71839

Алгоритм управления электродвигателем объекта

Курсовая

Математика и математический анализ

Разработать схему управления электрическим двигателем объекта, совершающего поступательное движение на рабочем участке. На границах рабочего участка движения установлены конечные выключатели, размыкающие при срабатывании цепь питания электродвигателя.

Русский

2014-11-13

143 KB

4 чел.

ГОУВПО «Воронежский государственный технический университет»        Факультет энергетики и систем управления                                                         Кафедра высшей математики и физико-математического моделирования

Курсовая работа

по дисциплине дискретная математика на тему:

«Алгоритм управления электродвигателем объекта»

Выполнил: студент группы АТР-131                                                                                                Сеченых  А. Ю.

Принял: доц. Купцов В. С.

Содержание

Воронеж 2013 г.

Условие задачи…………………………………………………………………………….3

Теоретическое введение………………………………………………………………..4-8

Решение………………………………………………………………………………...9-10

Заключение……………………………………………………………………………….11

Список литературы………………………………………………………………………12


Условие задачи

    Разработать схему управления электрическим двигателем объекта, совершающего поступательное движение на рабочем участке. На границах рабочего участка движения установлены конечные выключатели, размыкающие при срабатывании цепь питания электродвигателя. Орган правления: переключатель на три положения: "Влево-стоп-вправо".


Теоретическое введение:

Алгебра логики

Алгебра логики (алгебра высказываний)  — раздел математической логики, в котором изучаются логические операции над высказываниями. Чаще всего предполагается, что высказывания могут быть только истинными или ложными.

 Простое логическое выражение состоит из одного высказывания и не содержит логические операции. В простом логическом выражении возможно только два результата — либо «истина», либо «ложь».

 Сложное логическое выражение содержит высказывания, объединенные логическими операциями. По аналогии с понятием функции в алгебре сложное логическое выражение содержит аргументы, которыми являются высказывания.

 В качестве основных логических операций в сложных логических выражениях используются:

 отрицание;

 конъюнкция;

Úдизъюнкция;

→ импликация;

а также константы — логический ноль 0 и логическая единица 1.

 Отрицание (НЕ) — логическая операция над суждениями, результатом которой является суждение противоположное» исходному. Результатом операции «НЕ» является следующее:

• если исходное выражение истинно, то результат его отрицания будет ложным;

• если исходное выражение ложно, то результат его отрицания будет истинным.

 Для операции отрицания «НЕ» приняты следующие условные обозначения:

Не  А, Ā, not A, ¬А.

 Результат операции отрицания «НЕ» определяется следующей таблицей истинности:

А

Не А

0

1

1

0

 Результат операции отрицания истинен, когда исходное высказывание ложно, и наоборот.

 Конъюнкция (И) — логическая операция, по своему применению максимально приближенная к союзу «и». Результатом операции «И» является выражение, которое будет истинным тогда и только тогда, когда истинны оба исходных выражения.

 Применяемые обозначения: А и В, А Λ В, A  & B, A and B.

 Результат  операции «И»  определяется  следующей таблицей истинности:

.

А

В

А и В

0

0

0

0

1

0

1

0

0

1

1

1

Дизъюнкция (ИЛИ) — логическая операция, по своему применению максимально приближённая к союзу «или» в смысле «или то, или это, или оба сразу».

 Результатом операции «ИЛИ» является выражение, которое будет истинным тогда и только тогда, когда истинно будет хотя бы одно из исходных выражений.

 Применяемые обозначения: А или В,    А V В,    A or B.

 Результат операции «ИЛИ» определяется следующей таблицей истинности:

 

А

В

А или В

0

0

0

0

1

1

1

0

1

1

1

1

Результат операции «ИЛИ» истинен, когда истинно А, либо истинно В, либо истинно и А и В одновременно, и ложен тогда, когда аргументы А и В — ложны.

 Импликация (ЕСЛИ-ТО) —  логическая связка, по своему применению приближенная к союзам «еслито…». Эта операция связывает два простых логических выражения, из которых первое является условием, а второе — следствием из этого условия.

 Применяемые обозначения:

если А, то В; А влечет В; if A then В; А→ В.

 Таблица истинности:

А

В

А→В

0

0

1

0

1

1

1

0

0

1

1

1

 Результат операции следования (импликации) ложен только тогда, когда предпосылка А истинна, а заключение В (следствие) ложно.

