71734

Основы использования поляризованного света в медико-биологических исследованиях

Лабораторная работа

Физика

Цель работы: Познакомиться со способами получения поляризованного света. Какова природа света Чем естественный свет отличается от поляризованного Укажите способы получения поляризованного света. Что общего и в чем отличие в получении поляризованного света после прохождения призмы Николя...

Русский

2014-11-11

148.5 KB

4 чел.

230

V. Оптика. Ядерная физика

Лабораторная работа №23

Основы использования поляризованного света в

медико-биологических исследованиях

Цель работы: 1. Познакомиться со способами получения поляризованного света.

  1.  Научиться определять концентрацию сахара в растворе.
  2.  Исследование распределения механических напряжений в образце под нагрузкой.

Литература

1. 1 , §§ 10.1, 18.8, 25.1 - 25.5.

2. 2 , §§ 60, 73 – 75.

Вопросы входного контроля

  1.  Дать понятие электромагнитной волны. Как возникают и распространяются электромагнитные волны в пространстве.
  2.  Какова природа света? Чем естественный свет отличается от поляризованного?
  3.  Укажите способы получения поляризованного света. Дайте их описание.
  4.  Что общего и в чем отличие в получении поляризованного света после прохождения призмы Николя и поляроида?
  5.  Какую роль играют поляризатор и анализатор в исследованиях с помощью поляризованного света?
  6.  Сформулируйте закон Малюса.
  7.  Какие вещества называются оптически активными?

Опишите метод поляризационной микроскопии, применяемой для исследования биологических тканей.

  1.  Дать понятие изотропных и анизотропных веществ?

1. Краткая теория

Свет - электромагнитное излучение, представляющее собой поток фотонов. Фотон – мельчайшая «частица» электромагнитного излучения, имеющая энергию в один квант ( = h). В любой электромагнитной волне вектор напряженности  электромагнитного поля  и вектор напряженности магнитного поля  лежат во взаимно перпендикулярных плоскостях.  (см. рис. 1. )

Рис. 1.

Принято называть вектор  световым вектором, т.к. электрическое поле является ответственным за формирование светового ощущения на сетчатке глаза.

Естественный свет - совокупность фотонов, световые векторы которых изменяются во всевозможных направлениях. Поляризованный свет - совокупность волн с параллельными световыми векторами. Плоскость, проходящая через  и вектор скорости распространения светового луча , называется плоскостью поляризации.

Получение поляризованного света осуществляется различными способами, в частности: поляризация при прохождении через прозрачное вещество, поляризация при отражении, поляризация при прохождении через поляризаторы – устройства, в которых происходит двойное лучепреломление.

В медико-биологических исследованиях поляризованный свет применяется для определения содержания сахара и глюкозы в растворах, определения распределения механических напряжений в тканях, находящихся под нагрузкой, в поляризационной микроскопии и др.

  1.  Практическая часть

Описание лабораторной установки.

В работе используется лабораторная установка, оптическая схема которой приведена на рис. 2.

Л - источник света, лампа накаливания;

К - двухлинзовый конденсор;

Тф - тепловой фильтр;

П - поляризатор;

А - анализатор.

Рис. 2. Оптическая схем лабораторной установки.

В качестве поляризатора и анализатора в приборе используются поляроиды. Для оценки угла поворота анализатора к нему жестко прикреплен транспортир. Чтобы оценить интенсивность света, прошедшего через анализатор, за ним устанавливают либо экран, либо фотоэлемент, преобразующий световую энергию в энергию  электрического тока. Интенсивность падающего света пропорциональна величине фототока  и оценивается по показаниям измерительного прибора - миллиамперметра.

Задание 1. Пронаблюдать изменение степени поляризации отраженного света от угла падения.

Приборы и материалы: источник света, поверхность отражения, поляризатор, фотоэлемент, миллиамперметр.

Выполнение задания:

а) под руководством преподавателя ознакомиться с лабораторной установкой;

б) поднести поляризатор к поверхности отражения;

в) вращая поляризатор относительно своей оси, по показаниям миллиамперметра, пронаблюдать изменение интенсивности отраженного света, прошедшего через поляризатор;

г) пронаблюдать изменение интенсивности отраженного света при фиксированном положении поляризатора относительно  своей оси и изменением угла падения луча на плоскость, а, следовательно, и угла отражения от плоскости луча;

д) в отчете дать описание данного эксперимента, сделать вывод.

Задание 2. Исследовать зависимость интенсивности света, прошедшего через систему поляризатор - анализатор от взаимного расположения плоскостей поляризации.

Приборы и материалы: лабораторная установка, фотоэлемент, миллиамперметр.

