71913

Волоконно-оптическая связь

Реферат

Коммуникация, связь, радиоэлектроника и цифровые приборы

Структура оптоволоконного кабеля очень проста и похожа на структуру коаксиального электрического кабеля только вместо центрального медного провода здесь используется тонкое диаметром порядка 110 мкм стекловолокно а вместо внутренней изоляции – стеклянная или пластиковая оболочка...

Русский

2014-11-14

201.08 KB

3 чел.

Основные определения

Оптоволокно – это стеклянная или пластиковая нить, используемая для переноса света внутри себя посредством полного внутреннего отражения.

Структура оптоволоконного кабеля очень проста и похожа на структуру коаксиального электрического кабеля, только вместо центрального медного провода здесь используется тонкое (диаметром порядка 1-10 мкм) стекловолокно, а вместо внутренней изоляции – стеклянная или пластиковая оболочка, не позволяющая свету выходить за пределы стекловолокна. Мы имеем дело с режимом, так называемого полного внутреннего отражения света от границы двух веществ с разными коэффициентами преломления (у стеклянной оболочки коэффициент преломления значительно ниже, чем у центрального волокна). Металлическая оплетка кабеля обычно отсутствует, так как экранирование от внешних электромагнитных помех здесь не требуется, однако иногда ее все-таки применяют для механической защиты от окружающей среды (такой кабель иногда называют броневым, он может объединять под одной оболочкой несколько оптоволоконных кабелей).

Волоконная оптика – раздел прикладной науки и машиностроения, описывающий такие волокна. Оптоволокна используются в оптоволоконной связи, которая позволяет передавать цифровую информацию на большие расстояния и с более высокой скоростью передачи данных, чем в электронных средствах связи. В ряде случаев они также используются при создании датчиков.

Оптоволоконная связь – связь, построенная на базе оптоволоконных кабелей. Широко применяется также сокращение ВОЛС (волоконно-оптическая линия связи). Используется в различных сферах человеческой деятельности, начиная от вычислительных систем и заканчивая структурами для связи на больших расстояниях. Является сегодня наиболее популярным и эффективным методом для обеспечения телекоммуникационных услуг.

Материалы

Стеклянные оптические волокна делаются из кварцевого стекла, но для дальнего инфракрасного диапазона могут использоваться другие материалы, такие как флуоро-цирконат, флуоро-алюминат и халькогенидные стекла. Как и другие стекла, эти имеют показатель преломления около 1,5.

В настоящее время развивается применение пластиковых оптических волокон (Plastic optical fibers).

В качестве источников излучения света в волоконно-оптических кабелях применяются:

  1. светодиоды, или светоизлучающие диоды (Light Emmited Diode, LED);
  2. полупроводниковые лазеры, или лазерные диоды (Laser Diode).

Для одномодовых кабелей применяются только лазерные диоды, так как при таком малом диаметре оптического волокна световой поток, создаваемый светодиодом, невозможно без больших потерь направить в волокно – он имеет чересчур широкую диаграмму направленности излучения, в то время как лазерный диод – узкую. Поэтому более дешевые светодиодные излучатели используются только для многомодовых кабелей.

История

Волоконная оптика хоть и является повсеместно используемым и популярным средством обеспечения связи, сама технология проста и разработана достаточно давно. Эксперимент с переменой направления светового пучка путем преломления был продемонстрирован Даниелем Колладоном (Daniel Colladon) и Жаком Бабинеттом (Jacques Babinet) еще в 1840 году. Спустя несколько лет Джон Тиндалл (John Tyndall) использовал этот эксперимент на своих публичных лекциях в Лондоне, и уже в 1870 году выпустил труд, посвященный природе света. Практическое применение технологии нашлось лишь в ХХ веке. В 20-х годах прошлого столетия экспериментаторами Кларенсом Хаснеллом (Clarence Hasnell) и Джоном Бердом (John Berd) была продемонстрирована возможность передачи изображения через оптические трубки. Этот принцип использовался Генрихом Ламмом (Heinrich Lamm) для медицинского обследования пациентов. Только в 1952 году индийский физик Нариндер Сингх Капани (Narinder Singh Kapany) провел серию собственных экспериментов, которые и привели к изобретению оптоволокна. Фактически им был создан тот самый жгут из стеклянных нитей, причем оболочка и сердцевина были сделаны из волокон с разными показателями преломления. Оболочка фактически служила зеркалом, а сердцевина была более прозрачной – так удалось решить проблему быстрого рассеивания. Если ранее луч не доходил да конца оптической нити, и невозможно было использовать такое средство передачи на длительных расстояниях, то теперь проблема была решена. Нариндер Капани к 1956 году усовершенствовал технологию. Связка гибких стеклянных прутов передавала изображение практически без потерь и искажений.

