71829

Разработка логических функций для управления подвижной площадки с тремя электродвигателями-колесами

Курсовая

Экономическая теория и математическое моделирование

Алгебра логики (алгебра высказываний) — раздел математической логики, в котором изучаются логические операции над высказываниями. Чаще всего предполагается, что высказывания могут быть только истинными или ложными.

Русский

2014-11-12

181 KB

2 чел.

ГОУВПО «Воронежский государственный технический университет»        Факультет энергетики и систем управления                                                         Кафедра высшей математики и физико-математического моделирования

Курсовая работа

по дисциплине дискретная математика на тему:

«Разработка логических функций для управления подвижной площадки с тремя электродвигателями-колесами»

Выполнил: студент гр. АТР-131                                                                                Попов Андрей

Принял: доц. Купцов В. С.

Воронеж 2013 г.

Содержание

Условие задачи………………………………………………………………………..….3

Теоретическое введение………………………………………………………………....4

Практическая  часть……………………………………………………………………...9

Заключение……………………………………………………………………………….12

Список литературы………………………………………………………………………13


Условие задачи

Вывести логические функции для управления подвижной площадки с тремя ведущими электродвигателями-колёсами, если имеются следующие кнопки управления: «Вперёд», «Назад», «Вращение по часовой стрелке».

Теоретическое введение

Алгебра логики (алгебра высказываний) — раздел математической логики, в котором изучаются логические операции над высказываниями. Чаще всего предполагается, что высказывания могут быть только истинными или ложными.

 Простое логическое выражение состоит из одного высказывания и не содержит логические операции. В простом логическом выражении возможно только два результата — либо «истина», либо «ложь».

 Сложное логическое выражение содержит высказывания, объединенные логическими операциями. По аналогии с понятием функции в алгебре сложное логическое выражение содержит аргументы, которыми являются высказывания.

 В качестве основных логических операций в сложных логических выражениях используются следующие:

 отрицание;

 конъюнкция;

 дизъюнкция;

а также константы — логический ноль 0 и логическая единица 1.

 Отрицание (НЕ) — логическая операция над суждениями, результатом которой является суждение противоположное» исходному. Результатом операции НЕ является следующее:

• если исходное выражение истинно, то результат его отрицания будет ложным;

• если исходное выражение ложно, то результат его отрицания будет истинным.

 Для операции отрицания НЕ приняты следующие условные обозначения:

Не А, Ā, not A, ¬А.

 Результат операции отрицания НЕ определяется следующей таблицей истинности:

A

не А

0

1

1

0

 Результат операции отрицания истинен, когда исходное высказывание ложно, и наоборот.

 Дизъюнкция (ИЛИ) — логическая операция, по своему применению максимально приближённая к союзу «или» в смысле «или то, или это, или оба сразу».

 Результатом операции ИЛИ является выражение, которое будет истинным тогда и только тогда, когда истинно будет хотя бы одно из исходных выражений.

 Применяемые обозначения: А или В,    А V В,    A or B.

 Результат операции ИЛИ определяется следующей таблицей истинности:

A

B

А или B

0

0

0

0

1

1

1

0

1

1

1

1

 Результат операции ИЛИ истинен, когда истинно А, либо истинно В, либо истинно и А и В одновременно, и ложен тогда, когда аргументы А и В — ложны.

 Конъюнкция (И) — логическая операция, по своему применению максимально приближенная к союзу «и». Результатом операции И является выражение, которое будет истинным тогда и только тогда, когда истинны оба исходных выражения.

 Применяемые обозначения: А и В, А Λ В, A  & B, A and B.

 Результат  операции  И  определяется  следующей таблицей истинности:

A

B

А и B

0

0

0

0

1

0

1

0

0

1

1

1

 Результат операции И истинен тогда и только тогда, когда истинны одновременно высказывания А и В, и ложен во всех остальных случаях.

 Импликация (ЕСЛИ-ТО) —  логическая связка, по своему применению приближенная к союзам «еслито…». Эта операция связывает два простых логических выражения, из которых первое является условием, а второе — следствием из этого условия.

