7239

Точечные оценки математического ожидания. Точечные оценки дисперсии. Точечная оценка вероятности события

Лабораторная работа

Математика и математический анализ

ТЕМА: Точечные оценки математического ожидания. Точечные оценки дисперсии. Точечная оценка вероятности события. Точечная оценка параметров равномерного распределения. п.1. Точечные оценки математического ожидания. Предположим, что функция распределе...

Русский

2013-01-20

537 KB

94 чел.

ТЕМА: Точечные оценки математического ожидания. Точечные оценки дисперсии. Точечная оценка вероятности события. Точечная оценка параметров равномерного распределения.

п.1. Точечные оценки математического ожидания.

Предположим, что функция распределения случайной величины ξ зависит от неизвестного параметра θ: P (ξ < x) =Fξ (x θ;).

Если x1, x2…., xn- выборка из генеральной совокупности случайной величиныξ, то оценкой параметра θ называется произвольная функция от выборочных значений

Значение оценки меняется от выборки к выборке и, значит, есть случайная величина. В большинстве экспериментов значение этой случайной величины близки к значению оцениваемого параметра, если для любого значения n математическое ожидание величины равно истинному значению параметра, то оценки , удовлетворяющие условию   называются несмещенными. Несмещенность оценки означает, что эта оценка не несет в себе систематической ошибки.

Оценка называется состоятельной оценкой параметра θ, если для любого ξ>0 справедливо

Таким образом, с ростом объема выборки увеличивается точность результата.

Пусть x1, x2xn – выборка из генеральной совокупности, соответствующей случайной величине ξ с неизвестным математическим ожиданием  и известной дисперсией Dξ=σ2. Построим несколько оценок неизвестного параметра. Если  , то , т.е. рассматриваемая оценка является несмещенной оценкой. Но, поскольку значение вообще не зависит от объема выборки n, то оценка    не является состоятельной.

Эффективной оценкой математического ожидания нормально распределенной случайной величины является оценка


Впредь для оценки неивестного математического ожидания случайной величины будем использовать выборочное среднее, т. е.


Существуют стандартные (регулярные) методы получения оценок неизвестных параметров распределения. Наиболее известные из них: метод моментов, метод максимального правдоподобия и метод наименьших квадратов.

п.2 Точечные оценки дисперсии.

Для дисперсии σ2 случайной величины ξ можно предложить следующую оценку:

где  — выборочное среднее.

Доказано, что эта оценка состоятельная, но смещенная.

 В качестве состоятельной несмещенной оценки дисперсии  используют величину

Именно несмещенностью оценки s2 объясняется ее более частое использование в качестве оценки величины Dξ.

Заметим, что Mathcad предлагает в качестве оценки дисперсии величину , а не s2: функция var(x) вычисляет величину

где mean (x) —выборочное среднее  .

ЗАДАНИЕ 6.5

Найдите состоятельные несмещенные оценки математического ожидания Μξ и дисперсии Dξ случайной величины ξ по приведенным в задании выборочным значениям .

Порядок выполнения задания

  1.  Прочитайте с диска файл, содержащий выборочные значения, или введите заданную выборку с клавиатуры.
  2.  Вычислите точечные оценки Μξ и Dξ.

Пример выполнения задания

Найдите состоятельные несмещенные оценки математического ожидания Μξ и дисперсии Dξ случайной величины ξ по выборочным значениям, заданным следующей таблицей.

x

904.3

910.2

916.6

928.8

935.0

941.2

947.4

953.6

959.8

966.0

972.2

978.4

n

1

3

1

1

1

1

2

1

1

1

2

1

Для выборки, заданной таблицей такого типа (приведено выборочное значение и число, указывающее, сколько раз это значение встречается в выборке),  формулы для состоятельных несмещенных оценок математического ожидания и дисперсии имеют вид:

,      ,        

где k — количество значений в таблице; ni — количество значений xi в выборке; n — объем выборки.

