72385

Измерение линейных размеров и объемов твердых тел

Лабораторная работа

Физика

Цель: Ознакомление с общими требованиями по выполнению экспериментальных измерений и оформлению результатов. Задачи: Научиться: производить 1) прямые измерения линейных размеров тел с помощью штангенциркуля 2) косвенные измерения по определению объемов твердых тел с использованием результатов прямых измерений...

Русский

2014-11-21

345 KB

22 чел.

Лабораторная работа  №1

Измерение линейных размеров и объемов твердых тел

Цель: Ознакомление с общими требованиями по выполнению экспериментальных  измерений и оформлению результатов.

Задачи: Научиться: производить 1) прямые измерения линейных размеров тел с помощью штангенциркуля   2) косвенные измерения по определению объемов твердых тел с использованием результатов прямых измерений;*

Оборудование: штангенциркуль, микрометр, металлическая пластина, полая металлическая трубка.

Краткая теория:

Штангенциркуль - прибор , применяющийся для измерения линейных размеров с точностью от 0,1 до 0,02 мм.

Прибор состоит ( см.рис.1 а ) из линейки ( штанги ) с миллиметровыми делениями ( основной масштаб ) и подвижной рамки с нониусом. На штанге и рамке имеются ножки. Между ножками зажимается измеряемый предмет и закрепляется винтом на рамке. Отсчет длины отрезка производят по нониусу.

Рис.1. Штангенциркуль  и его  использование

Нониусом называется дополнительная шкала, перемещающаяся вдоль шкалы основного масштаба, позволяющая повысить точность измерения в данном масштабе в 10-20 раз. Самым простым нониусом является десятичный нониус, который дает возможность измерять длину с точностью до 0,1 деления основного масштаба (см. рис.2а).

Нониус представляет собой дополнительную линейку, разбитую на 10 равных делений. 10 делений нониуса равны 9 делениям основного масштаба 10 х = 9 мм, т.е. цена одного деления нониуса   X = 0,9 мм.

Разность между ценой деления основного масштаба Y и ценой деления

ΔХ = Y - X = 1 мм - 0,9 мм = 0,1 мм.   Эту величину называют точностью нониуса.

0                   1                    2

0                 10

          

 нониус

а   б 

 

 

               в

Рис.2.   Десятичный нониус:    а) в нулевом положении;     б) и   в) при отсчете десятых долей масштаба.

Если нулевой штрих нониуса, а следовательно, и десятый, точно совпадают
с каким-либо штрихом масштаба, то все остальные не совпадают со штрихами
масштаба. Если же нулевой штрих нониуса не совпадает с масштабным, то
найдется такой штрих шкалы нониуса, который совпадает с каким-либо штрихом
масштаба ( см. рис.2
б  и  2 в).

При положении нониуса, изображенном на рис.2 б, длина измеряемого отрезка l складывается из 14 мм делений масштаба, "пройденных" нулем нониуса, т.е. из 14 мм и отрезка Δl, длина которого равна расстоянию от четырнадцатого штриха масштаба до нуля нониуса. Найдем длину отрезка Δl  не на глаз, а с помощью нониуса.

На рисунке точно совпал четвертый штрих деления нониуса с масштабным штрихом. Это означает, что измеряемый размер равен 14,4 мм.

На рис. 2 в нуль нониуса «прошел» метку 6 мм, с масштабным штрихом совпадает седьмой штрих нониуса. Здесь измерение дает 6,7 мм.

Итак, для нахождения десятых долей при помощи десятичного нониуса надо номер "совпадающего" деления нониуса умножить на точность нониуса ΔХ= 0,1 мм.

Способ отсчета длин и углов при помощи масштаба, снабженного любым нониусом остается таким же, как и для десятичного нониуса:

Чтобы произвести отсчет по нониусу, надо определить число делений масштаба, за которое переместился нулевой штрих нониуса, и прибавить к этому числу точность нониуса, умноженную на номер деления нониуса, штрих которого совпал со штрихом какого-либо деления масштаба.

Для измерения внутренних размеров  ножки штангенциркуля вставляют
внутрь отверстия, а затем раздвигают, как показано на рис.1
б. К отсчету по
нониусу следует прибавить толщину ножек.
 

Микрометр - прибор, предназначенный для измерения линейных размеров тел с точностью до 0,01 мм.

Микрометр состоит ( см.рис.З ) из скобы с пяткой и трубкой. В трубке имеется  внутренняя   резьба,   в   которую  ввинчен  микрометрический  винт   с закрепленным на нем барабаном, на конце барабана имеется фрикционная головка- трещотка.

  

Рис.3.  Микрометр

 Действие микрометра  основано на свойстве винта совершать при повороте его поступательное перемещение, пропорциональное углу поворота. При измерении предмет зажимается между пяткой и микрометрическим винтом. Для вращения барабана при этом пользуются фрикционной головкой. После того как достигнута определенная степень нажатия на предмет, фрикционная головка начинает проскальзывать, трещотка при этом издает треск. Благодаря этому зажатый предмет деформируется сравнительно мало (его размеры не искажаются) и микрометрический винт предохраняется от порчи.