 Применяемые обозначения:

если А, то В; А влечет В; if A then В; А→ В.

 Таблица истинности:

A

B

А → B

0

0

1

0

1

1

1

0

0

1

1

1

 Результат операции следования (импликации) ложен только тогда, когда предпосылка А истинна, а заключение В (следствие) ложно.

Булева алгебра

Булевой алгеброй называется непустое множество A с двумя бинарными операциями  (аналог конъюнкции),  (аналог дизъюнкции), унарной операцией  (аналог отрицания) и двумя выделенными элементами: 0 (или Ложь) и 1 (или Истина).

Следующие соотношения могут быть проверены прямым сравнением значений функций в левой и правой части соотношения на всевозможных наборах аргументов.

  1.  x y = y x
  2.  Ú y = y Ú x
  3.  Å y = y Å x
  4.  x  (y z) = (x y)  z
  5.  Ú (Ú z) = (Ú yÚ z
  6.  Å (Å z) = (Å yÅ z
  7.  Ú (y z) = (Ú y) (Ú z)
  8.  x  (Ú z) = (x yÚ (x z)
  9.  ¬¬x = x
  10.  ¬(x y) = ¬x Ú ¬y
  11.  ¬(Ú y) = ¬x ¬y
  12.  x x = x
  13.  x ¬x = 0
  14.  x  0 = 0
  15.  x  1 = x
  16.  Ú x = x
  17.  Ú ¬x = 1
  18.  Ú 0 = x
  19.  Ú 1 = 1
  20.  Å y = (x ¬yÚ (¬x y)
  21.  É y = ¬x Ú y
  22.  º y = (x yÚ (¬x ¬y)

Булева функция

Булева функция  от n аргументов — в дискретной математике — отображение Bn → B, где B = {0,1} — булево множество.

Булева функция задаётся конечным набором значений, что позволяет представить её в виде таблицы истинности, например:

x1

x2

xn-1

xn

f(x1,x2,…,xn)

0

0

0

0

0

0

0

0

1

0

0

0

1

0

1

0

0

1

1

0

1

1

0

0

1

1

1

0

1

0

1

1

1

0

0

1

1

1

1

0

Конъюнкти́вная норма́льная фо́рма (КНФ) в булевой логике — нормальная форма, в которой булева формула имеет вид конъюнкции дизъюнкций литералов.

Совершенная конъюнктивная нормальная форма (СКНФ) — это такая КНФ, которая удовлетворяет трём условиям:

  •  в ней нет одинаковых элементарных дизъюнкций
  •  в каждой дизъюнкции нет одинаковых пропозициональных переменных
  •  каждая элементарная дизъюнкция содержит каждую пропозициональную букву из входящих в данную КНФ пропозициональных букв.

Дизъюнктивная нормальная форма (ДНФ) в булевой логике — нормальная форма, в которой булева формула имеет вид дизъюнкции конъюнкций литералов 

Совершенная дизъюнктивная нормальная форма (СДНФ) — это такая ДНФ, которая удовлетворяет трём условиям:

  •  в ней нет одинаковых элементарных конъюнкций
  •  в каждой конъюнкции нет одинаковых пропозициональных букв
  •  каждая элементарная конъюнкция содержит каждую пропозициональную букву из входящих в данную ДНФ пропозициональных букв, причём в одинаковом порядке.

Для любой функции алгебры логики существует своя СДНФ, причём единственная.


Практическая часть

Пусть кнопки управления будут иксами, а движение колёс – игреками:

x1 – кнопка «Вперёд»;

x2 – кнопка «Назад»;

x3 – кнопка «Вращение по часовой стрелке»;

y1 – левое колесо вращается вперёд;

y2 – левое колесо вращается назад;

y3 – правое колесо вращается вперёд;

y4 – правое колесо вращается назад;

y5 – переднее колесо вращается вперёд;

y6 – переднее колесо вращается назад.

