71829

Разработка логических функций для управления подвижной площадки с тремя электродвигателями-колесами

Курсовая

Экономическая теория и математическое моделирование

Алгебра логики (алгебра высказываний) — раздел математической логики, в котором изучаются логические операции над высказываниями. Чаще всего предполагается, что высказывания могут быть только истинными или ложными.

Русский

2014-11-12

181 KB

2 чел.

ГОУВПО «Воронежский государственный технический университет»        Факультет энергетики и систем управления                                                         Кафедра высшей математики и физико-математического моделирования

Курсовая работа

по дисциплине дискретная математика на тему:

«Разработка логических функций для управления подвижной площадки с тремя электродвигателями-колесами»

Выполнил: студент гр. АТР-131                                                                                Попов Андрей

Принял: доц. Купцов В. С.

Воронеж 2013 г.

Содержание

Условие задачи………………………………………………………………………..….3

Теоретическое введение………………………………………………………………....4

Практическая  часть……………………………………………………………………...9

Заключение……………………………………………………………………………….12

Список литературы………………………………………………………………………13


Условие задачи

Вывести логические функции для управления подвижной площадки с тремя ведущими электродвигателями-колёсами, если имеются следующие кнопки управления: «Вперёд», «Назад», «Вращение по часовой стрелке».

Теоретическое введение

Алгебра логики (алгебра высказываний) — раздел математической логики, в котором изучаются логические операции над высказываниями. Чаще всего предполагается, что высказывания могут быть только истинными или ложными.

 Простое логическое выражение состоит из одного высказывания и не содержит логические операции. В простом логическом выражении возможно только два результата — либо «истина», либо «ложь».

 Сложное логическое выражение содержит высказывания, объединенные логическими операциями. По аналогии с понятием функции в алгебре сложное логическое выражение содержит аргументы, которыми являются высказывания.

 В качестве основных логических операций в сложных логических выражениях используются следующие:

 отрицание;

 конъюнкция;

 дизъюнкция;

а также константы — логический ноль 0 и логическая единица 1.

 Отрицание (НЕ) — логическая операция над суждениями, результатом которой является суждение противоположное» исходному. Результатом операции НЕ является следующее:

• если исходное выражение истинно, то результат его отрицания будет ложным;

• если исходное выражение ложно, то результат его отрицания будет истинным.

 Для операции отрицания НЕ приняты следующие условные обозначения:

Не А, Ā, not A, ¬А.

 Результат операции отрицания НЕ определяется следующей таблицей истинности:

A

не А

0

1

1

0

 Результат операции отрицания истинен, когда исходное высказывание ложно, и наоборот.

 Дизъюнкция (ИЛИ) — логическая операция, по своему применению максимально приближённая к союзу «или» в смысле «или то, или это, или оба сразу».

 Результатом операции ИЛИ является выражение, которое будет истинным тогда и только тогда, когда истинно будет хотя бы одно из исходных выражений.

 Применяемые обозначения: А или В,    А V В,    A or B.

 Результат операции ИЛИ определяется следующей таблицей истинности:

A

B

А или B

0

0

0

0

1

1

1

0

1

1

1

1

 Результат операции ИЛИ истинен, когда истинно А, либо истинно В, либо истинно и А и В одновременно, и ложен тогда, когда аргументы А и В — ложны.

 Конъюнкция (И) — логическая операция, по своему применению максимально приближенная к союзу «и». Результатом операции И является выражение, которое будет истинным тогда и только тогда, когда истинны оба исходных выражения.

 Применяемые обозначения: А и В, А Λ В, A  & B, A and B.

 Результат  операции  И  определяется  следующей таблицей истинности:

A

B

А и B

0

0

0

0

1

0

1

0

0

1

1

1

 Результат операции И истинен тогда и только тогда, когда истинны одновременно высказывания А и В, и ложен во всех остальных случаях.

 Импликация (ЕСЛИ-ТО) —  логическая связка, по своему применению приближенная к союзам «еслито…». Эта операция связывает два простых логических выражения, из которых первое является условием, а второе — следствием из этого условия.

 Применяемые обозначения:

если А, то В; А влечет В; if A then В; А→ В.

 Таблица истинности:

A

B

А → B

0

0

1

0

1

1

1

0

0

1

1

1

 Результат операции следования (импликации) ложен только тогда, когда предпосылка А истинна, а заключение В (следствие) ложно.