Изобретение в 1970 году специалистами компании Corning оптоволокна, позволившего без ретрансляторов продублировать на то же расстояние систему передачи данных телефонного сигнала по медному проводу, принято считать переломным моментом в истории развития оптоволоконных технологий. Разработчикам удалось создать проводник, который способен сохранять не менее одного процента мощности оптического сигнала на расстоянии одного километра. По нынешним меркам это достаточно скромное достижение, а тогда – необходимое условие для того, чтобы развивать новый вид проводной связи.

Первоначально оптоволокно было многофазным, то есть могло передавать сразу сотни световых фаз. Причём повышенный диаметр сердцевины волокна позволял использовать недорогие оптические передатчики и коннекторы. Значительно позже стали применять волокно большей производительности, по которому можно было транслировать в оптической среде лишь одну фазу. С внедрением однофазного волокна целостность сигнала могла сохраняться на большем расстоянии, что способствовало передаче немалых объёмов информации.

Самым востребованным сегодня является однофазное волокно с нулевым смещением длины волны. Начиная с 1983 года оно занимает ведущее положение среди продуктов оптоволоконной индустрии, доказав свою работоспособность на десятках миллионов километров.

Классификация

Выделяют несколько классов оптоволокон по особенностям структуры и принципу действия:

  1. Одномодовые оптоволокна
  2. Многомодовые оптоволокна
  3. Оптоволокна с градиентным показателем преломления

Оптоволокна со ступенчатым профилем распределения показателей преломления.

Профиль показателя преломления различных типов оптических волокон: многомодовое волокно со ступенчаты изменением показателя преломления (а); многомодовое волокно с плавным изменением показателя преломления (6); одномодовое волокно (в).

Все оптические волокна делятся на две основные группы: многомодовые MMF (multi mode fiber) и одномодовые SMF (single mode fiber).

Понятие «мода», описывает режим распространения световых лучей во внутреннем сердечнике кабеля. В одномодовом кабеле используется центральный проводник очень малого диаметра, соизмеримого c длиной волны света – от 5 до 10 мкм. При этом практически все лучи света распространяются вдоль оптической оси световода, не отражаясь от внешнего проводника. Изготовление сверхтонких качественных волокон для одномодового кабеля представляет сложный технологический процесс, что делает одномодовый кабель достаточно дорогим. Кроме того, в волокно такого маленького диаметра достаточно сложно направить пучок света, не потерян при этом значительную часть его энергии. В многомодовых кабелях используются более широкие внутренние сердечники, которые легче изготовить технологически. В стандартах определены два наиболее употребительных многомодовых кабеля: 62,5/125 мкм и 50/125 мкм, где 62,5 мкм или 50 мкм – диаметр центрального проводника, а 125 мкм – диаметр внешнего проводника.

Многомодовые волокна

Многомодовые волокна подразделяются на ступенчатые (step index multi mode fiber) и градиентные(graded index multi mode fiber).

В многомодовом кабеле траектории световых лучей имеют заметный разброс, в результате чего форма сигнала на приемном конце кабеля искажается. Центральное волокно имеет диаметр 62,5 мкм, а диаметр внешней оболочки – 125 мкм (это иногда обозначается как 62,5/125). Для передачи используется обычный (не лазерный) светодиод, что снижает стоимость и увеличивает срок службы приемопередатчиков по сравнению с одномодовым кабелем. Длина волны света в многомодовом кабеле равна 0,85 мкм. Допустимая длина кабеля достигает 2-5 км. В настоящее время многомодовый кабель – основной тип оптоволоконного кабеля, так как он дешевле и доступнее.

Многомодовые волокна со ступенчатым профилем

Первые волокна для передачи данных были многомодовыми со ступенчатым профилем показателя преломления. Для распространения света благодаря полному внутреннему отражению, необходимо иметь показатель преломления стекла сердцевины n1, немного большим, чем показатель преломления стекла оболочки n2. На границе раздела двух стеклянных сред должно выполняться условие: n1 > n2. Если показатель преломления сердцевины оптического волокна n1 одинаков по всему поперечному сечению, то тогда говорят, что волокно имеет ступенчатый профиль. Такой волоконный световод является многомодовым. Импульс света, распространяющийся в нем, состоит из многих составляющих, направляемых в отдельных модах световода. Каждая из этих мод возбуждается на входе волокна под своим определённым углом ввода в световод и направляется по нему вдоль сердцевины, проходя с различными траекториями движения луча. Каждая мода проходит разное расстояние оптического пути и поэтому проходит всю длину световода за разное время. При этом, если мы подадим на вход световода короткий (прямоугольный) импульс света, то на выходе многомодового световода получим «размытый» по времени импульс. Эти искажения, обусловленные дисперсией времени задержки отдельных мод, называются модовой дисперсией.