Фрагмент рабочего документа Mathcad с вычислениями точечных оценок приведен ниже.

Из приведенных вычислений видно, что смещенная оценка дает заниженное значение оценки дисперсии.

п.3. Точечная оценка вероятности события

Предположим, что в некотором эксперименте событие А (благоприятный исход испытания) происходит с вероятностью p и не происходит с вероятностью q = 1 — р. Задача состоит в получении оценки  неизвестного параметра распределения p по результатам серии n случайных экспериментов. При заданном числе испытаний n количество благоприятных исходов m в серии испытаний — случайная величина, имеющая распределение Бернулли. Обозначим ее буквой μ.

Если событие А в серии из n независимых испытаний произошло

m раз, то оценку  величины p предлагается вычислять по формуле

.

Выясним свойства предлагаемой оценки. Поскольку случайная величина μ имеет распределение Бернулли, то Μμ=np и M = M  = р, т.е. налицо несмещенная оценка.

Для испытаний Бернулли справедлива теорема Бернулли, согласно которой, т.е. оценка p состоятельная.

Доказано, что эта оценка эффективна, так как обладает при прочих равных условиях минимальной дисперсией.

В Mathcad для моделирования выборки значений случайной величины, имеющей распределение Бернулли, предназначена функция rbinom(fc,η,ρ), которая формирует вектор из к случайных чисел, και ждое из которых равно числу успехов в серии из η независимых испытаний с вероятностью успеха ρ в каждом.

ЗАДАНИЕ 6.6

Смоделируйте несколько выборок значений случайной величины, имеющей распределение Бернулли с заданным значением параметра р. Вычислите для каждой выборки оценку параметра p и сравните с заданным значением. Представьте результаты вычислений графически.

Порядок выполнения задания

1. Используя функцию rbinom(1, n, p), опишите и сформируйте последовательность значений случайной величины, имеющей распределение Бернулли с заданными p и n для n =  10, 20, ..., Ν, как функцию объема выборки п.

2. Вычислите для каждого значения n точечные оценки вероятности р.

Пример выполнения задания

Пример получения точечных оценок выборок объема n = 10, 20,..., 200 значений случайной величины μ, имеющей распределение Бернулли с параметром p = 0.3, приведен ниже.

Указание. Поскольку значением функции является вектор, число успехов в серии n независимых испытаний с вероятностью успеха p в каждом испытании содержится в первой компоненте вектора rbinom(1,n,p) , т.е. число успехов равно rbinom(1, n, p). В приведенном выше фрагменте k-я компонента вектора Ρ содержит число успехов в серии 10k независимых испытаний для k = 1,2,..., 200.

п. 4. Точечная оценка параметров равномерного распределения

Обратимся еще к одному поучительному примеру. Пусть — выборка из генеральной совокупности, соответствующей случайной величине ξ, имеющей равномерное распределение на отрезке [0, θ] с неизвестным параметром θ. Наша задача — оценить этот неизвестный параметр.

Рассмотрим один из возможных способов построения требуемой оценки. Если ξ — случайная величина, имеющая равномерное распределение на отрезке [0, θ], то Μ ξ = . Поскольку оценка величины  известна, Μξ =, то за оценку параметра θ можно взять оценку

Несмещенность оценки очевидна:

Вычислив дисперсию  и предел D при n →∞, убедимся в состоятельности оценки :

при n→∞

Для получения другой оценки параметра θ обратимся к другой статистике. Пусть = max). Найдем распределение случайной величины:

,

0.

Тогда математическое ожидание и дисперсия случайной величины

с распределением равны соответственно:

 ;  

т.е. оценка состоятельная, но смещенная. Однако если вместо = max) рассмотреть = max), то и , и, следовательно, оценка состоятельная и несмещенная.