Булева алгебра

Булевой алгеброй называется непустое множество A с двумя бинарными операциями  (аналог конъюнкции),  (аналог дизъюнкции), унарной операцией  (аналог отрицания) и двумя выделенными элементами: 0 (или Ложь) и 1 (или Истина).

Следующие соотношения могут быть проверены прямым сравнением значений функций в левой и правой части соотношения на всевозможных наборах аргументов.

  1.  x y = y x
  2.  Ú y = y Ú x
  3.  Å y = y Å x
  4.  x  (y z) = (x y)  z
  5.  Ú (Ú z) = (Ú yÚ z
  6.  Å (Å z) = (Å yÅ z
  7.  Ú (y z) = (Ú y) (Ú z)
  8.  x  (Ú z) = (x yÚ (x z)
  9.  ¬¬x = x
  10.  ¬(x y) = ¬x Ú ¬y
  11.  ¬(Ú y) = ¬x ¬y
  12.  x x = x
  13.  x ¬x = 0
  14.  x  0 = 0
  15.  x  1 = x
  16.  Ú x = x
  17.  Ú ¬x = 1
  18.  Ú 0 = x
  19.  Ú 1 = 1
  20.  Å y = (x ¬yÚ (¬x y)
  21.  É y = ¬x Ú y
  22.  º y = (x yÚ (¬x ¬y)

Булева функция

Булева функция  от n аргументов — в дискретной математике — отображение Bn → B, где B = {0,1} — булево множество.

Булева функция задаётся конечным набором значений, что позволяет представить её в виде таблицы истинности, например:

x1

x2

xn-1

xn

f(x1,x2,…,xn)

0

0

0

0

0

0

0

0

1

0

0

0

1

0

1

0

0

1

1

0

1

1

0

0

1

1

1

0

1

0

1

1

1

0

0

1

1

1

1

0

Конъюнкти́вная норма́льная фо́рма (КНФ) в булевой логике — нормальная форма, в которой булева формула имеет вид конъюнкции дизъюнкций литералов.

Совершенная конъюнктивная нормальная форма (СКНФ) — это такая КНФ, которая удовлетворяет трём условиям:

  •  в ней нет одинаковых элементарных дизъюнкций
  •  в каждой дизъюнкции нет одинаковых пропозициональных переменных
  •  каждая элементарная дизъюнкция содержит каждую пропозициональную букву из входящих в данную КНФ пропозициональных букв.

Дизъюнктивная нормальная форма (ДНФ) в булевой логике — нормальная форма, в которой булева формула имеет вид дизъюнкции конъюнкций литералов 

Совершенная дизъюнктивная нормальная форма (СДНФ) — это такая ДНФ, которая удовлетворяет трём условиям:

  •  в ней нет одинаковых элементарных конъюнкций
  •  в каждой конъюнкции нет одинаковых пропозициональных букв
  •  каждая элементарная конъюнкция содержит каждую пропозициональную букву из входящих в данную ДНФ пропозициональных букв, причём в одинаковом порядке.

Для любой функции алгебры логики существует своя СДНФ, причём единственная.


Практическая часть

Пусть кнопки управления будут иксами, а движение колёс – игреками:

x1 – кнопка «Вперёд»;

x2 – кнопка «Назад»;

x3 – кнопка «Вращение по часовой стрелке»;

y1 – левое колесо вращается вперёд;

y2 – левое колесо вращается назад;

y3 – правое колесо вращается вперёд;

y4 – правое колесо вращается назад;

y5 – переднее колесо вращается вперёд;

y6 – переднее колесо вращается назад.

При нажатии кнопки «Вперёд» (x1), левое колесо вращается вперёд (y1), правое колесо вращается вперёд (y3), переднее колесо вращается вперёд (y5) – платформа едет вперёд.

При нажатии кнопки «Назад» (x2), левое колесо вращается назад (y2), правое колесо вращается назад (y4), переднее колесо вращается назад (y6) – платформа едет назад.

При нажатии кнопки «Вращение по часовой стрелке» (x3), левое колесо вращается вперёд (y1), правое колесо вращается назад (y4), переднее колесо вращается вперёд (y5) – платформа вращается по часовой стрелки.

