7221

Спроектировать двухступенчатый горизонтальный коническо-цилиндрический редуктор общего назначения привода ленточного конвейера

Курсовая

Архитектура, проектирование и строительство

Задание проекта Спроектировать двухступенчатый горизонтальный коническо-цилиндрический редуктор общего назначения привода ленточного конвейера. Рис. 1. - Кинематическая схема привода ленточного конвейера: 1-двигатель 2- ременная передача...

Русский

2015-01-09

1.39 MB

37 чел.


  1.  Задание проекта

Спроектировать двухступенчатый горизонтальный коническо-цилиндрический редуктор общего назначения привода ленточного конвейера.

Рис. 1. – Кинематическая схема привода ленточного конвейера:

1-двигатель; 2- ременная передача; 3- редуктор; 4- муфта; 5- барабан.

ИСХОДНЫЕ ДАННЫЕ

Окружная сила на барабане    Р = 8 кН;

Скорость движения ленты транспортера  V = 0,1 м/с;

Диаметр барабана     .


  1.  Выбор электродвигателя. Определение вращающих моментов и скоростей на валах редуктора
    1.  Выбор электродвигателя

Требуемая мощность (Вт) электродвигателя:

, где F – окружная сила на барабане, V – скорость длины ленты транспортёра, - общий КПД привода.

;

где - КПД ремённой передачи, - КПД конической передачи, - КПД цилиндрической передачи, - КПД подшипников, - КПД муфты.

.

Исходя из полученных данных выбираем электродвигатель со следующими техническими параметрами:

электродвигатель АИР 90 LB8 ТУ 16-525.564-84

Мощность N=1,1 кВт

Синхронная частота вращения n=715 об/мин.

Частота вращения приводного вала рабочей машины (число оборотов на выходе):

об/мин, где - диаметр барабана.

Передаточное число привода:

; .

  1.  Определение вращающих моментов и скоростей на валах редуктора

Расчёт моментов на валах:

;

;

;

.

Расчёт скоростей:

; ;

; ;

; .


  1.  Расчёт зубчатых колёс редуктора
    1.  Выбор материала и термической обработки. Допускаемые напряжения.

Так как в задании нет особых требований в отношении габаритов передачи, выбираем материалы со средними механическими характеристиками. Для шестерен принимаем сталь 45 улучшенную с твердостью НВ 262; для колес сталь 45 улучшенную с твердостью НВ 235.

Твёрдость, допускаемые контактные напряжения и напряжения изгиба:

для колеса: ; ; .

для шестерни ; .

Среднее допускаемое контактное напряжение:

.

  1.  Расчёт зубчатой цилиндрической передачи
    1.  Геометрия колёс

Коэффициент ширины зубчатого колеса при несимметричном расположении: . Коэффициент ширины в долях диаметра: .

Коэффициент неравномерности распределения нагрузки:

.

Межосевое расстояние:

.

Округлим до стандартного значения: .

Нормальный модуль зацепления: . Принимаем стандартный .

Минимальный угол наклона зубьев: .

Суммарное число зубьев: .

Действительное значение угла наклона зубьев: .

Количество зубьев шестерни: ; .

Количество зубьев колеса: .

Делительные диаметры шестерни и колеса:

;

.

Диаметры вершин зубьев:

;

.

Диаметры впадин зубьев:       Рис. 2. – Схема зубьев.

;

.

Ширина колеса:

; принимаем .

Ширина шестерни:

.

Окружная скорость колёс:

. Степень точности передачи 9.

  1.  Расчёт сил в зацеплении

Окружная сила: .

Радиальная: .

Осевая: .

Рис. 3. – Силы действующие в зацеплении.

  1.  Проверочный расчёт передачи

Проверка зубьев по контактным напряжениям.

Значения коэффициентов ; ; .

Расчётное контактное напряжение:

.

Так как , то условие прочности по контактным напряжениям выполнено.

Проверка зубьев по напряжениям изгиба.

Коэффициенты: ; ; ; ; ; .

Расчётное напряжение изгиба в зубьях колеса: , что меньше .

Расчётное напряжение изгиба в зубьях шестерни: , что меньше .

Таким образом, прочность на изгиб зубьев колёс обеспечена.

  1.  Расчёт конической зубчатой передачи
    1.  Геометрия колёс

Коэффициент ; .

Диаметр внешней делительной окружности колеса при : , принимаем .