При этом, поскольку

β0(ΐ)~η + 2

оценка

существенно эффективнее оценки

Например, при п= 97 разброс оценки θ^ в 33 рала меньше разброса оценки

Последний пример еще раз показывает, что выбор статистической оценки неизвестного параметра распределения — важная и нетривиальная задача.

В Mathcad для моделирования выборки значений случайной величины, имеющей равномерное распределение на отрезке [а, Ь], предназначена функция runif(fc,o,b), которая формирует вектор из к случайных чисел, каждое из которых — значение равномерно распределенной на отрезке [а, 6] случайной величины.

PAGE   \* MERGEFORMAT 1


 

А также другие работы, которые могут Вас заинтересовать

41374. Трансляция сетевых адресов NAT 170.52 KB
  Сначала мы собрали типологию сети представленную на рис. 1 IP адреса сетевых интерфейсов После этого мы настроили OSPF маршрутизацию рис. Рис.
41375. Виртуальные локальные сети VLAN 209.62 KB
  3 показан ping подсети 20 и подсети 30.4 показана недоступность компьютера из подсети 20 к подсети 30.4 Ping из подсети 20 в подсеть 30 Далее мы изменили типологию №1 на типологию №2 которая изображена на рис. Для этого мы разбили исходную сеть на две подсети.
41376. Введение в межсетевую операционную систему Cisco IOS 583 KB
  В данной лабораторной работе мы знакомились с компонентами межсетевой операционной системы Cisco IOS. Мы узнали, чем отличаются друг от друга привилегированный, пользовательский режимы и режим глобального конфигурирования, познакомились с некоторыми консольными командами, такими как CDP (Cisco Discovery Protocol), ping, а так же выполнили лабораторную работу, снимки которой будут представлены ниже.
41377. Настройка статической маршрутизации 530.94 KB
  Перед тем, как мы начали выполнять основную часть работы, мы создали типологию, которая указана на рис.1. После создания типологии, мы задали IP адреса сетевым интерфейсам маршрутизаторов, интерфейсам управления коммутаторов и сетевым интерфейсам локальных компьютеров. Далее мы установили связь на физическом и канальном уровнях между соседними маршрутизаторами по последовательному сетевому интерфейсу.
41378. Настройка протоколов динамической маршрутизации 388.37 KB
  Перед тем, как мы начали выполнять основную часть работы, мы создали типологию, которая указана на рис.1. После создания типологии, мы задали IP адреса сетевым интерфейсам маршрутизаторов, интерфейсам управления коммутаторов и сетевым интерфейсам локальных компьютеров. Далее мы установили связь на физическом и канальном уровнях между соседними маршрутизаторами по последовательному сетевому интерфейсу. Пример показан на рисунке 2, связь между C1-R1.
41379. Применение списков управления доступом ACL 164.97 KB
  Перед тем как мы начали выполнять данную работу мы настроили динамическую маршрутизацию между всеми узлами сети типология которой представлена на рис. На рис. 2 предоставлен список управления доступом на маршрутизаторе R1 Рис.
41380. Базы данных SQL Server аgent SSА 197 KB
  SS job: SSзадача которую можно определить один раз и выполнять по расписанию. Создание SS job: рр ррр PGE 1.
41381. Базы данных SQLXML XML: Extensible Mrkup Lnguge 47.5 KB
  XHTML – словарь XML. XMLдокумент. XML: правильно построенный документ – соответствует синтаксическим правилам XML.
41382. Базы данных Транзакции. Транзакция: одна или несколько команд SQL 236.5 KB
  Транзакция: блокировка в транзакциях dedlock Транзакция: уровни изоляции NSI SQL92 читатели писатели RED UNCOMMITED неподтвержденное грязное чтение. Читатель не может изменить незафиксированные строки ожидает; RED COMMITED подтвержденное чтение. Читатель не может прочитать неподтвержденные данные ожидает писатель может изменить и удалить уже прочитанные читателем данные; REPETBLE RED повторяемое чтение. RED UNCOMMITED RED COMMITED RERETBLE RED Если в 12.