Составим таблицу истинности:

x1

x2

x3

y1

y2

y3

y4

y5

y6

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

1

1

0

0

1

0

0

1

0

1

0

1

0

1

1

0

0

0

0

0

0

1

0

0

1

0

1

0

1

0

1

0

1

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

Используя таблицу истинности, составим СДНФ и приведём их к ПФ с минимальным количеством операций:

y1 = x1 ᴧ ¬x2 ᴧ ¬x3 v ¬x1 ᴧ ¬x2 ᴧ x3 = ¬x2 ᴧ (x1 ᴧ ¬x3 v ¬x1 ᴧ x3) = ¬x2 ᴧ (x1 ∆ x3);

y2 = ¬x1 ᴧ x2 ᴧ ¬x3;

y3 = x1 ᴧ ¬x2 ᴧ ¬x3;

y4 = ¬x1 ᴧ x2 ᴧ ¬x3 v ¬x1 ᴧ ¬x2 ᴧ x3 = ¬x1 ᴧ (x2 ᴧ ¬x3 v ¬x2 ᴧ x3) = ¬x1 ᴧ (x2 ∆ x3);

y5 = x1 ᴧ ¬x2 ᴧ ¬x3 v ¬x1 ᴧ ¬x2 ᴧ x3 = ¬x2 ᴧ (x1 ᴧ ¬x3 v ¬x1 ᴧ x3) = ¬x2 ᴧ (x1 ∆ x3);

y6 = ¬x1  x2  ¬x3.

А теперь построим таблицу истинности для каждой формулы:

y3(x1,x2,x3)

x1

x2

x3

¬x2

¬x3

x1 ᴧ ¬x2

y1

0

0

0

1

1

0

0

0

0

1

1

0

0

0

0

1

0

0

1

0

0

0

1

1

0

0

0

0

1

0

0

1

1

1

1

1

0

1

1

0

1

0

1

1

0

0

1

0

0

1

1

1

0

0

0

0

y4(x1,x2,x3)

x1

x2

x3

¬x1

x2 ∆ x3

y2

0

0

0

1

0

0

0

0

1

1

1

1

0

1

0

1

1

1

0

1

1

1

0

0

1

0

0

0

0

0

1

0

1

0

1

0

1

1

0

0

1

0

1

1

1

0

0

0

y1,5(x1,x2,x3)

x1

x2

x3

¬x2

x1 ∆ x3

y3,5

0

0

0

1

0

0

0

0

1

1

1

1

0

1

0

0

0

0

0

1

1

0

1

0

1

0

0

1

1

1

1

0

1

1

0

0

1

1

0

0

1

0

1

1

1

0

0

0

y2,6(x1,x2,x3)

x1

x2

x3

¬x1

¬x3

¬x1 ᴧ x2

y4,6

0

0

0

1

1

0

0

0

0

1

1

0

0

0

0

1

0

1

1

1

1

0

1

1

1

0

1

0

1

0

0

0

1

0

0

1

0

1

0

0

0

0

1

1

0

0

1

0

0

1

1

1

0

0

0

0

Заметим, что игреки получились такие же, как и в первой таблице истинности.

Заключение

В ходе Курсовой Работы я освоил метод формирования логических функций для управления подвижной. Я использовал таблицу истинности для построения СДНФ. Затем, минимизировал их, используя свойства логических функций.

y3 = x1  ¬x2  ¬x3;

y4 = ¬x1  (x2x3);

y1,5 = ¬x2  (x1x3);

y2,6 = ¬x1  x2  ¬x3.

y1 = y5 , y2 = y6 .

Литература

  •  Владимиров Д. А. Булевы алгебры. — М.: «Наука», 1969.
  •  Иванов Б. Н. Дискретная математика. Алгоритмы и программы. Расширенный курс. — М.: «Известия», 2011.
  •  Кузнецов О. П., Адельсон-Вельский Г. М. Дискретная математика для инженера. — М.: Энергоатомиздат, 1988.
  •  Гуров С.И. Булевы алгебры, упорядоченные множества, решетки: Определения, свойства, примеры. — М.: Либроком, 2013.
  •  Ю.И. Галушкина, А.Н. Марьямов: Конспект лекций по дискретной математике - 2-е изд., испр. - М.: Айрис-пресс, 2008.