Углы делительных косинусов, конусное расстояние и ширина колёс. Угол делительного конуса колеса: ; .

Угол делительного конуса шестерни: ; .

Конусное расстояние: .

Ширина колёс: , принимаем

Модуль передачи. Коэффициенты: ; .

Внешний торцевой модуль передачи:  .

Число зубьев колёс: ; .

Фактическое передаточное число: . Отклонение: , что меньше 4%.

Окончательные размеры колёс. Углы делительных косинусов колеса и шестерни: ; ; ; ; .

Делительные диаметры колёс: ; .

Коэффициенты смещения: ; .

Внешние диаметры колёс: ; .

  1.  Расчёт сил в зацеплении

Окружная сила на среднем диаметре колеса: ; ; .

Осевая сила на шестерне: .

Радиальная сила на шестерни: .

Осевая сила на колесе: .

Радиальная сила на колесе: .

Рис. 4. – Силы действующие в зацеплении.

  1.  Проверочный расчёт передачи

Проверка зубьев по напряжениям изгиба. Коэффициенты: ; ; ; ; ; .

Напряжения изгиба в зубьях колеса: .

Напряжения изгиба в зубьях шестерни: .

Расчётные напряжения в зубьях колеса и шестерни меньше допускаемых .

Проверка зубьев по контактным напряжениям. , что меньше допускаемых напряжений .


  1.  Конструирование зубчатых колёс
    1.  Цилиндрическое колёсо

Рис. 5 – Зубчатое цилиндрическое колесо.

  1.  Коническое колесо

Рис. 6 – Зубчатое коническое колесо.


  1.  Проектировка валов
    1.  Ведущий вал

Рис. 7 – Ведущий вал-шестерня.

Диаметр выходного конца вала  рассчитывается по следующей формуле . Примем . Последующие диаметры вала больше предыдущих примерно в 1,1 раза: ; .

Диаметр подшипника  является стандартным, поэтому выбираем его из справочника , соответственно . Внешний диаметр шестерни: .

Длины различных участков вала:

;

;

, Н – ширина шлицевой гайки.

. Расстояние между подшипниками: . Ширина мазеудерживающего кольца: . .

  1.  Определение реакций опор в подшипниках

Рис. 8 – Схема нагруженного ведущего вала.

Отрезки a, b, c, d, соответственно равны 48мм, 96мм, 29мм, 30мм.

Для определения реакций в опорах  и необходимо составить уравнения равновесия.

, ;

, ;

, .

. Сила от ремённой передачи .

Отсюда , .

Аналогично находим  и .

, ;

, ;

, .

Отсюда , .

  1.  Построение эпюр изгибающих моментов и вызванных ими напряжений

Рис. 9 – Эпюр изгибающих моментов и напряжений на валу.

  1.  Исследование опасных сечений

Исследование сечения А-А. Напряжения в опасных сечениях , .

Коэффициенты концентрации напряжений для данного сечения вала: ; .

Пределы выносливости вала в рассматриваемом сечении: ; .

Коэффициенты запаса по нормальным и касательным напряжениям: ; .

Коэффициент запаса прочности: , что больше допускаемого значения.

Исследование сечения Б-Б. Напряжения в опасных сечениях , .

Коэффициенты концентрации напряжений для данного сечения вала: ; .

Пределы выносливости вала в рассматриваемом сечении: ; .

Коэффициенты запаса по нормальным и касательным напряжениям: ; .

Коэффициент запаса прочности: , что больше допускаемого значения.

Исследование сечения В-В. Напряжения в опасных сечениях , .

Коэффициенты концентрации напряжений для данного сечения вала: ; .

Пределы выносливости вала в рассматриваемом сечении: ; .

Коэффициенты запаса по нормальным и касательным напряжениям: ; .

Коэффициент запаса прочности: , что больше допускаемого значения.

  1.  Проверка долговечности подшипников

Ведущий вал установлен на роликовых конических подшипниках лёгкой серии.

Рис.10. – Схема нагружения подшипников вала.

Определяем долговечность подшипника наиболее нагруженной опоры «1». Необходимые справочные данные: грузоподъёмность ; факторы нагрузки , ; коэффициент .

Осевые нагрузки. Суммарная реакция . Осевая составляющая ; осевая сила .

Эквивалентная динамическая радиальная нагрузка: , где  - коэффициент вращения;  - коэффициент безопасности; - температурный коэффициент.

