71737

Изучение работы фотодатчиков

Лабораторная работа

Физика

Как возникает контактная разность потенциалов В чем заключается явление внешнего и внутреннего фотоэффекта Устройство и принцип действия селенового фотоэлемента. Как изменяется фото ЭДС при изменении силы света источника площади поверхности и угла между падающим лучом и перпендикуляром...

Русский

2014-11-11

41 KB

8 чел.

223

Лабораторная работа 22

Изучение работы фотодатчиков

Цель работы: познакомиться с физическими основами работы фотодатчиков и их применением.

Литература

  1.  1, §§ 27.8, 27.9.
  2.  2, гл. 18.
  3.  5, стр. 230 – 235

Вопросы входного контроля

  1.  Какова природа электропроводности полупроводников. Типы проводимости полупроводников.
  2.  Зонная теория полупроводников.
  3.  Как возникает контактная разность потенциалов?
  4.  В чем заключается явление внешнего и внутреннего фотоэффекта?
  5.  Устройство и принцип действия селенового  фотоэлемента.
  6.  Как изменяется фото – ЭДС при изменении силы света источника, площади поверхности и угла между падающим лучом и перпендикуляром к поверхности в точке падения луча?

  1.  Краткая теория

В основе работы этого типа датчиков лежит фотоэффект. Фотоэффект - явления, возникающие при взаимодействии света и вещества (внешний фотоэффект), либо изменение проводимости этого вещества (внутренний фотоэффект).

Внутренний фотоэффект можно наблюдать в полупроводниках. Если энергия фотонов, поглощаемая электронами полупроводника, больше энергии активации, то электрон переходит из валентной зоны в зону проводимости. В примесных полупроводниках поглощение фотона ведёт к переходу электрона с донорных уровней в зону проводимости или из валентной зоны на акцепторные уровни. Т.о., при освещении полупроводников увеличивается их проводимость.

Полупроводниковый резистор, сопротивление которого зависит от освещённости, называется фоторезистором.

Особый практический интерес представляет вентильный фотоэффект (фотогальванический эффект), возникающий при освещении контакта полупроводников с различной проводимостью. Сущность этого явления заключается в следующем: при контакте полупроводников р- и n- типа создается контактная разность потенциалов (КРП), которая препятствует дальнейшему переходу основных носителей через контакт – «дырок» в n- область, электронов в р-область.

Рис. 1. Образование КРП при контакте полупроводников

разных типов.

Таким образом, КРП выполняет функцию разделителя зарядов разных знаков: в n – области происходит накопление электронов и она приобретает заряд «минус», а в р - области - дырок, и она приобретает заряд «плюс». Такое пространственное разделение зарядов по обе стороны от контакта образует электродвижущую силу. При действии света в освещенном слое происходит внутренний фотоэффект, в результате которого образуются дополнительные пары электрон-дырка, что приводит к увеличению ЭДС.

Количество электронов и дырок, освобождающихся под действием света, а соответственно и ЭДС пропорциональны потоку энергии излучения. Поэтому электродвижущая сила, возникающая в фотоэлементе и зависимая от освещенности поверхности называется фотоэлектродвижущей силой (фото - ЭДС) (рис. 2).

Если замкнуть цепь, содержащую освещаемый фотоэлемент, то в ней возникает ток (фототок).

Рис. 2. Образование фото - ЭДС.

Количество зарядов, генерирующихся в полупроводнике в единицу времени, а, значит фото - ЭДС элемента (фото), пропорциональны световому потоку, падающему на фотоэлемент (Ф).

фото ~ Ф   (1.1)

По законам фотометрии освещённость поверхности (Е) определяется световым потоком, падающим на  поверхность единичной площади, поэтому:

   Е = Ф/S       (1.2)

Освещённость, создаваемая точечным источником света на некотором расстоянии от него, равна:

E = (I/R2)cosα   (1.3),

 где I – сила света источника,

         R – расстояние от источника до облучаемой поверхности.   

α – угол между падающим лучом и перпендикуляром к поверхности в точке падения луча.

 Тогда с учетом формул  (1.1 – 1.3) получается:

фото  (IS/R2)cosα (1.4)

Зависимость фототока от потока излучения лежит в основе работы люксметров, приборов для измерения уровня освещенности.

