71706

Модуляция

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Определить зависимость качества модуляции сигнала от уровня шума. Исходные данные На рисунке 1 представлена Sмодель: Модуляция гармонических колебаний которая позволяет изменять тип модуляции ее параметры например частоту а также параметры канала связи...

Русский

2014-11-11

602 KB

1 чел.

Министерство образования Республики Беларусь

Учреждение образования

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра информационных технологий автоматизированных систем

Лабораторная работа №7

«Модуляция»

Выполнила

студентка гр. 120603

Довнар М.А.

Проверил

Стригалев Л.С.

Минск 2013

  1.   Цель работы

Изучить различные виды модуляции. Определить зависимость качества модуляции сигнала от уровня шума.

  1.  Исходные данные

На рисунке 1 представлена S-модель: «Модуляция гармонических колебаний», которая позволяет изменять тип модуляции, ее параметры (например, частоту), а также параметры канала связи (например, отношение сигнал – шум) и получать следующие виртуальные осциллограммы:

  •  моделирующего гармонического колебания (осциллограмма 1);
  •  моделированного гармонического колебания (осциллограмма 2);
  •  моделированного колебания на выходе канала связи (осциллограмма 3);
  •  демодулированного колебания, прошедшего через канал связи (осциллограмма 4).

Рисунок 1 – Исходная S-модель

  1.  Ход работы
    1.  Краткие теоретические сведения

Под модуляцией понимают процесс изменения одного или нескольких параметров физического процесса по закону передаваемого сообщения.

Как правило, физический процесс (несущее  колебание) является высокочастотным, а передаваемое сообщение (модулирующее колебание) - низкочастотным. Такое соотношение частот позволяет реализовать одно из важнейших свойств  модуляции: управляемый переноc спектра низкочастотного колебания в область высоких частот.

Модуляция осуществляется в устройствах модуляторах. При модуляции на вход модулятора подаются сигналы:

  •  u(t) — модулирующий, данный сигнал является информационным и низкочастотным;
  •  S(t) — модулируемый (несущий), данный сигнал является неинформационным и высокочастотным;
  •  Sм(t) — модулированный сигнал, данный сигнал является информационным и высокочастотным.

В данной работе в качестве несущего сигнала используется гармоническое колебание. При этом модуляция называется аналоговой или непрерывной.

При модуляции гармонических колебаний по закону передаваемого сообщения c(t) изменяется один из параметров гармонического колебания

так что в данном случае возможны три вида модуляции:  

  •  амплитудная модуляция (АМ): изменяется пропорционально c(t) амплитуда A гармонического колебания;

Особенностью модулированного сигнала в данном случае является наличие в спектре двух боковых полос несущих одинаковую информацию. Подавление одной из полос позволяет уменьшить спектр модулированного сигнала. Модуляция, при которой формируется модулированный сигнал с одной боковой полосой (верхней или нижней) называется однополосной.

  •  частотная модуляция (ЧМ): изменяется частота ;
  •  фазовая модуляция (ФМ): изменяется начальная фаза.  

В ходе выполнения лабораторной работы будем изучать свойства модуляции гармонических колебаний путем изменения типа гармонической модуляции, частоты и отношения сигнал – шум и последующего анализа полученных результатов.

  1.  Амплитудная модуляция
    1.  Двухполосная амплитудная модуляция

Схема двухполосной амплитудной модуляции представлена на рисунке 2.

Рисунок 2 – Схема двухполосной амплитудной модуляции

  1.  Установим следующие параметры:
  •  Частота – 300;
  •  отношение сигнал – шум - 0.

Получим виртуальные осциллограммы, которые представлены на рисунке 3.

Рисунок 3 – Осциллограммы для двухполосной амплитудной модуляции при частоте 300 и отношении сигнал – шум - 0

Из сравнения осциллограмм 2 и 3 на рисунке 3 видно, что сигнал на выходе канала связи заметно искажён, поэтому после демодуляции мы получили сигнал, сильно отличающийся от исходного моделирующего сигнала, а также от моделированного сигнала (см. осциллограммы 1, 4 и 2 на рисунке 3). Искажение сигнала на выходе канала связи вызвано действующими на него помехами.