Базовая долговечность подшипника: ; , что соответствует допускаемой минимальной долговечности (ресурс работы подшипников принимают от 36000 ч до 10000 ч).

  1.  Промежуточный вал

Рис. 11 – Промежуточный вал.

Диаметры различных участков вала. Диаметр  на промежуточном валу должен быть на 25% больше чем  на ведущем валу, поэтому . Последующие диаметры больше предыдущих примерно в 1,1 раза:  ; ; .

Длины различных участков вала:

;

;

;

.

Расстояние между подшипниками .

  1.  Определение реакций опор в подшипниках

Рис. 12 – Схема нагруженного промежуточного вала.

Отрезки a, b, c, d, e соответственно равны 20мм, 105мм, 85мм, 77мм, 20мм.

Для определения реакций в опорах  и необходимо составить уравнения равновесия.

, ;

, ;

, .

; .

Отсюда , .

Аналогично находим  и .

, ;

, ;

, .

Отсюда , .

  1.  Построение эпюр изгибающих моментов и вызванных ими напряжений

Рис. 13 – Эпюры изгибающих моментов и напряжений на валу.

  1.  Исследование опасных сечений

Исследование сечения А-А. Напряжения в опасных сечениях , .

Коэффициенты концентрации напряжений для данного сечения вала: ; .

Пределы выносливости вала в рассматриваемом сечении: ; .

Коэффициенты запаса по нормальным и касательным напряжениям: ; .

Коэффициент запаса прочности: , что больше допускаемого значения.

  1.  Проверка долговечности подшипников

Промежуточный вал установлен на роликовых конических подшипниках лёгкой серии.

Рис.14 – Схема нагружения подшипников вала.

Определяем долговечность подшипника наиболее нагруженной опоры «2». Необходимые справочные данные: грузоподъёмность ; факторы нагрузки , ; коэффициент .

Осевые нагрузки. Суммарная реакция . Осевая составляющая ; осевая сила .

Эквивалентная динамическая радиальная нагрузка: , где  V=1 - коэффициент вращения; - коэффициент безопасности;  - температурный коэффициент.

Базовая долговечность подшипника: ; , что соответствует допускаемой минимальной долговечности (ресурс работы подшипников принимают от 36000 ч до 10000 ч).

  1.  Ведомый вал

Рис. 15 – Ведомый вал.

Диаметры различных участков вала. Диаметр  на промежуточном валу должен быть на 25% больше чем  на промежуточном валу, поэтому , принимаем  . Последующие диаметры больше предыдущих примерно в 1,1 раза:  ; ; ; .

Длины различных участков вала:

Расстояние между подшипниками .

;

;

;

;

.

  1.  Определение реакций опор в подшипниках

Рис. 16 – Схема нагруженного ведомого вала.

Отрезки a, b, c, d, соответственно равны 22мм, 194мм, 77мм, 140мм.

Для определения реакций в опорах  и необходимо составить уравнения равновесия.

, ;

, ;

, .

Сила от муфты .

.

Отсюда , .

, ;

, ;

, .

Отсюда , .

  1.  Построение эпюр изгибающих моментов и вызванных ими напряжений

Рис. 17 – Эпюры изгибающих моментов и напряжений на валу.

  1.  Исследование опасных сечений

Исследование сечения А-А. Напряжения в опасных сечениях , .

Коэффициенты концентрации напряжений для данного сечения вала: ; .

Пределы выносливости вала в рассматриваемом сечении: ; .

Коэффициенты запаса по нормальным и касательным напряжениям: ; .

Коэффициент запаса прочности: , что больше допускаемого значения.

  1.  Проверка долговечности подшипников

Промежуточный вал установлен на роликовых конических подшипниках лёгкой серии.

Рис.18 – Схема нагружения вала.

Определяем долговечность подшипника наиболее нагруженной опоры «1». Необходимые справочные данные: грузоподъёмность ; факторы нагрузки , ; коэффициент .

Осевые нагрузки. Суммарная реакция . Осевая составляющая ; осевая сила .

Эквивалентная динамическая радиальная нагрузка: , где  V=1 - коэффициент вращения; - коэффициент безопасности;  - температурный коэффициент.

Базовая долговечность подшипника: ; , что соответствует допускаемой минимальной долговечности (ресурс работы подшипников принимают от 36000 ч до 10000 ч).


  1.  Проверка прочности шпоночных соединений

Материал шпонок - сталь 45 нормализованная.

Напряжения смятия и условие прочности: .