На трубке нанесены деления основной шкалы. Барабан при вращении винта перемещается вдоль трубки. Шаг винта подбирают таким, что полный оборот барабана соответствует его смещению вдоль основной шкалы на длину наименьшего деления. На барабане нанесена добавочная шкала.

Обычно микрометры бывают двух типов:

1. Основная шкала микрометра имеет цену наименьшего деления 1 мм. Шаг микрометрического винта тоже 1 мм. Добавочная шкала барабана имеет 100 делений, цена каждого деления 0,01 мм.

Отсчет длины производят следующим образом: ( см.рис.4 ) число целых миллиметров определяемся последним видимым делением основной шкалы, число сотых долей миллиметра   -   делением барабана, стоящим против

линии А на трубке.

На рис.4 измеряемая длина равна 13,73 мм.

2. Основная шкала микрометра имеет цену наименьшего деления 0,5 мм. Шаг микрометрического винта тоже 0,5 мм. Половинные деления располагаются над линией основной шкалы ( см.рис.5 ). Шкала барабана разбивается на 50 делений, поэтому цена деления барабана равна 0,01 мм.

Отсчет длины производят следующим образом: число целых миллиметров определяется последним видимым делением основной шкалы + 0,5 мм , если после последнего видимого деления основного масштаба видно деление верхней шкалы, и + число сотых долей отсчитанных по барабану . 

Шкалы микрометра в случае, когда на барабане нанесено 100 делений.

Рис.4

 Шкалы микрометра в случае, когда на барабане нанесено 50 делений.

Рис.5

На рисунке 5 измеряемая длина равна  5 мм + 0,5 мм + 0.24 мм == 5,74 мм.

Рабочие  формулы:

1)   В   первом   задании   данной   работы определить объем металлической пластинки

V = abh,       ( рабочая формула)

 

где   а - длина пластинки;  

        в - ее  ширина;  

    h- толщина.

 Рис.6

2) Во втором задании необходимо определить объем полой трубки.  Объем полой трубки равен разности объемов первого (наружного) и второго (внутреннего)цилиндров VX и Vz

VTP = VX    - VZ 

Формула объема цилиндра

        V = (1/4)π H d2

Тогда объем трубки

    VTP    = (1/4)π H ( d12 d22 ),     ( рабочая формула)

где   d1   и   d2   -   диаметры  

                                наружного   и  внутреннего цилиндров,

     Н    -           высота трубки (цилиндра).                                                                                                       


Указания по выполнению работы: 

1 задание: Определить объем металлической пластинки.

1. Подготовить  таблицу  измерений

        №

измерения

hi

Δhi

ai

Δai

bi

Δbi

Vcp

ΔVcp

1

2

3

5.

  4

  5

Среднее

значение

2.  Произвести 5 измерений толщины h  в разных местах пластины с помощью микрометра.  Результаты заносить в таблицу

3. Определить  среднее арифметическое значение толщины hср по формуле

,

где  n  число измерений,   здесь  n= 5, среднее вычисляем  как сумму пяти  значений, деленную на 5.

  1.  Вычислить абсолютную погрешность каждого измерения Δ hi

Δ hi = hср - hi

  1.  Вычислить среднюю абсолютную погрешность измерения Δ hcp

  1.  Такую же работу  с пункта 2 по 5 проделать по измерению а - длины, b ширины пластины с помощью штангенциркуля.

Результаты измерений и вычислений занести в таблицу измерений.

  1.  По формуле V=a b h  определите  Vcp  ,  подставляя средние значения hcp, acp. bcp.
  2.  .Определите абсолютную и относительную предельные погрешности косвенных измерений объема пластины дифференциальным методом.

 При выполнении работы необходимо учитывать три погрешности, вносимые измерениями h, a, b в определении объема трубки, т.е. объем пластины является функцией трех переменных V(h, а, b).

Абсолютная погрешность для функции нескольких переменных в общем случае

Применим эту формулу для нашего случая. Абсолютная погрешность для  объема пластины определяется как функция

Найдем частные производные функции

= bh;          = ah;         = ab

Тогда   

       Рассчитайте абсолютную погрешность определяемого значения объема  ΔVcp по данным из таблицы, подставляя средние значения величин и их абсолютных погрешностей.

       Определите относительную погрешность по формуле

9.  Значения объема  записывают с указанием погрешности определения в виде

    ;     ΔV/V = ΔVcp/Vcp *100%

Например,  так:

         V = 110,3+5,7 мм3;        ΔV/V =  5,2%

 

2 задание:      Определить объем металлической полой трубки

1. Подготовить  таблицу  измерений

        №

измерения

Н

ΔН

d1

Δd1

d2

Δ d2

Vcp

ΔVcp

1

2

3

5.

  4

  5

Среднее

значение

2.  Произвести по 5 измерений высоты Н, наружного диаметра d1,   и внутреннего диаметра  d2   в разных местах трубки.  Занести значения в таблицу.