При нажатии кнопки «Вперёд» (x1), левое колесо вращается вперёд (y1), правое колесо вращается вперёд (y3), переднее колесо вращается вперёд (y5) – платформа едет вперёд.

При нажатии кнопки «Назад» (x2), левое колесо вращается назад (y2), правое колесо вращается назад (y4), переднее колесо вращается назад (y6) – платформа едет назад.

При нажатии кнопки «Вращение по часовой стрелке» (x3), левое колесо вращается вперёд (y1), правое колесо вращается назад (y4), переднее колесо вращается вперёд (y5) – платформа вращается по часовой стрелки.

Составим таблицу истинности:

x1

x2

x3

y1

y2

y3

y4

y5

y6

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

1

1

0

0

1

0

0

1

0

1

0

1

0

1

1

0

0

0

0

0

0

1

0

0

1

0

1

0

1

0

1

0

1

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

Используя таблицу истинности, составим СДНФ и приведём их к ПФ с минимальным количеством операций:

y1 = x1 ᴧ ¬x2 ᴧ ¬x3 v ¬x1 ᴧ ¬x2 ᴧ x3 = ¬x2 ᴧ (x1 ᴧ ¬x3 v ¬x1 ᴧ x3) = ¬x2 ᴧ (x1 ∆ x3);

y2 = ¬x1 ᴧ x2 ᴧ ¬x3;

y3 = x1 ᴧ ¬x2 ᴧ ¬x3;

y4 = ¬x1 ᴧ x2 ᴧ ¬x3 v ¬x1 ᴧ ¬x2 ᴧ x3 = ¬x1 ᴧ (x2 ᴧ ¬x3 v ¬x2 ᴧ x3) = ¬x1 ᴧ (x2 ∆ x3);

y5 = x1 ᴧ ¬x2 ᴧ ¬x3 v ¬x1 ᴧ ¬x2 ᴧ x3 = ¬x2 ᴧ (x1 ᴧ ¬x3 v ¬x1 ᴧ x3) = ¬x2 ᴧ (x1 ∆ x3);

y6 = ¬x1  x2  ¬x3.

А теперь построим таблицу истинности для каждой формулы:

y3(x1,x2,x3)

x1

x2

x3

¬x2

¬x3

x1 ᴧ ¬x2

y1

0

0

0

1

1

0

0

0

0

1

1

0

0

0

0

1

0

0

1

0

0

0

1

1

0

0

0

0

1

0

0

1

1

1

1

1

0

1

1

0

1

0

1

1

0

0

1

0

0

1

1

1

0

0

0

0

y4(x1,x2,x3)

x1

x2

x3

¬x1

x2 ∆ x3

y2

0

0

0

1

0

0

0

0

1

1

1

1

0

1

0

1

1

1

0

1

1

1

0

0

1

0

0

0

0

0

1

0

1

0

1

0

1

1

0

0

1

0

1

1

1

0

0

0

y1,5(x1,x2,x3)

x1

x2

x3

¬x2

x1 ∆ x3

y3,5

0

0

0

1

0

0

0

0

1

1

1

1

0

1

0

0

0

0

0

1

1

0

1

0

1

0

0

1

1

1

1

0

1

1

0

0

1

1

0

0

1

0

1

1

1

0

0

0

y2,6(x1,x2,x3)

x1

x2

x3

¬x1

¬x3

¬x1 ᴧ x2

y4,6

0

0

0

1

1

0

0

0

0

1

1

0

0

0

0

1

0

1

1

1

1

0

1

1

1

0

1

0

1

0

0

0

1

0

0

1

0

1

0

0

0

0

1

1

0

0

1

0

0

1

1

1

0

0

0

0

Заметим, что игреки получились такие же, как и в первой таблице истинности.

Заключение

В ходе Курсовой Работы я освоил метод формирования логических функций для управления подвижной. Я использовал таблицу истинности для построения СДНФ. Затем, минимизировал их, используя свойства логических функций.

y3 = x1  ¬x2  ¬x3;

y4 = ¬x1  (x2x3);

y1,5 = ¬x2  (x1x3);

y2,6 = ¬x1  x2  ¬x3.

y1 = y5 , y2 = y6 .