Напряжения среза и условие прочности: .

Допускаемые напряжения смятия при стальной ступице [σ]см = 100 ÷ 120 , при чугунной ступице [σ]см = 50 ÷ 70 . При этом допускаемые напряжения среза .

Ведущий вал.

; b x h = 8 x 7 мм; ; ; .

.

.

Прочность обеспечена.

Промежуточный вал.

Проверим шпонку под зубчатым колесом.

d = 55 мм; b x h = 16 x 10 мм; ; ; .

.

.

Прочность не обеспечена, поэтому необходимо поставить ещё одну шпонку.

Ведомый вал.

Из двух шпонок более нагружена та, которая на конце вала, так как меньше диаметр вала и поэтому меньше размеры поперечного сечения шпонки.

; b x h = 20 x 12 мм; ; ; .

.

.

Прочность не обеспечена, поэтому необходимо поставить ещё одну шпонку.

Рис. 19 – Шпоночное соеденение.


  1.  Конструирование стаканов и крышек подшипников
    1.  Конструирование стакана

Рис. 20 – Стакан.

Стакан выполнен литым из чугуна марки СЧ15. Диаметр под подшипник , отсюда принимаем толщину стенки . Толщина фланца , . Высота упорного буртика . Диаметр d принимаем равным 8мм, а число винтов для крепления к корпусу равно 8. Принимая , , получаем минимальный размер фланца стакана.

  1.  Конструирование крышек подшипников

Рис. 21 – а) крышка подшипника сквозная; б) крышка подшипника глухая.

Крышки подшипников изготовлены из чугуна марки СЧ21.

Размеры сквозной и глухой крышек на ведомом валу: ; ; ; количество винтов для крепления к корпусу ; ; толщина фланца ; ; .

  1.  Конструирование корпусных деталей

Рис. 22 – Корпус редуктора.

Корпус выполнен из чугуна марки СЧ15. Толщина стенки корпуса определяется по следующей формуле  принимаем . Зазор между стенками корпуса и поверхностями колёс – ; . Диаметр фланца , где  – наружный диаметр крышки подшипника; ; .

Толщина фланцев поясов корпуса и крышки: ; нижний пояс корпуса: .

Толщина ребер основания корпуса: m = (0,85 ÷ 1) δ = 8,5 ÷ 10 мм; принимаем m = 9 мм.

Толщина ребер крышки:.

Диаметры болтов:

Фундаментных , принимаем болты с резьбой М24;

крепящих крышку к корпусу у подшипников ; принимаем болты с резьбой М16;

соединяющих крышку с корпусом , принимаем болты с резьбой М12.

  1.  Смазывание зубчатых передач

Учитывая рекомендуемую вязкость масла для смазывания зубчатых передач ть масла йвыбираем следующую марку масла: индустриальное И-30А. Оба колеса редуктора должны быть погружены в масло. Уровень погружения конического колеса в масло: .


Литература

  1.  Дунаев П.Ф., Леликов О.П. Конструирование узлов и деталей машин.
  2.  Дунаев П.Ф., Леликов О.П. Детали машин. Курсовое проектирование.
  3.  Чернавский С.А. Курсовое проектирование деталей машин.
  4.  Шейнблит А.Е. Курсовое проектирование деталей машин.
  5.  Курсовое проектирование деталей машин: методические указания по дисциплине «Детали машин».


М

Р

V

1

2

3

4

5

Диаметр вершин зубьев колеса . Ширина колеса равна длине посадочного отверстия . Диаметр посадочного отверстия . Ширина торцов зубчатого венца . Фаска на торце зубчатого венца . Фаски на торцах ступицы . .

d

C

Внешний диаметр колеса . Диаметр посадочного отверстия . Длина ступицы . Ширина . Ширина торца зубчатого венца . Фаска . Фаски на торцах ступицы . Ширина . Диаметр ступицы .

С

2

b

S

Плоскость

XOY

Плоскость

XOZ

x

O

y

z

a

b

c

d

А

А

Б

В

Плоскость

XOZ

x

O

y

z

Плоскость

XOY

34

67

-4,6

z

26

34

72

4,6

14

12

9,6

80%

Б

В

1

2

Плоскость

XOY

Плоскость

XOZ

a

b

c

d

e

x

O

y

z

Плоскость

XOY

x

O

y

z

, Нм

, Нм

87

182

482

388

, Нм

83

162

Плоскость

XOZ

z

-25

162

352

454

А

А

, МПа

12

80%

1

2

Плоскость

XOY

Плоскость

XOZ

a

d

O

y

z

x

b

c

Плоскость

XOY

x

O

y

z

, МПа

Плоскость

XOZ

, Нм

605

-41

-426

, Нм

167

z

, Нм

625

172

426

31

80%

А

А

1

2

срез

смятие

b

Т

Т

d

t

С

h

D

а)

б)

С

D

D

d

d

С

D

  1.  