  1.    Определите средние значения Нср,  d1ср,   и   d2ср.
  2.  Вычислить абсолютную погрешность каждого измерения ΔН, Δd1 , Δ d2    
  3.  Определите  Vcp. подставляя средние значения Нср,  d1ср,   и   d2ср.
  4.  Вычислить  относительную и абсолютную погрешности косвенных измерений объема трубки дифференциальным методом;

 При выполнении работы необходимо учитывать три погрешности, вносимые измерениями Нср,  d1ср,   и   d2ср в определении объема трубки, т.е. объем пластины является функцией трех переменных VТР (Нср,  d1ср,   и   d2ср ).

 В данном случае легче сначала найти относительную погрешность:

.

Для вычисления относительной погрешности прологарифмируем рабочую формулу:

Найдем частные производные:

.

Тогда относительная погрешность запишется:

.

Вычислите относительную погрешность, подставляя средние значения всех величин из таблицы.

Затем определите абсолютную погрешность: .

7. значения объема записывают с указанием погрешности определения в виде:

,

подставив числовые значения средних величин.

Контрольные вопросы:

  1.  Устройство штангенциркуля 
  2.  Для чего служит нониус? 
    1.  Что называют точностью нониуса?
    2.  Объясните, как производят измерения с использованием нониуса на примере   штангенциркуля.
    3.  Как производят измерения внутренних размеров с помощью штангенциркуля?
    4.  Устройство микрометра
    5.  Назначение фрикционной головки
    6.  Какое смещение барабана вдоль основной шкалы при его полном обороте?
    7.  Как производят отсчет длины с помощью микрометра?
    8.  . Какие прямые и косвенные измерения производятся в данной работе.
    9.  . Какая величина является наиболее близкой к истинному значению измеряемой величины?
  3.  Что называют абсолютной погрешностью?
  4.  Что называют относительной погрешностью?
  5.  Как определить абсолютную погрешность, используя дифференциальный метод определения предельной погрешности?
  6.  Как определить относительную погрешность, используя дифференциальный метод определения относительной предельной погрешности?

Литература:

  1.  Физический   практикум // под ред. Ивероновой В.И.
  2.  ГЕ.Пустовалов. Е.В. Талалаева. Простейшие физические измерения    и   их   обработка"   


0                1                2

     l=14,4 мм   0                10

      

0                1                2

 l=6,7  0               10

      

Фрикционная головка

Барабан

Добавочная шкала

Основная шкала

Микрометрический

винт

       Пятка

           Скоба

      35

                   30

    0                 5       25      

         a

 b

h

                   d2

H

                        d1

                      Рис.7 


 

А также другие работы, которые могут Вас заинтересовать

57741. Що таке милосердя 162.5 KB
  Мета уроку: розкрити зміст понять милосердя співчуття благодійність; навчити наводити приклади милосердя у вчинках; розвивати в учнях здібність робити самоаналіз своїх вчинків; формувати власне ставлення...
57742. Узагальнення та систематизація знань з теми «Многочлен» 350.5 KB
  МЕТА: Організувати діяльність учнів по узагальненню і систематизації знань і умінь учнів з теми Многочлен домогтися засвоєння учнями математичних понять сприяти формуванню специфічних вмінь і навичок з даної теми...
57743. Арифметичні дії з многочленами. Розв’язування вправ 1.23 MB
  Мета уроку: актуалізувати знання учнів необхідні для сприйняття нового матеріалу підвести поняття алгоритму додавання і віднімання многочленів множення одночлена на многочлен та многочленна на многочлен...
57745. Многогранники навколо нас 598 KB
  Діапазон застосувань геометрії у різних сферах діяльності людини дуже широкий тому на даному занятті студенти розглядають многогранники з математичної точки зору означення властивості моделі п’яти правильних многогранників...
57746. Застосування різних способів розкладання многочленів на множники 163 KB
  Систематизувати і узагальнити знання і вміння про різні способи розкладання многочленів на множники; сформулювати загальний алгоритм виконання дій під час розкладання многочленів на множники декількома способами...
57747. Інтегрований урок з математики та біології. Математичні моделі в біології. Відсоткові розрахунки 313.5 KB
  Мета: Систематизувати знання учнів про види задач на відсоткові розрахунки і доповнити їх алгоритмом цих задач за допомогою пропорцій, вчити бачити красу природи в поєднанні з красою математики...
57748. Разнообразие моллюсков 56.5 KB
  Цели урока: сегодня на уроке мы с вами: установим взаимосвязь особенностей строения и способа жизни моллюсков; выясним в чем проявляется приспособленность разных классов моллюсков к условиям обитания; сравним организацию разных классов моллюсков...
57749. Загальна характеристика молюсків. Клас Черевоногі молюски 59 KB
  Мета: почати формувати знання учнів про тип Молюски; дати загальну характеристику представникам; розкрити особливості зовнішньої і внутрішньої будови тіла молюсків на прикладі Черевоногих...