  1.   Установим следующие параметры:
  •  Частота – 300;
  •  отношение сигнал – шум - 50.

Получим виртуальные осциллограммы, которые представлены на рисунке 4.

Рисунок 4 – Осциллограммы для двухполосной амплитудной модуляции при частоте 300 и отношении сигнал – шум - 50

Осциллограммы 2 и 3 на рисунке 4 идентичны. Это означает, что сигнал на выходе канала не искажён, влияние помех незначительно. Однако после демодуляции мы получили сигнал, близкий по форме к моделированному (см. осциллограммы 4 и 2 на рисунке 4), но отличающийся от исходного моделирующего сигнала (см. осциллограмму 1 на рисунке 4), так как в спектре модулированного сигнала в данном случае присутствуют две боковые полосы, несущие одинаковую информацию.

 

  1.  Установим следующие параметры:
  •  Частота – 100;
  •  отношение сигнал – шум - 0.

Получим виртуальные осциллограммы, которые представлены на рисунке 5. Они аналогичны осциллограммам, представленным на рисунке 3. 

Рисунок 5 – Осциллограммы для двухполосной амплитудной модуляции при частоте 100 и отношении сигнал – шум - 0

Из сравнения осциллограмм на рисунках 3 и 5 видно, что моделированный сигнал на выходе канала связи не зависит от частоты, наблюдается лишь незначительное изменение демоделированного сигнала.

  1.  Установим следующие параметры:
  •  Частота – 100;
  •  отношение сигнал – шум - 50.

Получим виртуальные осциллограммы, которые представлены на рисунке 6.

Рисунок 6 – Осциллограммы для двухполосной амплитудной модуляции при частоте 10 и отношении сигнал – шум – 50

Осциллограммы 2 и 3 на рисунке 11 идентичны. Это означает, что сигнал на выходе канала связи не искажён. Однако после демодуляции мы получили сигнал, отличный от исходного моделирующего сигнала (см. осциллограмму 1 на рисунке 6).

Анализ осциллограмм, представленных на рисунках 4 и 6, показывает, что сигнал на выходе канала связи остается неискажённым вне зависимости от выбора частоты при постоянном достаточно большом отношении сигнал-шум. В обоих случаях демодулированный сигнал близок по форме к моделированному, однако отличен от исходного моделирующего сигнала.

  1.  Однополосная амплитудная модуляция

Схема однополосной амплитудной модуляции представлена на рисунке 7.

Рисунок 7 – Схема однополосной амплитудной модуляции

  1.  Установим следующие параметры:
  •  Частота – 300;
  •  отношение сигнал – шум - 0.

Получим виртуальные осциллограммы, которые представлены на рисунке 8.

Рисунок 8 – Осциллограммы для однополосной АМ при частоте 300 и отношении сигнал – шум - 0

Получили результаты, аналогичные результатам для двухполосной амплитудной модуляции при тех же самых параметрах.

Из сравнения осциллограмм 2 и 3 на рисунке 8 видно, что сигнал на выходе канала связи заметно искажён, поэтому после демодуляции мы имеем сигнал, сильно отличающийся от исходного моделирующего сигнала, а также от моделированного сигнала (см. осциллограммы 1 и 4 на рисунке 8). Искажение сигнала на выходе канала связи вызвано действующими на него помехами.

  1.   Установим следующие параметры:
  •  Частота – 300;
  •  отношение сигнал – шум - 50.

Получим виртуальные осциллограммы, которые представлены на рисунке 9.

Рисунок 9 – Осциллограммы для однополосной АМ при частоте 300 и отношении сигнал – шум - 50

Осциллограммы 2 и 3 на рисунке 9 идентичны. Это означает, что сигнал на выходе канала связи не искажён, влияние помех незначительно. Поэтому после демодуляции мы получили сигнал, близкий к исходному моделирующему сигналу (см. осциллограмму 1 на рисунке 9).

  1.  Установим следующие параметры:
  •  Частота – 100;
  •  отношение сигнал – шум - 0.