Многомодовые волокна с градиентным профилем

В многомодовом оптическом волокне со ступенчатом профилем, моды распространяются по оптическим путям разной длины и поэтому приходят к концу световода в разное время. Эта дисперсия может быть значительно уменьшена, если показатель преломления стекла сердцевины уменьшается параболически от максимальной величины n1 у оси световода, до величины показателя преломления n2 на поверхности границы раздела с оболочкой. Оптический волновод с таким профилем, (когда показатель преломления плавно изменяется) называется градиентным волоконным световодом. Лучи света проходят по такому волокну по волно- или винтообразным спиралям. Чем дальше отклоняется луч света от оси световода, тем сильнее он заворачивается обратно к оси. При этом, так как показатель преломления от оси к краю сердцевины уменьшается, то увеличивается скорость распространения света в среде. Благодаря этому более «длинные» оптические пути компенсируются меньшим временем прохождения. В результате различие временных задержек различных лучей почти полностью исчезает.

Одномодовые волокна

Одномодовые волокна подразделяются на ступенчатые одномодовые волокна (step index single mode fiber) или стандартные волокна SF (standard fiber), на волокна со смещенной дисперсией DSF (dispersion-shifted single mode fiber), и на волокна с ненулевой смещенной дисперсией NZDSF (non-zero dispersion-shifted single mode fiber).

В одномодовом кабеле практически все лучи проходят один и тот же путь, в результате чего все они достигают приемника одновременно, и форма сигнала практически не искажается. Одномодовый кабель имеет диаметр центрального волокна около 1,3 мкм и передает свет только с такой же длиной волны (1,3 мкм). Дисперсия и потери сигнала при этом очень незначительны, что позволяет передавать сигналы на значительно большее расстояние, чем в случае применения многомодового кабеля. Для одномодового кабеля применяются лазерные приемопередатчики, использующие свет исключительно с требуемой длиной волны. Такие приемопередатчики пока еще сравнительно дороги и не слишком долговечны. Однако в перспективе одномодовый кабель должен стать основным благодаря своим прекрасным характеристикам.

Волокна со ступенчатым профилем

Модовая дисперсия в оптическом волокне может быть исключена, если структурные параметры ступенчатого световода подобрать таким образом, что в нём будет направляться только одна мода, а именно – фундаментальная (основная) мода. Однако и основная мода также уширяется во времени по мере её прохождения по такому световоду. Это явление называется хроматической дисперсией. Она является свойством материала, поэтому как правило, имеет место в любом оптическом световоде, но в диапазоне длин волн от 1200 до 1600 нм она относительно мала или отсутствует. Для изготовления ступенчатого волоконного световода с малым затуханием, который направляет только фундаментальную моду в диапазоне длин волн более 1200 нм диаметр поля моды должен быть уменьшен до 8-10 мкм. Такой ступенчатый волоконный световод называется стандартным одномодовым оптическим волокном.

Волокна с многоступенчатым профилем

Профиль показателя преломления обычного одномодового световода имеет ступенчатый профиль. Для такой структуры профиля сумма дисперсии материала в волноводной дисперсии при длине волны около 1300 нм равна нулю. Для современных устройств передачи данных по оптическому волокну, использующих длины волн 1550 нм или одновременную передачу сигналов на нескольких длинах волн, желательно иметь нулевую дисперсию и при других длинах волн. А для этого необходимо изменить волновую дисперсию и, следовательно, структуру профиля преломления волоконного световода. Это приводит к многоступенчатому или сегментному профилям показателя преломления. Используя эти профили, можно производить волоконные световоды, у которых длина волны с нулевой дисперсией сдвинута до 1550 нм (волокно со смещённой дисперсией) или величины дисперсии очень малы во всём диапазоне волн от 1300 нм до 1550 нм (волокно со сглаженной или компенсированной дисперсией).

Диаметр сердцевины одномодовых волокон 7-9 микрон. Благодаря малому диаметру достигается передача по волокну лишь одной моды электромагнитного излучения, за счёт чего исключается влияние дисперсионных искажений. В настоящее время практически все производимые волокна являются одномодовыми.

