3)

Следует также учитывать, что время срабатывания электромагнитов постоянного тока, как правило, почти на порядок больше времени срабатывания электромагнитов, работающих на переменном токе. Для снижения  постоянной времени  можно после регулятора установить реальное форсирующее звено с передаточной функцией вида

,

где  –  желаемая постоянная времени ЭМП.

Учитывая, что в трехпозиционном ЭГР два электромагнита (ЭМ1 и ЭМ2), следует определять суммарное усилие   от действия двух ЭМП:

.

При этом следует учитывать, что при положительном сигнале рассогласования должен сработать электромагнит ЭМ1, а при отрицательном – электромагнит ЭМ2. В последнем случае напряжение питания ЭМП и расчетное  усилие  принимают также отрицательные значения.

Величины давлений на условных входах в ЭГР определятся следующим образом:

  

Как известно, потери давления  складываются из потерь при ламинарном режиме течения жидкости , зависящих от протяженности гладких гидролиний, и турбулентном режиме , наблюдаемом при течении жидкости через различные сопротивления. Учитывая, что расход в любом сечении один и тот же, можно записать:

.

Исходя из последних выражений, можно записать:

 

Решая последнее уравнение относительно расхода Q, получим:

.    (3.4)

На основании выражения (3.4) получим систему уравнений, определяющих расходы  и  поршневой и штоковой магистралей ГЦ:

    (3.5)

где  – функция положения золотника ЭГР, определяемая как

– суммарные потери давления в магистрали, определяемые как

,

– давление нагрузки в поршневой или штоковой полостях ГЦ.

В выражениях (3.5) значения   можно оценить из уравнения Пуазейля:

,

в котором  – протяженность гидролинии, и ж – кинематическая вязкость и плотность рабочей жидкости,  – внутренний диаметр гидролинии.

Величина , включающая в себя все турбулентные сопротивления, в том числе и дроссели для регулирования скорости потока, определяет скорость движения выходного звена или рабочего органа. Ее значение определяется на основании  требований к скорости и быстродействию привода.

Исходя из условия неразрывности потока жидкости, записываются уравнения для двух полостей ГЦ:

(3.6)

где  и  – площади поршневой и штоковой полостей ГЦ:

; ,

– диаметр поршня,  – диаметр штока;

– коэффициент утечек и перетечек, определяемый ориентировочно из условия, что расход на утечки   не должен превышать 5 % расхода, идущего на перемещение штока, определяемого исходя из требования к быстродействию привода:

,

– заданная или требуемая скорость перемещения штока ГЦ,  – сумма приложенных к выходному звену привода активных сил;

bсi  – эквивалентная жесткость гидролинии, определяемая как:

,

V0  – неизменяемый объем жидкости в гидролинии; х – перемещение штока ГЦ; Епр  – приведенный модуль упругости жидкости, трубопровода и цилиндра:

,

Еж , Етр , Ец  – модули упругости жидкости, стенок трубопровода и цилиндра соответственно; dтр , dц  – толщины стенок трубопровода и  цилиндра  соответственно; тр , ц  – толщины стенок трубопровода и цилиндра соответственно.

Далее из уравнения (3.6) определяются давления нагрузки  в обеих полостях ГЦ:

 

Величина перемещения штока ГЦ определятся из уравнений движения поршня:

где kтр  – коэффициент вязкого трения; Fтр  – сухое трение поршня и штока; – удельная сила трения; dп , dш – диаметры поршня и штока; hп , hш  – ширина уплотнения на поршне и штоке;

– сумма активных сил, включающая силы тяжести, статические силы сопротивления, различные пружинные (жесткостные) нагрузки.

Тормозные клапаны ТК позволяют добиться приемлемых динамических характеристик. Моменты срабатывания тормозных электромагнитов ЭМ3 и ЭМ4 определяются динамическими параметрами привода и определяется условиями:

 

где  – напряжение питания электромагнитов ЭМ3 и ЭМ4;  – расстояние, на котором происходит срабатывание тормозных клапанов.

 При срабатывании ТК жидкость течет через дополнительные гидродроссели ГД. В этом случае в уравнении (3.5) следует заменить значения турбулентных сопротивлений .

На основе математической модели составим функциональную схему системы управления модулем, рисунок 3.2.

Структурная схема проектируемой мехатронной системы изображена на рисунке 3.3.


Рисунок 3.2  Функциональная схема системы управления мехатронного модуля движения подъемного механизма

Рисунок 3.3 Структурная схема системы управления мехатронного модуля движения подъемного механизма


4. Результаты моделирования

 

Полученная математическая модель была реализована с помощью языка программирования Turbo Pascal 7.1, листинг которой представлен в приложении 1. Результаты моделирования представлены в виде зависимостей параметров системы от времени. На рисунке 4.1 изображены графики зависимостей скорости выдвижения штока V и длины звена L.

На рисунке 4.2 показаны зависимости давлений в поршневой и штоковой полости, на рисунке 4.3 – зависимости углового перемещения φ .

Графики зависимостей скорости выдвижения штока V и длины звена L

Рисунок 4.1

Графики зависимости давления в штоковой и поршневой полости P1 и P2(Па)

Рисунок 4.2

График изменения угла φ во времени

Рисунок 4.3

5. Анализ погрешностей позиционирования

Определим характер погрешности поворота привода.