Получим виртуальные осциллограммы, которые представлены на рисунке 100.

Рисунок 10 – Осциллограммы для однополосной АМ при частоте 100 и отношении сигнал – шум – 0

Анализ осциллограмм на рисунках 8 и 10 показывает, что изменение частоты приводит к изменению моделированного сигнала, но при этом сигнал на выходе канала связи остается искажённым.

  1.  Установим следующие параметры:
  •  Частота – 100;
  •  отношение сигнал – шум - 50.

Получим виртуальные осциллограммы, которые представлены на рисунке 11.

Рисунок 11 – Осциллограммы для однополосной АМ при частоте 100 и отношении сигнал – шум – 50

Осциллограммы 2 и 3 на рисунке 11 идентичны. Это означает, что сигнал на выходе канала связи не искажён. Однако после демодуляции мы получили сигнал, отличный от исходного моделирующего сигнала (см. осциллограмму 1 на рисунке 11).

Анализ осциллограмм, представленных на рисунках 9 и 11, показывает, что сигнал на выходе канала связи остается неискажённым вне зависимости от выбора частоты при постоянном достаточно большом отношении сигнал-шум, однако при высокой частоте демодулированный сигнал близок к исходному, а при низкой – нет.

  1.  Частотная модуляция

Схема частотной модуляции (ЧМ) представлена на рисунке 12.

Рисунок 12 – Схема ЧМ

  1.  Установим следующие параметры:
  •  Частота – 300;
  •  отношение сигнал – шум - 0.

Получим виртуальные осциллограммы, которые представлены на рисунке 13.

Рисунок 13 – Осциллограммы для ЧМ при частоте 300 и отношении сигнал – шум - 0

Из сравнения полученных осциллограмм 2 и 3 на рисунке 13 видно, что сигнал на выходе канала связи заметно искажён, поэтому после демодуляции мы имеем сигнал, сильно отличающийся от исходного моделирующего сигнала (см. осциллограммы 1 и 4 на рисунке 13). Искажение сигнала на выходе канала связи вызвано действующими на него помехами.

  1.   Установим следующие параметры:
  •  Частота – 300;
  •  отношение сигнал – шум - 50.

Получим виртуальные осциллограммы, которые представлены на рисунке 14.

Рисунок 14 – Осциллограммы для ЧМ при частоте 300 и отношении сигнал – шум - 50

Осциллограммы 2 и 3 на рисунке 14 идентичны. Это означает, что сигнал на выходе канала связи не искажён, влияние помех незначительно. Поэтому в результате демодуляции мы получили сигнал, близкий к исходному моделирующему сигналу (см. осциллограмму 1 на рисунке 14).

  1.  Установим следующие параметры:
  •  Частота – 100;
  •  отношение сигнал – шум - 0.

Получим виртуальные осциллограммы, которые представлены на рисунке 15.

Рисунок 15 – Осциллограммы для ЧМ при частоте 100 и отношении сигнал – шум - 0

Анализ осциллограмм на рисунках 13 и 15 показывает, что изменение частоты приводит к изменению моделированного сигнала, но при этом сигнал на выходе канала связи остается искажённым.

  1.  Установим следующие параметры:
  •  Частота – 100;
  •  отношение сигнал – шум - 50.

Получим виртуальные осциллограммы, которые представлены на рисунке 16.

Рисунок 16 – Осциллограммы для ЧМ модуляции при частоте 100 и отношении сигнал – шум – 50

Осциллограммы, представленные на рисунках 14 и 16, показывают, сигнал на выходе канала связи остается неискажённым, а демодулированный сигнал совпадает с исходным модулирующим сигналом, вне зависимости от выбора частоты, если при этом установлено достаточно большое отношение сигнал-шум.

  1.  Фазовая модуляция

Схема фазовой модуляции (ФМ) представлена на рисунке 17.

Рисунок 17 – Схема ФМ

  1.  Установим следующие параметры:
  •  Частота – 300;
  •  отношение сигнал – шум - 0.