Элементы волоконно-оптической линии

  1.  Оптический приёмник

Оптические приёмники обнаруживают сигналы, передаваемые по волоконно-оптическому кабелю, и преобразовывают его в электрические сигналы, которые затем усиливают и далее восстанавливают их форму, а также синхросигналы. В зависимости от скорости передачи и системной специфики устройства, поток данных может быть преобразован из последовательного вида в параллельный.

  1.  Оптический передатчик

Оптический передатчик в волоконно-оптической системе преобразовывает электрическую последовательность данных, поставляемых компонентами системы, в оптический поток данных.

  1.  Предусилитель

Усилитель преобразовывает асимметричный ток от фотодиодного датчика в асимметричное напряжение, которое усиливается и преобразуется в дифференциальный сигнал.

  1.  Микросхема синхронизации и восстановления данных

Эта микросхема должна восстанавливать синхросигналы от полученного потока данных и их тактирование. Схема фазовой автоподстройки частоты, необходимая для восстановления синхроимпульсов, также полностью интегрирована в микросхему синхронизации и не требует внешних контрольных синхроимпульсов.

  1.  Оптический кабель, состоящий из оптических волокон, находящихся под общей защитной оболочкой.

Волоконно-оптические приёмопередатчики

Чтобы передать данные через оптические каналы, сигналы должны быть преобразованы из электрического вида в оптический, переданы по линии связи и затем в приёмнике преобразованы обратно в электрический вид. Эти преобразования происходят в устройстве приёмопередатчика, который содержит электронные блоки наряду с оптическими компонентами.

Широко используемый в технике передач мультиплексор с разделением времени позволяет увеличить скорость передачи до 10 Гб/сек. Современные быстродействующие волоконно-оптические системы предлагают следующие стандарты скорости передач.

Стандарт SONET

Стандарт SDH

Скорость передачи

OC 1

51,84 Мб/сек

OC 3

STM 1

155,52 Мб/сек

OC 12

STM 4

622,08 Мб/сек

OC 48

STM 16

2,4883 Гб/сек

OC 192

STM 64

9,9533 Гб/сек

Новые методы мультиплексного разделения длины волны или спектральное уплотнение дают возможность увеличить плотность передачи данных. Для этого многочисленные мультиплексные потоки информации посылаются по одному оптоволоконному каналу с использованием передачи каждого потока на разных длинах волны. Электронные компоненты в WDM-приемнике и передатчике отличаются по сравнению с теми, которые используются в системе с временным разделением.

Преимущества оптоволоконного типа связи

  1. Широкополосность оптических сигналов, обусловленная чрезвычайно высокой частотой несущей. Это означает, что по оптоволоконной линии можно передавать информацию со скоростью порядка 1 Тбит/с;
  2. Очень малое затухание светового сигнала в волокне, что позволяет строить волоконно-оптические линии связи длиной до 100 км и более без регенерации сигналов;
  3. Устойчивость к электромагнитным помехам со стороны окружающих медных кабельных систем, электрического оборудования (линии электропередачи, электродвигательные установки, т.д.) и погодных условий;
  4. Защита от несанкционированного доступа. Информацию, передающуюся по волоконно-оптическим линиям связи, практически нельзя перехватить неразрушающим кабель способом;
  5. Электробезопасность. Являясь, по сути, диэлектриком, оптическое волокно повышает взрыво- и пожаробезопасность сети, что особенно актуально на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска;
  6. Долговечность ВОЛС – срок службы волоконно-оптических линий связи составляет не менее 25 лет.

Недостатки оптоволоконного типа связи

  1. Относительно высокая стоимость активных элементов линии, преобразующих электрические сигналы в свет и свет в электрические сигналы;
  2. Относительно высокая стоимость сварки оптического волокна. Для этого требуется прецизионное, а потому дорогое, технологическое оборудование. Как следствие, при обрыве оптического кабеля затраты на восстановление ВОЛС выше, чем при работе с медными кабелями.

Применение линий оптоволоконной связи

Оптоволокно активно применяется для построения городских, региональных и федеральных сетей связи, а также для устройства соединительных линий между городскими АТС. Это связано с быстротой, надёжностью и высокой пропускной способностью волоконных сетей. Также посредством применения оптоволоконных каналов существуют кабельное телевидение, удалённое видеонаблюдение, видеоконференции и видеотрансляции, телеметрические и другие информационные системы. В перспективе в оптоволоконных сетях предполагается использовать преобразование речевых сигналов в оптические.


 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Санкт-Петербургский национальный исследовательский университет

информационных технологий, механики и оптики

Факультет     ИКВО           Кафедра     МИПиУ 

Направление (специальность)   090900 «Информационная безопасность» Группа   2750      

Квалификация (степень)      бакалавр 

Реферат

 по курсу «Концепции современного естествознания»

Волоконно-оптическая связь.