Используя обратную задачу кинематики имеем:

Рассчитаем погрешности позиционирования:

Предварительно принимаем:

ì

Следовательно, из полученной зависимости можно сделать вывод, что с ростом угла, погрешность поворота привода увеличивается.

Рассчитаем нагрузку на шток в зависимости от угла j:

Расчёт скорости стрелы:

Рисунок 5.1


 

А также другие работы, которые могут Вас заинтересовать

81786. Формирование науки как профессиональной деятельности. Возникновение дисциплинарно организованной науки 35.37 KB
  Возникновение дисциплинарно организованной науки. Несмотря на большое значение великих прозрений античности влияние науки арабов средневекового Востока гениальных идей эпохи Возрождения естествознание до XVII в. У истоков науки как профессиональной деятельности стоит Френсис Бэкон 1561 1626 утверждавший что достижения науки ничтожны и что она нуждается в великом обновлении.
81787. Становление социальных и гуманитарных наук 36.39 KB
  Если на этапе преднауки как первичные идеальные объекты так и их отношения соответственно смыслы основных терминов языка и правила оперирования с ними выводились непосредственно из практики и лишь затем внутри созданной системы знания языка формировались новые идеальные объекты то теперь познание делает следующий шаг. Оно начинает строить фундамент новой системы знания как бы сверху по отношению к реальной практике и лишь после этого путем ряда опосредствований проверяет созданные из идеальных объектов конструкции сопоставляя их с...
81788. Научное знание как система, его особенности и структура 31.63 KB
  Рассмотрим основные особенности научного познания или критерии научности. Его основная задача обнаружение объективных законов действительности природных социальных общественных законов самого познания мышления и др. Нацеленность науки на изучение не только объектов преобразуемых в сегодняшней практике но и тех которые могут стать предметом практического освоения в будущем является важной отличительной чертой научного познания. Существенным признаком научного познания является его системность...
81789. Эмпирический и теоретический уровни научного знания, критерии их различия 30.8 KB
  Эмпирический уровень научного познания включает в себя наблюдение эксперимент группировку классификацию и описание результатов наблюдения и эксперимента моделирование. Теоретический уровень научного познания включает в себя выдвижение построение и разработку научных гипотез и теорий; формулирование законов; выведение логических следствий из законов; сопоставление друг с другом различных гипотез и теорий теоретическое моделирование а также процедуры объяснения предсказания и обобщения. Соотношение эмпирического и теоретического...
81790. Структура эмпирического знания. Эмпирический факт 32.87 KB
  Вторым более высоким уровнем эмпирического знания являются факты. Научные факты представляют собой индуктивные обобщения протоколов это обязательно общие утверждения статистического или универсального характера. Понятие факт имеет следующие основные значения: 1 Некоторый фрагмент действительности объективные события результаты относящиеся либо к объективной реальности факты действительности либо к сфере сознания и познания факты сознания . Эйнштейн считал предрассудком убеждение в том будто факты сами по себе без свободного...
81791. Специфика теоретического познания. Структура и функции научной теории 42.94 KB
  Структура и функции научной теории. Гипотеза является необходимым элементом естественнонаучного познания которое обязательно включает в себя: а собирание описание систематизацию и изучение фактов; б составление гипотезы или предположения о причинной связи явлений; в опытную проверку логических следствий из гипотез; г превращение гипотез в достоверные теории или отбрасывание ранее принятой гипотезы и выдвижение новой. В результате этой проверки гипотеза либо переходит в ранг научной теории или опровергается сходит в научной сцены . В...
81792. Основания науки и их структура. Идеалы и нормы исследования 29.55 KB
  Под основаниями науки понимают систему различных регулятивов детерминирующих цель и способы получения научного познания представление и понимание изучаемой реальности а также формы и степень обоснованности научного знания и его включения в человеческую культуру. В данной дефиниции ясно видна и структура оснований науки: цель и способы научного познания определяются идеалами нормами и критериями обобщенное представление и понимание исследуемой реальности воплощается в научной картине мира формы и степень обоснованности научного знания и...
81793. Научная картина мира, ее исторические формы и функции 36.34 KB
  В познании структуры и свойств универсума большое значение имеет научная картина мира являющаяся формой систематизации и обобщения научных знаний. Научная картина мира НКМ система общих представлений о фундаментальных свойствах и закономерностях универсума возникающая и развивающаяся на основе обобщения и синтеза основных научных фактов понятий и принципов. Современная научная картина мира состоит из трех относительно самостоятельных блоков естественнонаучного технического и социальногуманитарного единство которых обеспечивают...
81794. Философские основания науки. Роль философских идей и принципов в обосновании научного знания 32.6 KB
  Социальное познание исторически первоначально развивалось в рамках философии истории раздела философии связанного с интерпретацией исторического процесса и исторического познания. Термин философия истории используется в настоящее время в следующих основных значениях: а учение об исторической реальности в ее целостности и развитии общая теория исторического процесса как единства прошлого настоящего и будущего; б часть философии науки исследующая историческое познание рациональными средствами и методами т. Это философская версия...