Порядок выполнения работы:

  1.  Ознакомиться с устройством лабораторной установки, найти в ней необходимые элементы, описанные ранее.
  2.  Оценку интенсивности прошедшего через анализатор света (I) производить по величине фототока измеряемого миллиамперметром  (i), т.к. I  i. Тогда максимальное значение фототока (i0) будет соответствовать максимальной интенсивности света после анализатора – I0.

Включить установку и, вращая анализатор вокруг оси, найти его положение, при котором интенсивность прошедшего света после анализатора минимальна, при этом величина тока приблизительно равна 0. В этом случае угол между плоскостями поляризации поляризатора и анализатора равен 900, т.е. поляризатор и анализатор скрещены. Этот результат занести в таблицу 1.

  1.  Поворачивая анализатор от скрещенного положения по часовой стрелке до 1800 с шагом 100 оценить величину тока. Результат зависимости i от занести в таблицу 1.

То же проделать, поворачивая анализатор против часовой стрелки до 00 с шагом 100.

  1.  В таблицу 1 занести результаты расчета, полученные с использованием закона Малюса:

I = I0 cos2 ,

где - угол между плоскостью поляризации поляризатора и анализатора,

I - интенсивность света, падающего на анализатор.

При условии совпадения плоскости поляризации поляризатора и анализатора (т.е. = 0) интенсивность прошедшего  света равняется Iо. Поскольку сила фототока  i  I, то:

ip = i0  cos2 ,

где i0 - максимальная величина тока, которую приравнивают к максимальной величине тока, полученной в результате эксперимента.

                                                                                                     Таблица 1

,0

0

10

...

90

...

170

180

iэ, mА

ip, mA

  1.  По результатам табл. 1. построить график зависимости i = i () для экспериментальных и расчетных данных в одной плоскости координат.

Задание 3. Исследовать распределение механических напряжений в прозрачном образце, находящемся под нагрузкой.

Приборы и материалы: лабораторная установка, белый экран, прозрачный образец.

Выполнение работы:

  1.  Лабораторная установка для данного задания описана ранее. Кроме того в ней предусмотрен держатель для прозрачного образца, расположенный между поляризатором и анализатором. Для наблюдения изображения образца за анализатором установлен экран.
  2.  Ознакомиться с устройством лабораторной установки.
  3.  Прозрачный образец установить в держатель, слегка зажав винтом.
  4.  Вращая анализатор вокруг своей оси добиться максимального затемнения экрана, т.е. скрещенного положения поляризатора и анализатора.
  5.  Винтом держателя увеличивать нагрузку на образец.
  6.  Описать и объяснить в отчете изменение изображения образца на экране при увеличении нагрузки и снятии ее.

Задание 4. Определить концентрацию раствора сахара.

Приборы и материалы: лабораторная установка, фотоэлемент, миллиамперметр, 4 одинаковые кюветы с раствором известной и  неизвестной концентрации сахара.

Выполнение работы:

Поскольку  при прохождении поляризованным лучом одинакового расстояния через оптически активное вещество угол поворота плоскости поляризации пропорционален только концентрации раствора, то можно записать:

= к С,

где - угол поворота плоскости поляризации,

     к - коэффициент пропорциональности,

     С - концентрация раствора сахара.

Концентрацию неизвестного раствора можно вычислить по формуле:

С = / к                      (3)

Таким образом, нахождение концентрации сводится к решению 2-х задач:

  1.  Определение угла поворота плоскости поляризации.
  2.  Нахождение коэффициента пропорциональности.

Задача 1: Определение угла поворота плоскости поляризации.

Порядок выполнения.

а). Лабораторная установка описана ранее. Оценка интенсивности света, прошедшего через анализатор производится по показаниям миллиамперметра. Кроме этого в данной работе между поляризатором и анализатором помещается столик для установки кюветы с раствором сахара.

б). Включить установку в отсутствии кюветы с раствором сахара. Вращая анализатор, установить его в скрещенное положение с поляризатором, в этом случае миллиамперметр фиксирует минимальную интенсивность.

в). Установить на столик кювету с известной концентрацией сахара, измерительный прибор при этом зарегистрирует увеличение интенсивности прошедшего света.

г). Вращая анализатор, снова добиться минимального показания измерительного прибора.

д). По транспортиру, прикрепленному к анализатору, оценить угол , на который повернули анализатор для получения минимального показания прибора.

е). Аналогичные измерения произвести для других концентраций и полученные результаты занести в таблицу 2.

                                                                  Таблица 2

С, %

10

20

30

х

0

к

       

 Задача 2: Нахождение коэффициента пропорциональности «к».