  1.  Практическая часть

2.1. Задание 1. Исследовать зависимость фото-ЭДС, возникающей в фотоэлементе, от угла падения светового потока.

2.1.1. Приборы и оборудование: лабораторная установка, источник тока, микроамперметр.

2.1.2. Описание лабораторной установки.

Основной частью лабораторной установки является селеновый фотоэлемент, который способен поворачиваться, изменяя этим  угол падения света от источника. Источником света является электрическая лампочка, подключенная к источнику постоянного напряжения до 15В. Оценка применения фото – ЭДС производится по показаниям измерительного прибора (микроамперметра), подключенного к фотоэлементу (Ф). Принципиальная схема представлена на рис. 3.

Рис. 3. Принципиальная схема лабораторной установки.

Работа селенового фотоэлемента основана на возникновении вентильного фотоэффекта, возникающего в фотоэлементе при его облучении. КРП в селене возникает в результате образования запирающего слоя  между слоем селена с диффундированными в него атомами серебра у верхнего полупрозрачного электрода (n-слоя) и чистым селеном, обладающим р - проводимостью. Устройство селенового фотоэлемента на рис. 4.

Вэ – верхний полупрозрачный электрод

Sе – слой селена толщиной = 0,1мм

Hэ – нижний электрод, стальная пластинка

Рис. 4. Устройство селенового элемента.

Лабораторная установка позволяет изменять величину фото - ЭДС, возникающий в селеновом фотоэлементе, несколькими способами:

(см. формулу 1.4.)

- изменяя силу света лампы;

- изменяя расстояние от лампы до фотоэлемента;

- изменяя площадь фотоэлемента;

- изменяя угол падения света на фотоэлемент.

2.1.3. Ход работы.

  1.  Собрать установку для измерения. На источник света подать напряжение 2-6 В.
  2.  Установить поверхность фотоэлемента перпендикулярно световому потоку (угол 0 градусов).
  3.  Провести измерение фото- ЭДС при угле поворота фотоэлемента от 0 до 90 градусом с шагом 10 градусов.
  4.  Построить зависимость фото – ЭДС от угла поворота.

2.2. Задание 2. При помощи люксметра определить освещённость рабочих мест в учебной лаборатории при естественном и искусственном освещении.

2.2.1. Оборудование: промышленный люксметр любого типа.

Инструкция по работе с люксметром

Фотоэлектрический люксметр Ю116 предназначен для измерения освещённости.

Шкалы прибора проградуированы в люксах: одна шкала имеет 100 делений, вторая - 30 делений. Отметка «5» шкалы 0-30 и отметка «20» шкалы 0-100 соответствуют начальным значениям диапазонов измерений и отмечены точкой.

Примечание: К М, К Р, КТ –условное обозначение совместно применяемых насадок для создания общего номинального коэффициента ослабления 10, 100, 1000 соответственно.

Погрешность люксметра в основном диапазоне измерений (без насадок) соответствует +/-10%, а в не основном (с насадками) +/-5% от значения измеряемой освещённости.

Порядок работы с люксметром

  1.  Надеть на фотоэлемент необходимую насадку.

Если величина измеряемой освещенности не известна, измерения следует начинать с установки КТ.

  1.  Фотоэлемент присоединить к корпусу прибора (измерителя).
  2.  Фотоэлемент и измеритель установить горизонтально.
  3.  Нажатием кнопки установить предел измерения.

Выбор предела измерения начинать с правой кнопки (20-100 основного диапазона).

  1.  Если стрелка отклоняется на малое расстояние, то выбрать другую насадку или воспользоваться открытым фотоэлементом.
  2.  Показание прибора в делениях по соответствующей шкале умножить на коэффициент ослабления, зависящий от применяемой насадки.
  3.  После окончания измерения на фотоэлемент надеть насадку КТ и отсоединить его от корпуса измерителя.  

Вопросы выходного контроля

1. Как, используя лабораторную установку, экспериментально доказать закон (1.4).

2. Устройство и принципы работы промышленного люксметра.

  1.  Как, используя промышленный люксметр, измерить освещенность поверхности?