Получим виртуальные осциллограммы, которые представлены на рисунке 18.

Рисунок 18 – Осциллограммы для ФМ при частоте 300 и отношении сигнал – шум - 0

Из сравнения полученных осциллограмм 2 и 3 на рисунке 18 видно, что сигнал на выходе канала связи заметно искажён, поэтому после демодуляции мы имеем сигнал, сильно отличающийся от исходного моделирующего сигнала (см. осциллограммы 1 и 4 на рисунке 18). Искажение сигнала на выходе канала связи вызвано действующими на него помехами.

  1.   Установим следующие параметры:
  •  Частота – 300;
  •  отношение сигнал – шум - 50.

Получим виртуальные осциллограммы, которые представлены на рисунке 19.

Рисунок 19 – Осциллограммы для ФМ при частоте 300 и отношении сигнал – шум - 50

Осциллограммы 2 и 3 на рисунке 19 идентичны. Это означает, что сигнал на выходе канала связи не искажён, влияние помех незначительно. В результате демодуляции мы получили сигнал, близкий по форме к исходному моделирующему сигналу.

  1.  Установим следующие параметры:
  •  Частота – 100;
  •  отношение сигнал – шум - 0.

Получим виртуальные осциллограммы, которые представлены на рисунке 20.

Рисунок 20 – Осциллограммы для ФМ при частоте 100 и отношении сигнал – шум - 0

Анализ осциллограмм на рисунках 18 и 20 показывает, что изменение частоты приводит к изменению моделированного сигнала, но при этом сигнал на выходе канала связи остается искажённым.

  1.  Установим следующие параметры:
  •  Частота – 100;
  •  отношение сигнал – шум - 50.

Получим виртуальные осциллограммы, которые представлены на рисунке 21.

Рисунок 21 – Осциллограммы для ФМ модуляции при частоте 100 и отношении сигнал – шум – 50

Анализ осциллограмм, представленных на рисунках 19 и 21, показывает, что сигнал на выходе канала связи остается неискажённым вне зависимости от выбора частоты при постоянном достаточно большом отношении сигнал-шум, однако при высокой частоте демодулированный сигнал более близок к исходному, чем при низкой.


  1.  Анализ полученных результатов

Демодулированный сигнал по форме приближается к исходному модулирующему сигналу при увеличении отношения сигнал-шум.

При установке достаточно высокого постоянного отношения сигнал-шум сигнал на выходе канала связи остается неискажённым вне зависимости от выбора частоты во всех видах модуляции. В ЧМ и ФМ демодулированный сигнал близок к исходному на любых частотах, однако его качество улучшается при увеличении частоты. В однополосной АМ при высокой частоте демодулированный сигнал близок к исходному, а при низкой – нет.


  1.  Вывод

В данной лабораторной работе мы рассмотрели представленные виды модуляции и проанализировали изменение формы исходного моделирующего сигнала после демодуляции в зависимости от частоты и отношения сигнал – шум. Оценили действие помех и искажений при прохождении сигналом канала связи.

Выбор типа модуляции зависит от решаемой задачи и от характеристик канала (полосы пропускания, ослабления сигнала и т.д.). Для получения нужных выходных характеристик канала изменяем тип модуляции сигнала и отношение сигнал – шум.


 