Булева алгебра

Булевой алгеброй называется непустое множество А с двумя бинарными операциями  (аналог конъюнкции),  (аналог дизъюнкции), унарной операцией  (аналог отрицания) и двумя выделенными элементами: 0 (или Ложь) и 1 (или Истина) такими, что для всех a, b и c из множества A верны следующие аксиомы:

  1.  x y = y x
  2.  Ú y = y Ú x
  3.  Å y = y Å x
  4.  x  (y z) = (x y)  z
  5.  Ú (y Ú z) = (x Ú y) Ú z
  6.  Å (y Å z) = (x Å y) Å z
  7.  Ú (y z) = (x Ú y) (x Ú z)
  8.  x  (y Ú z) = (x y) Ú (x z)
  9.  ¬¬x = x
  10.  ¬(x y) = ¬x Ú ¬y
  11.  ¬(x Ú y) = ¬x ¬y
  12.   x x = x
  13.   x ¬x = 0
  14.   x  0 = 0
  15.   x  1 = x
  16.  Ú x = x
  17.  Ú ¬x = 1
  18.  Ú 0 = x
  19.  Ú 1 = 1
  20.  Å y = (x ¬y) Ú (¬x y)
  21.  É y = ¬x Ú y
  22.  º y = (x y) Ú (¬x ¬y)

В булевых алгебрах существуют двойственные утверждения, они либо одновременно верны, либо одновременно неверны. Именно, если в формуле, которая верна в некоторой булевой алгебре, поменять все конъюнкции на дизъюнкции, 0 на 1, ≤ на ≥ и наоборот, то получится формула, также истинная в этой булевой алгебре. Это следует из симметричности аксиом относительно таких замен. Можно доказать, что любая конечная булева алгебра изоморфна булевой алгебре всех подмножеств какого-то множества. Отсюда следует, что количество элементов в любой конечной булевой алгебре будет степенью двойки.

Булева функция

Булевой функцией от n аргументов называется функция f из n-ой степени множества { 0, 1 } в множество { 0, 1 }.

Булева константа — это индивидная константа с областью значений {0;1}. Таким образом, существуют две булевы константы: 0 и 1. По определению принимается, что каждая булева константа есть также булева функция от 0 переменных (что вполне аналогично определению нульарной операции).

Булева функция задаётся конечным набором значений, что позволяет представить её в виде таблицы истинности, например:

x1

x2

xn-1

xn

f(x1,x2,…,xn)

0

0

0

0

0

0

0

0

1

0

0

0

1

0

1

0

0

1

1

0

1

1

0

0

1

1

1

0

1

0

1

1

1

0

0

1

1

1

1

0

Суперпозиция (сложная функция) — это функция, полученная из некоторого множества функций путем подстановки одной функции в другую или отождествления переменных.

Конъюнкти́вная норма́льная фо́рма (КНФ) в булевой логике — нормальная форма, в которой булева формула имеет вид конъюнкции дизъюнкций литералов.

Совершенная конъюнктивная нормальная форма (СКНФ) — это такая КНФ, которая удовлетворяет трём условиям:

  •  в ней нет одинаковых элементарных дизъюнкций
  •  в каждой дизъюнкции нет одинаковых пропозициональных переменных
  •  каждая элементарная дизъюнкция содержит каждую пропозициональную букву из входящих в данную КНФ пропозициональных букв.

Дизъюнктивная нормальная форма (ДНФ) в булевой логике  нормальная форма, в которой булева формула имеет вид дизъюнкции конъюнкций литералов.  

Совершенная дизъюнктивная нормальная форма (СДНФ) — это такая ДНФ, которая удовлетворяет трём условиям:

  •  в ней нет одинаковых элементарных конъюнкций
  •  в каждой конъюнкции нет одинаковых пропозициональных букв
  •  каждая элементарная конъюнкция содержит каждую пропозициональную букву из входящих в данную ДНФ пропозициональных букв, причём в одинаковом порядке.

Для любой функции алгебры логики существует своя СДНФ, причём единственная.


Решение задачи:

 

            Пусть:

S1 - переключатель «влево»;

S2 - переключатель «вправо»;

K1 - размыкающий конечный выключатель при движении «влево»;

K2 - размыкающий конечный выключатель при движении «вправо»;

Y1 – двигатель движется «влево»;

Y2 - двигатель движется «вправо»;

 Составим таблицу истинности:

S1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

S2

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

K1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

K2

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Y1

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

Y2

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

       Используя метод СДНФ  и, выбирая «1»,  получим:

S1

0

0

1

1

S2

1

1

0

0

K1

0

1

1

1

K2

1

1

0

1

Y1

0

0

1

1

Y2

1

1

0

0

Для каждой операции получим следующие выражения: ¬ Ú

Y1=S1¬S2∧K1∧¬K2ÚS1¬S2∧K1∧K2=S1 ¬S2 K1 ∧ (¬K2ÚK2) =S1¬S2∧K1∧1= S1¬S2∧K1

S1

1

1

S2

0

0

K1

1

1

K2

0

1

¬S2

1

1

S1¬S2

1

1

S1¬S2K1

1

1

Y2= ¬S1S2¬K1K2Ú¬S1S2K1K2= ¬S1S2K2 (¬K1ÚK1) = ¬S1S2K2∧1= ¬S1S2K2

S1

0

0

S2

1

1

K1

0

1

K2

1

1

¬S1

1

1

¬S1S2

1

1

¬S1S2K2

1

1

Заключение:

 В процессе написания курсовой работы по дискретной математике я разработал схему управления электродвигателем, который совершает поступательное движение на рабочем участке, а именно перемещается влево и вправо. Освоил булевы функции и алгебру логики. Cпомощью метода СДНФ я минимизировал получившиеся булевы функции, которые были получены из таблицы истинности. В конечном итоге для каждой команды мы получили нижеперечисленные  уравнения:

  1.  Y1= S1¬S2∧K1

  1.  Y2=¬S1S2K2


Список литературы

  •  Кузнецов О. П., Адельсон-Вельский Г. М. Дискретная математика для инженера. — М.: Энергия, 1980
  •  Ю.И. Галушкина, А.Н. Марьямов: Конспект лекций по дискретной математике - 2-е изд., испр. - М.: Айрис-пресс, 2008.
  •  Гаврилов Г. П., Сапоженко А. А. Сборник задач по дискретной математике. — М.: Наука, 1969.
  •  Л.В. Балабко. Дискретная математика.  Алгебра логики  (Алгебра высказываний ): методические  указания к выполнению самостоятельных и контрольных работ.
  •  Нефедов В.Н., Осипова В.А. Курс дискретной математики. – М.: Издательство МАИ, 1992.

PAGE   \* MERGEFORMAT12


 

А также другие работы, которые могут Вас заинтересовать

27565. Теория и практика формирования правового государства в России 29.5 KB
  Теория правового государства насчитывает многовековую историю. Многие мыслители начиная с античной древности и вплоть до наших дней занимаются проблемой создания рационального государства которое отвечало бы представлениям людей о свободе и справедливости законности и демократии. В числе ученых философов и правоведов принимавших участие в выработке и обосновании теории правового государства необходимо упомянуть Аристотеля Платона Полибия Ш.
27566. Типология государств (Кельзена, Еллинека) 27.5 KB
  Типология государств Кельзена Еллинека. Типология государства традиционно рассматривают как теория учение о типах государств когдалибо существовавших в истории человеческого общества или существующих в настоящее время. Типология государства это процесс систематизации государств с учетом их сущностных свойств для повышения эффективности в теоретической и практической деятельности по изучению государства и правоприменения. Под типом государства понимаются взятые в единстве общие черты различных государств система их важнейших...
27567. Типология государства: формационный подход 31 KB
  Типология государства: формационный подход. Типология государства традиционно рассматривают как теория учение о типах государств когдалибо существовавших в истории человеческого общества или существующих в настоящее время. Типология государства это процесс систематизации государств с учетом их сущностных свойств для повышения эффективности в теоретической и практической деятельности по изучению государства и правоприменения. Тип государства и права ставится в зависимость от типа общественноэкономической формации.
27568. Тоталитаризм в системе антидемократических политических режимов 24.5 KB
  Тоталитаризм в системе антидемократических политических режимов. Государственнополитический режим это элемент формы государства характеризующий совокупность приемов методов способов и средств осуществления государственной власти. В научной литературе большинство авторов выделяют два вида политического режима: демократический и антидемократический. Антидемократический политический режим представляет собой противоположность демократическому и характеризуется отсутствием демократических прав и свобод; запретом деятельности политических...
27569. Укажите, какие из перечисленных событий и действий являются юридическими фактами (солнечное затмение, назначение на должность, создание литературного произведения) 26.5 KB
  Юридические факты это конкретные жизненные обстоятельства с которыми норма права связывает возникновение изменение и прекращение правоотношений. Виды ЮФ: По последствиям: правообразующие влекут возникновение правоотношений; правоизменяющие влекут изменение правоотношений; правопрекращающие влекут прекращение правоотношений. По форме проявления: положительные обстоятельства требующие их наличия для возникновения правоотношений; отрицательные обстоятельства требующие их отсутствия для возникновения правоотношений.
27570. Укажите, что является основанием деления права на отрасли 26 KB
  В основе деления права на отрасли лежат предмет и метод правового регулирования. Каждая отрасль права регламентирует свой особый участок сферу общественных отношений однопорядкового характера однородных своеобразие которых позволяет отличать одну отрасль права от другой. Но предмет правового регулирования не может быть единственным критерием деления права на отрасли так как общественные отношения разнообразны и часто одни и те же общественные отношения регулируются различными отраслями и способами.
27571. Федерация как особая форма государственного устройства 23.5 KB
  Федерация как особая форма государственного устройства. Форма государственного устройства территориальная организация государственной власти или иными словами внутреннее строение государства деление его на составные части. По форме государственного устройства государства могут быть простыми и сложными.
27572. Форма государственного устройства 26 KB
  Форма государственного устройства территориальная организация государственной власти или иными словами внутреннее строение государства деление его на составные части. По форме государственного устройства государства могут быть простыми и сложными. 1 Простые государства называют унитарными так как его составные части являются простыми административнотерриториальными единицами не обладающими суверенитетом. 2 Сложные государства представляют собой союз государств или состоят из обособленных государственных образований.
27573. Множественность преступлений, понятие и виды. Её отличие от продолжаемых и длящихся преступлений 29.5 KB
  Множественность преступлений понятие и виды. Её отличие от продолжаемых и длящихся преступлений. Множественность преступлений это совершение лицом двух или более преступлений независимо от того осуждалось ли лицо за предыдущие преступления. Признаки множественности: одно лицо совершает два или более преступлений; каждое из деяний должно быть установлено судом в приговоре; преступление не должно быть погашено сроком давности уголовной ответственности ст.