1 способ. Согласно формуле (3) коэффициент «к» можно определить:

к = / С.

Для растворов с известной концентрацией определить коэффициенты «к»  и занести их в таблицу 2. Коэффициент «к» раствора С неизвестной концентрацией вычислить как среднее значение полученных коэффициентов:

.

 2 способ. Зависимость является прямо пропорциональной (см. формулу 3). Коэффициент «к» равен тангенсу угла наклона прямой к горизонтальной оси.

Таким образом, для определения «к» по данным для растворов с известной концентрацией построить линейную зависимость . И определить тангенс угла наклона прямой, т.е. экстинкцию.

Таким образом, концентрация С неизвестного раствора равна:

С = / .

 

Вопросы выходного контроля

  1.  Каким образом в лабораторной работе осуществляется проверка закона Малюса?
  2.  Как в лабораторной работе оценивается поворот плоскости поляризации оптически активным веществом?
  3.  На чем основана в лабораторной работе количественная оценка интенсивности света, прошедшего через анализатор?
  4.  Почему изменяется интенсивность луча, прошедшего через поляризатор, после его отражения?

5.При выполнении какого условия интенсивность прошедшего через поляризатор отраженного луча будет максимальна и минимальна?


 

А также другие работы, которые могут Вас заинтересовать

17645. Вектор Джонса для типових станів поляризації 83.63 KB
  Вектор Джонса для типових станів поляризації. Загальний вигляд для де tg=Ax/Ay Из конспекта Всё напечатанное далее взято из энциклопедии: При аналитич. описании пооляризации обычно не рассматриваються временные и пространственные изменений эл. магн. волны. Наиб. пр
17646. Властивості фотонів 30.19 KB
  Властивості фотонів. Поняття фотон вперше вивів Л’юіс 1929 р. Фотон – квант електромагн. поля. Властивості фотона: 1. Енергія і імпульс: стала Планка момент імпульсу фотона. / / коментар Для фотона: . Фотон завжди релятивіська частинка. 2. А точніше:...
17647. Голограма Лейта і Упатнієкса (позаосьова) 19 KB
  Голограма Лейта і Упатнієкса позаосьова. Голографія – метод запису та відновлення світлових хвиль що заснований на явищах інтерференції та дифракції когерентних пучків світла тобто безлінзове отримання оптичних зображень шляхом відновлення хвильового фронту. Іде
17648. Двопроменева інтерференція Інтерферометр Майкельсона 46.26 KB
  Двопроменева інтерференція: Інтерферометр Майкельсона. Світло від протяжного джерела світла S потрапляє на плоско паралельну розділювальну пластинку P1 покриту напівпрозорим тонким шаром срібла або алюмінію. Ця пластинка частково пропускає частково відбиває світло
17649. Двопроменева інтерференція інтерферометр Релея 23.48 KB
  Двопроменева інтерференція інтерферометр Релея Когерентні хвилі одержують поділом пучка хвиль. За допомогою двопроменевої інтерференції вимірюють : оптичну густину речовини дослідження зміни густини середовища в часі виміри лінійних зсувів тіл гравіметр
17650. Дисперсійна призма кутова дисперсія, роздільна здатність 69.56 KB
  Дисперсійна призма: кутова дисперсія роздільна здатність. Дисперсійна призма – призма з прозорого для досліджуваного випромінювання матеріалу використовується для отримання дисперсії електромагнітного випромінювання. Кутова дисперсія і роздільна здатність є важ
17651. Дифракція на краю екрана. Спіраль Корню 98.87 KB
  Дифракція на краю екрана. Спіраль Корню. В деяких задачах краще розбивати хвильовий фронт на смугові зони – зони Шустера. Припустимо хвильовий фронт плоский. Площина хвильового фронту AB перпенд. до площини. Проведемо коаксіальні циліндричні поверхні вісь яких – точка P...
17652. Дифракція рентгенівських променів на кристалічній гратці формули Лауе 58.53 KB
  Дифракція рентгенівських променів на кристалічній гратці: формули Лауе. Трехмерные пространственные решетки обладают периодичностью в трех различных направлениях. Кристаллическая решетка является трехмерной пространственной решеткой с малым периодом. На ней дифр
17653. Дифракція та отворі побудова Френеля. Зонна платівка Френеля 217.42 KB
  Дифракція та отворі: побудова Френеля. Зонна платівка Френеля. Поставимо між точковим джерелом S і точкою спостереження Р непрозорий екран з круглим отвором площина якого перпендикулярна до осі SP а центр О розміщений на тій же осі. Згідно із Френелем дія такої перешкоди...