А также другие работы, которые могут Вас заинтересовать

37189. Необходимость и сущность кредита. Структура кредита 31 KB
  Структура кредита Кредит выступает как передача во временное пользование определенных стоимостей которые могут быть либо в виде материальных ценностей либо денежных средств. Необходимость кредита определяется двумя группами причин: 1. Общие объясняют необходимость кредита во всех общественноэкономических формациях: а наличие товарного производства и товарного обращения б функционирование денег как средства платежа в продажа товаров в кредит с отсрочкой платежа.
37190. Природа ссудного процента и его экономическая роль. Норма ссудного процента 28.5 KB
  хозрасчетной деятельностью предприятий и организаций: проценты уплачиваемые предприятиями должны стимулировать рациональное использование кредита и своевременное погашение ссуд. виды Проценты основной доход лиц делающих сбережения. Лицо делающее сбережения получает проценты в обмен на размещение на счете свободных средств. Для делающего сбережения лица проценты полученные в течение данного периода являются текущим доходом за этот период.
37191. Понятие банковской системы, ее элементы. Банк как элемент банковской системы 32 KB
  Банк как элемент банковской системы Банковская система совокупность банковских учреждений. Различия в понимании банка как исходного элемента банковской системы. в странах с развитой банковской системой банки осуществляют страховые ипотечные операции трастовое обслуживание используют закладные приобретают биржевые и маклерские конторы.
37192. Основы организации безналичных расчетов. Каналы движения денег безналичного оборота 34 KB
  На Центральный банк РФ как главный регулирующий орган платежной системы возложены обязанности по установлению правил сроков и стандартов осуществления расчетов с соблюдением следующих принципов их организации: 1. Правовой режим осуществления расчетов и платежей. Общий порядок осуществления расчетов на территории Российской Федерации регулируется Гражданским кодексом РФ ст.
37193. Финансовое обеспечение инвестиций в основные средства (фонды) предприятий 48.5 KB
  По действующему законодательству инвестиционная деятельность на территории Российской Федерации может финансироваться за счет: собственных финансовых ресурсов и внутрихозяйственных резервов инвестора прибыли амортизационных отчислений денежных накоплений и сбережений граждан и юридических лиц средств выплачиваемых органами страхования в виде возмещения потерь от аварий стихийных бедствий и других средств; заемных финансовых средств инвестора или переданных им средств банковские и бюджетные кредиты облигационные займы и другие...
37194. Инвестиционный проект 56.5 KB
  Понятие инвестиционного проекта трактуется двояко: 1 как деятельность мероприятие предполагающая осуществление комплекса какихлибо действий обеспечивающих достижение определенных целей; 2 как система включающая определенный набор организационноправовых и расчетнофинансовых документов необходимых для осуществления какихлибо действий или описывающих эти действия. В Федеральном законе Об инвестиционной деятельности в Российской Федерации осуществляемой в форме капитальных вложений дано такое определение инвестиционного проекта:...
37195. Сущность инвестиций 47 KB
  N 160ФЗ Об иностранных инвестициях в Российской Федерации Федеральный закон N 39ФЗ О рынке ценных бумаг а также отдельные указы Президента РФ отдельные постановления Правительства РФ и отдельные ведомственные нормативные акты органов исполнительной власти. Закон РФ Об иностранных инвестициях в РФ от 09. Настоящий Федеральный закон определяет основные гарантии прав иностранных инвесторов на инвестиции и получаемые от них доходы и прибыль условия предпринимательской деятельности иностранных инвесторов на территории Российской...
37196. ПРИБЫЛЬ ОРГАНИЗАЦИИ 1.13 MB
  ПРИБЫЛЬ ОРГАНИЗАЦИИ Вы будете изучать: Понятие прибыли организации Методы планирования прибыли организации Методы операционного анализа Цели: Изучить экономическую литературу раскрывающую содержание прибыли предприятий Изучить содержание методов планирования прибыли организации Изучить содержание методов операционного анализа Результат: Представление о механизме формирования и использования прибыли организации. Управление прибылью.288322 Ключевые слова: прибыль организации виды прибыли методы планирования прибыли точка...
37197. ОСНОВНОЙ КАПИТАЛ ОРГАНИЗАЦИИ И ИСТОЧНИКИ ЕГО ФИНАНСИРОВАНИЯ 220 KB
  ОСНОВНОЙ КАПИТАЛ ОРГАНИЗАЦИИ И ИСТОЧНИКИ ЕГО ФИНАНСИРОВАНИЯ Вы будете изучать: Экономическое содержание основного капитала Источники финансирования основного капитала Методы начисления амортизации. Цели: Изучить экономическую литературу раскрывающую экономическую природу основного капитала и методику начисления амортизации основных средств. Ключевые слова: основной капитал источники финансирования основного капитала амортизация методы начисления амортизации. Методы начисления амортизации в бухгалтерском и налоговом учете.