Литература

  •  Владимиров Д. А. Булевы алгебры. — М.: «Наука», 1969.
  •  Иванов Б. Н. Дискретная математика. Алгоритмы и программы. Расширенный курс. — М.: «Известия», 2011.
  •  Кузнецов О. П., Адельсон-Вельский Г. М. Дискретная математика для инженера. — М.: Энергоатомиздат, 1988.
  •  Гуров С.И. Булевы алгебры, упорядоченные множества, решетки: Определения, свойства, примеры. — М.: Либроком, 2013.
  •  Ю.И. Галушкина, А.Н. Марьямов: Конспект лекций по дискретной математике - 2-е изд., испр. - М.: Айрис-пресс, 2008.

PAGE   \* MERGEFORMAT12


 

А также другие работы, которые могут Вас заинтересовать

41416. Понятие о забалансовых счетах и особенности отражения операций на этих счетах. Учёт расчётов с бюджетом по НДС 20.4 KB
  В отдельных случаях организации при осуществлении хозяйственной деятельности используют не принадлежащие им средства, находящиеся у них во временном пользовании, распоряжении или на ответственном хранении.
41417. Бухгалтерский учет затрат на строительство объектов 17.84 KB
  Порядок учета затрат на строительство объекта зависит от способа производства объекта – хозяйственного или подрядного. При использовании подрядного и хозяйственного способа производства строительные и монтажные работы отражаются у застройщика на счете 08
41418. Виды, формы и системы оплаты труда 17.83 KB
  Выплата заработной платы обычно производится в денежной форме в валюте РФ (в рублях). В соответствии с коллективным или трудовым договором по письменному заявлению работника оплата труда может производиться в иных формах
41419. СПЕЦИФИКА СОЦИАЛЬНОЙ РЕАЛЬНОСТИ 122 KB
  Существование человека вне общества невозможно. Но что такое общество, как оно возникает, каково его строение, в соответствии с какими принципами оно существует и функционирует Эти вопросы составляют предметное поле того раздела философских знаний, который называется социальной философией
41420. Порядок ведения и отражения в учете кассовых операций 20.81 KB
  Первичными документами по кассе являются документы, разработанные ЦБ России. Прием наличных денежных средств кассами организаций производится по приходным кассовым ордерам, подписанным главным бухгалтером или лицом, уполномоченным на это письменным распоряжением руководителя организации.
41421. Учет операций на расчетных счетах в банках 20.45 KB
  Він розширив її територію на підкорених древлян сіверян радимичів. міська верхівка почала боротись за розширення прав міста і відтоді усі князі перед посіданням князівського престолу укладали âрядâ договір з Вічем. Розширена укладена за князювання Володимира Мономаха чи його сина Мстислава. Розширена Правда встановлювала норми щодо захисту земельної власності феодалів та обмеження майнових і особистих прав феодально залежного населення.
41422. Учёт выбытия материальных запасов 21.67 KB
  Для учета реализации и прочего выбытия товарно-материальных ценностей предназначен операционно-результатный счет 91 «Прочие доходы и расходы». Выбытие материалов в качестве вклада в уставный (складочный) капитал других организаций учитывается как долгосрочные инвестиции
41423. ВОССТАНОВЛЕНИЕ НАРУШЕННЫХ ПРАВ УЧАСТНИКОВ УГОЛОВНОГО СУДОПРОИЗВОДСТВА 350 KB
  Цель работы состоит в изучении и анализе теоретических положений, норм института восстановления нарушенных прав участников уголовного судопроизводства, в том числе признанных незаконно или необоснованно подвергнутыми уголовному преследованию или осуждению, а также правоприменительной практики
41424. Учет кассовых операций. Учет удержаний из заработной платы работников 22.8 KB
  Приходный кассовый ордер (ПКО). Используется при поступлении наличных денег в кассу. Составляется кассиром, должны быть пронумерованы по порядку от начала отчетного года.