 

А также другие работы, которые могут Вас заинтересовать

52975. Клас Кісткові риби. Загальна характеристика класу. Зовнішня будова риб 383 KB
  Мета: сформувати в учнів знання про клас Кісткові риби; розкрити особливості зовнішньої будови та життєдіяльність представників цього класу у зв’язку з умовами життя; простежити ускладнення будови кісткових риб порівняно з ланцетником і хрящовими рибами;визначити місце кісткових риб у системі органічного світу та еволюції хордових тварин;розвивати уміння самостійно працювати з малюнками та текстом підручника з натуральними об’єктами;вчити порівнювати й робити висновки; розвивати логічне мислення...
52976. Проблемне навчання фізики 64 KB
  Застосування принципу активності в навчанні особливо потрібне в українській школі бо якраз нам треба перебороти ту пасивність що віками вироблялась у нашого народу і розвинути ініціативу та творчі здібності нашої молоді. Предметом особливої уваги кожного педагога має бути використання в роботі таких засобів методів і форм навчання які спрямовані на розвиток критичності та незалежності мислення допитливості винахідливості самостійності тощо. Суттєво підвищити ефективність розвитку інтелектуальноеврестичних здібностей можна лише в...
52977. Княжа Русь-Україна. Київська Русь - держава з центром у Києві 225.5 KB
  Мандруючи разом по маєтку князя Костянтина Острозького ви будете відображати свої емоції на обличчі. Подорож почалася. Маєток князя такий красивий, що кожен наступний крок викликає захоплення. В одному з приміщень розташувалася перша книгодрукарня і тут вже друкують книги, що викликає справжню радість. Тут нам у руки дають потримати Острозьку Біблію і ми справді здивовані, тому що вона нараховує шістсот двадцять вісім сторінок.
52978. ФІЗИКО-ХІМІЧНІ ВЛАСТИВОСТІ КАРБОНОВИХ КИСЛОТ. ДОБУВАННЯ 456.5 KB
  Зміст лекційного матеріалу на тему Карбонові кислоти. Завдання різного рівня складності по темі: Карбонові кислоти. Попередні забезпечуючі Хімія Особливості будови карбонових кислот на прикладі молекули оцтової кислоти та її фізикохімічні властивості. Пояснити роль молочної кислоти у виробництві молочнокислих продуктів.
52979. Вода – життя основа 41 KB
  Мета: підвищити рівень інформативності і розширити знання учасників про значення роль і вплив води на людей та все живе на землі; детальніше ознайомити з фізичними властивостями води; формувати життєво важливі переконання виховувати любов до природи. Розвиток людської цивілізації потребує все більше і більше кількості прісної води. Властивості води в основному вивчені але ще дуже багато таємниць води не розкриті. На сьогоднішньому занятті ми з вами ознайомимося з фізичними і ще мало вивченими властивостями води більш докладніше...
52981. ФИЗИЧЕСКАЯ ИГРА «СЧАСТЛИВЫЙ СЛУЧАЙ» 72.5 KB
  Ребята! Сегодня мы снова встречаемся в этом зале с вами на игре «Счастливый случай». В игре принимают участие команда 11-А класса (название) и команда 11-Б класса (название). Прошу команды занять свои места. ( Команды под музыку занимают свои места в зале).
52982. Круглий стіл «Фізика за чайним столом» 106.5 KB
  Вчитель: Ми з вами часто стикаємося з багатьма звичними речами але знаємо про них мало а деколи навіть не можемо відповісти на найпростіші запитання про фізичні явища які з цими предметами пов’язані. Але учні також один одному можуть ставити питання які їх цікавлять Вчитель: Перед вами на столі стоять блискучі самовари. 1 Вчитель: А чому у самовара ручки дерев’яні або пластмасові Учень: Дерево або пластмаса – поганий провідник тепла порівняно з металом. Вчитель: Ви помітили що підставивши чашки або склянки до носика самовара вони...