 

А также другие работы, которые могут Вас заинтересовать

43250. Доходи Державного бюджету України 185 KB
  Характеристика доходів державного бюджету. Соціальноекономічна суть призначення і роль доходів Державного бюджету України. Джерела надходжень державного бюджету.Аналіз та склад доходів бюджету за перше півріччя 20092010рр. Одержавлення національного доходу здійснюється державою різними методами. Основним методами, які використовуються органами державної влади для перерозподілу національного доходу та утворення бюджетних доходів, являються податки, державний кредит та емісія грошей.
43251. Полевые транзисторы в интегральных схемах 323.5 KB
  Чем больше обратное напряжение тем глубже обедненный слой и тем соответственно меньше толщина канала w. Таким образом меняя обратное напряжение на затворе можно менять поперечное сечение а значит и сопротивление канала. При наличии напряжения на стоке будет меняться ток канала т. Определим зависимость толщины и сопротивления канала от управляющего напряжения на затворе при нулевом напряжении на стоке.
43252. Расчет токарного сборного резца с треугольной пластиной 386 KB
  Определяем глубину резания. Определяем скорость м мин главного движения резания допускаемую режущими свойствами резца. Определяем главный поправочный коэффициент...
43253. Расчет водяного насоса 922.5 KB
  Задачу решают подбором и перераспределением масс звеньев введением дополнительной маховой массы с постоянным моментом инерции в виде маховика. Расчет масс и моментов инерции звеньев.Располагая центры масс по серединам рычагов определим их массы и моменты инерции: вычисление масс момент инерции звена относительно центра масс момент инерции звена относительно оси вращения 2.Массы зубчатых колес и их моменты инерции определим по следующим формулам: масса iго колеса где =7800 кг м3 а d делительный диаметр колеса момент инерции iго...
43254. Разработка импульсного источника вторичного электропитания электронно-вычислительной аппаратуры 1014.5 KB
  Источники вторичного электропитания предназначены для получения заданной мощности в нагрузке при определённом заранее преобразования энергии. Требуемая мощность часто оказывается значительной, и поэтому повышение плотности упаковки электронных элементов не оказывает прямого и решающего влияния на миниатюризацию ИВЭП. Миниатюризация потребителей энергии не приводит к увеличению относительного объёма ИВЭП в системе, если их миниатюризация не осуществляется одновременно и с такой же эффективностью.
43255. Исследование методов сортировки с поиском минимума и деревом 211 KB
  Простейшая задача сортировки заключается в упорядочении элементов массива по возрастанию или убыванию. Другой задачей является упорядочение элементов массива в соответствии с некоторым критерием. Обычно в качестве такого критерия выступают значения определенной функции, аргументами которой выступают элементы массива. В работе приводится постановка задачи сортировки и поиска данных, описание алгоритмов, описание программы и правила ее использования, а также прилагается текст программы, решающей поставленную задачу.
43256. Расчет гидропривода 486 KB
  Под гидроприводом понимают совокупность устройств, предназначенных для приведения в движение механизмов и машин посредством рабочей жидкости под давлением. В качестве рабочей жидкости в станочных гидроприводах используется минеральное масло.
43257. Схема для живлення переговорного пристрою 624.5 KB
  Аналізуючи ці схеми, можна впевнитися, що дана схема є найбільш актуальною у розробці, порівняно з її аналогами, приведеними нижче. Схема, що розробляється, призначена для живлення, як потужної так і малопотужної апаратури, залежно від максимально допустимого рівня пульсації на вході. З точки зору схемотехнічного проектування виробу, дана схема є найбільш простою, так як має найменшу кількість елементів, та не має потужних елементів схеми, які присутні в двох аналогічних схемах.
43258. Разработка и расчет законченного электронного устройства 669 KB
  Датчиком температуры описываемого прибора служит кремниевый диод. При этом используется линейная зависимость паления напряжения на нем от температуры при фиксированном прямом токе смешения. Температурный коэффициент напряжения (ТКН) для кремниевых диодов практически постоянен в диапазоне -60...+ 100°С и составляет -2...-2,5 мВ/°С — в зависимости от типа диода и значения тока смешения. Как показали исследования, практически любой кремниевый диод или транзистор может быть использован как линейный температурный преобразователь в диапазоне от -55-С до+125°С.