Выполнил:

Студент 2-го курса

гр. 2750

Богопольская Е.А.

Принял:

к.т.н., доцент каф.ПБКС

                                                        Комарова И.Э.

 

Г.С-Петербург

2012 г.

Содержание:

1. Основные понятия………………………………1

2.Материалы………………………………..............2

3.История…………………………………………...2

4.Классификация…………………………………...3

5.Элементы волоконно-оптических линий………7

6.Преимущества оптоволоконного типа связи…...9

7.Недостатки оптоволоконного типа связи...…….9

8.Применение линий оптоволоконной связи…….9


 

А также другие работы, которые могут Вас заинтересовать

30922. Особенности организации и функционирования спинного мозга 37 KB
  Особенности организации и функционирования спинного мозга Спинной мозг Самое древнее образование ЦНС подчиняется всем вышележащим отделам ЦНС. Центры спинного мозга не обладают автоматией дыхание. Для спинного мозга характерно сегментарное строение. Дорсальные корешки спинного мозга образованы чувствительными отростками афферентных нейронов вентральные корешки образованы двигательными отростками мотонейронов и преганглионарными волокнами вегетативной нервной системы.
30923. Ретикулярная формация 35.5 KB
  Нисходящее тормозящее влияние на спинной мозг 2. Восходящее активирующее влияние на кору больших полушарий. Нисходящее ретикулоспинальное влияние РФ: Слабое одностороннее раздражение торможение на той же стороне. Восходящее ретикулокортикальное влияние РФ: Особенности восходящего влияния РФ: 1.
30924. Кора больших полушарий 41.5 KB
  Нейроны коры не имеют непосредственной связи с внешней или внутренней средой т. Методы изучения функций коры больших полушарий: 1. Человек аненцефал врожденное отсутствие коры БП. Отсутствие коры больших полушарий у человека несовместимо с жизнью.
30925. Межполушарные взаимоотношения 27.5 KB
  Абстрактное мышление и сознание связаны с левым полушарием а конкретно чувственное мышление с правым полушарием. А Правое полушарие осуществляет обработку всей поступившей информации одновременно синтетически по принципу дедукции при этом лучше воспринимаются пространственные и относительные признаки предмета; Б Левое полушарие проводит обработку поступившей информации последовательно аналитически по принципу индукции лучше воспринимаются абсолютные признаки предмета и временные отношения. А Правое полушарие обуславливает более...
30926. Анализаторы 60 KB
  Суживающаяся воронка слой фоторецепторов 130 млн. По горизонтали в каждом слое различные свойства рецепторов в сетчатке палочки и колбочки; в свою очередь колбочки подразделяются на воспринимающие красный зеленый и фиолетовый цвет. Адаптация рецепторов. Некоторые рецепторы кроме обычной чувствительной иннервации по которой сигналы от рецепторов поступают в мозг получают эфферентные волокна.
30927. Зрительный анализатор 43 KB
  Строение и функции оптической системы глаза. Изза этого происходит преломление световых лучей внутри глаза. Преломляющая сила для здорового глаза для рассмотрении на далеких расстояниях составляет 59 D а при рассмотрении близких предметов 705 D. Обеспечивает приспособление глаза к ясному видению предметов расположенных на различном расстоянии.
30928. Топология. Функциональный анализ. Учебник 6.26 MB
  Слово «топология» относят ныне к двум разделам математики. И изначально для каждого из них имелись свои определения при слове «топология». Одну топологию, родоначальником которой был Пуанкаре, называли долгое время комбинаторной, за другой (у истоков ее были исследования Кантора) закрепилось название общей или теоретико-множественной
30929. Гідрогазодинаміка. Курс лекцій 5.25 MB
  Метою вивчення дисципліни ”гідрогазодинаміка” є засвоєння студентами понять і законів гідравліки і газодинаміки та застосування їх надалі у процесі вивчення спеціальних дисциплін та проведення необхідних інженерних розрахунків. Предмет ”Гідрогазодинаміка” базується на дисциплінах ”Вища математика”, ”Фізика”, ”Теоретична механіка”, ”Прикладна механіка”, ”Термодинаміка”
30930. Финансы и кредит. Конспект лекций 1.74 MB
  Размер процентной ставки зависит от ряда объективных и субъективных факторов: общего состояния экономики, в том числе денежно кредитного рынка, кратковременных и долгосрочных ожиданий его динамики, вида сделки, ее валюты, срока кредита и т.д.