PAGE   \* MERGEFORMAT12


 

А также другие работы, которые могут Вас заинтересовать

25870. Анализ динамики дебиторской и кредиторской задолженности банка по видам и срокам возникновения 23 KB
  Дебиторской задолженности традиционно рассматривается в двух аспектах: в соответствии со сроками ее погашения: 1.краткосрочная платежи по которой ожидаются в течение 12 месяцев после отчетной даты; в соответствии с причинами возникновения задолженности : 1. Анализ кредиторской задолженности начинается с оценки структуры и динамики источников заемных средств: 1.
25871. Анализ динамики объема и структуры доходов банка 21.5 KB
  Общий доход делится на процентные и непроцентные доходы. Процентные доходы: доходы по ссудным операциям в рублях и валюте. Непроцентные доходы: дивиденды по бумагам и инвестициям доходы от участия в совместной деятельности комиссионные штрафы присужденные судом плата за оказание услуг. Факторы доходов: процентные доходы повышение непроцентных доходов увеличение активов приносящих доход.
25872. Анализ динамики объема и структуры расходов банка 23 KB
  Основными направлениями анализа расходов являются: оценка уровня всех и отдельных видов расходов и их динамики; структурный анализ расходов; оценка общего уровня расходов. Для оценки закономерности изменения отдельных видов расходов используется относительный показатель: все или отдельные виды расходов за период активы На основе его динамики можно судить о росте или снижении определенных расходов правомерности этих изменений. Структурный анализ расходов производится с целью выявления основных видов расходов динамика которых и причины...
25873. Анализ динамики процентных ставок по пассивным и активным операциям банка 43.5 KB
  Пассивные операции банка связаны с привлечением ресурсов. Ресурсная база формируется за счет таких привлеченных ресурсов как вклады депозиты до востребования и срочные депозиты юридических и физических лиц межбанковские кредиты депозитные сертификаты векселя. Поэтому при оценке процентной политики коммерческого банка анализируется стоимость всех ресурсов и депозитных операций.изучение динамики в том числе номинальной средней цены ресурсов коммерческого банка; 2.
25874. Анализ длительной задолженности на счете «Прочие дебиторы и кредиторы» 24 KB
  По пассиву отражаются и учитываются: начисление з п до ее выдачи а также суммы з п не полученной служащими банка; суммы удержанных из з п налогов страховых взносов по договорам добровольного страхования перечисление сумм из з п во вклады до перевода этих сумм до востребования; невостребованные остатки по закрытым расчетным и текущим счетам по акцептованным поручениям и чекам; оплаченный при приобретении основных средств налог на добавленную стоимость и спецналог; операции по формированию акционерного капитала банка в период проведения...
25875. Анализ достаточности капитала банка 27.5 KB
  Достаточность капитала банка это способность собственного капитала банка покрыть убытки связанные с наступлением риска. Величина собственного капитала регулируется и контролируется Банком России. Регулятором было установлено что собственного капитала должно быть у банка не менее 10 от величины его рисковых активов где под рисковыми активами будем понимать денежные средства которые размещены с определенным риском их невозврата.
25876. Анализ задолженности по процентам, неуплаченным клиентам 23 KB
  904 Прочие дебиторы и кредиторы начисленные но неуплаченные банком проценты отражаются до того момента пока клиент не обратится за их получением. По межбанковским кредитам проценты обычно не начисляются а производится их непосредственная уплата. Начисление процентов по межбанковскому кредиту может производится в том случае когда банк не располагает достаточными суммами на корреспондентском счете. Поскольку банки могут прибегать к услугам денежного рынка и приобретать недостающую им ликвидность то такая операция возможна в том случае...
25877. Анализ использования межбанковского кредита и других привлеченных средств 22 KB
  межбанковский кредитМБК м. Ставка МБК – рыночная высокая. Особое место среди МБК занимают кредиты ЦБ под определенные условия. Анализ МБК проводится по след.
25878. Анализ источников прибыли банка 22.5 KB
  Главным источником прибыли являются доходы от всех видов деятельности. Доходы делятся на процентныедоходы по ссудным операциям в руб. Непроцентные это дивиденды по ценным бумагам или инвестициям; доходы от участия в совместной деятельности; доходы от валютных операций комиссионные штрафы присужденные плата за оказание услуг и прочие. Факторы доходов для факторного анализа: процентные доходы повышение непроцентных доходов увеличение доли рабочих активов или активов приносящих доход.