72410

ОПРЕДЕЛЕНИЕ СРЕДНЕЙ ДЛИНЫ СВОБОДНОГО ПРОБЕГА И ЭФФЕКТИВНОГО ДИАМЕТРА МОЛЕКУЛЫ ГАЗА

Лабораторная работа

Физика

Согласно молекулярно-кинетической теории газа хаотическое молекулярное движение является физической причиной наблюдаемых в газах явлений переноса энергии - при выравнивании температур (теплопроводность), массы - при выравнивании концентраций...

Русский

2014-11-22

165 KB

8 чел.

Лабораторная работа 23

ОПРЕДЕЛЕНИЕ СРЕДНЕЙ ДЛИНЫ СВОБОДНОГО ПРОБЕГА И ЭФФЕКТИВНОГО ДИАМЕТРА МОЛЕКУЛЫ ГАЗА

Физическое обоснование эксперимента

Согласно молекулярно-кинетической теории газа хаотическое молекулярное движение является физической причиной наблюдаемых в газах явлений переноса энергии - при выравнивании температур (теплопроводность), массы - при выравнивании концентраций (диффузия) и импульса - при выравнивании скоростей направленного движения молекул (вязкость). Хотя тепловые скорости движения молекул велики, процессы переноса совершаются относительно медленно, так как столкновения между молекулами препятствуют их прямолинейному движению и заставляют их двигаться по ломаным траекториям.

Силы взаимодействия между молекулами становятся заметными лишь при малых расстояниях между ними. Поэтому считают, что на пути между ударами молекул, они движутся прямолинейно и равномерно, а отклонения происходят только при их столкновении.

Среднее расстояние, которое проходит молекула за время между двумя последовательными столкновениями, называется средней длиной свободного пробега молекул.

Минимальное расстояние, на которое сближаются при столкновении центры молекул, называется эффективным диаметром молекулы d.

Эффективный диаметр несколько уменьшается с увеличением скорости молекул, т.е. с повышением температуры.

Основные количественные данные для определения длины свободного пробега молекул и их диаметров были получены из исследования явлений переноса - диффузии, теплопроводности и вязкости. Скорость выравнивания концентраций, температур или импульса определяется числом столкновений молекул при их тепловом движении. Поэтому, исследовав явление переноса, можно определить среднюю длину свободного пробега и эффективный диаметр молекулы.

В молекулярно-кинетической теории установлена связь между макровеличинами, характеризующими состояние газа (давление, температура), и величинами, характеризующими одну молекулу газа (масса молекулы, ее скорость и диаметр).

Коэффициент вязкости газа η согласно теории (в предположении, что молекулы являются упругими сфероидами) составляет

(1)

где ρ - плотность газа;  - средняя длина свободного пробега молекулы;  - средняя арифметическая скорость движения молекулы. Из формулы (1) получаем

(2)

Коэффициент вязкости можно найти, воспользовавшись законом Пуазейля, определяющим объем газа V, протекающего через капилляр при ламинарном режиме течения:

(3)

где r - радиус капилляра, l - длина капилляра, Δp - разность давлений на концах капиллярной трубки, обусловливающая течение газа по ней, t - время, в течение которого вытекает газ данного объема

Все величины, входящие в формулу (3), легко измерить. Среднюю скорость молекул газа можно по формуле

(4)

где R = 8,3·103 Дж/кмоль - универсальная газовая постоянная; T - абсолютная температура газа; µ - масса одного киломоля газа (для воздуха µ = 29 кг/моль; воздух приближенно рассматривается как газ, состоящий из одинаковых молекул).

Плотность газа получаем из закона Клапейрона – Менделеева

(5)

где p - давление газа.

Подставив значения величин η,  и ρ из формул (3), (4) и (5) в формулу (2) получаем

(6)

Эффективный диаметр d молекулы вычисляется из выражения

(7)

где n - число молекул в единице объема. Из основной формулы кинетической теории газов имеем

(8)

где k  - постоянная Больцмана, k = 1,38·10-23 Дж/К

Из формул (7) и (8) имеем

(9)

Описание экспериментальной установки

Рис.23.1

Экспериментальная установка изображена на рис. 23.1. Цилиндрический сосуд закреплен вертикально на штативе. Верхнее отверстие сосуда закрыто резиновой пробкой со вставленным в нее капилляром. Снизу сосуд имеет кран. Сосуд заполняется на 4/5 дистиллированной водой. Если открыть кран, то вода сначала выливается из сосуда непрерывной струей, а затем - отдельными каплями. Через капилляр происходит натекание воздуха в сосуд, обусловленное разностью давлений Δ p на концах трубки (верхний конец - атмосферное давление, нижний - меньше атмосферного). Когда вода вытекает из сосуда, объем части сосуда над поверхностью жидкости увеличивается. Так как воздух сюда попадает через очень узкий капилляр, то он натекает медленно. Поэтому давление воздуха p1 в этом объеме становится меньше атмосферного pат. В момент, когда одна капля оторвалась, а следующая еще не выдавилась, наблюдается равенство атмосферного давления снизу на площадь отверстия, через которое вытекает вода, и сверху суммы давлений столба воды ρв gh1 и p1 (давлением, обусловленным поверхностным натяжением мы пренебрегаем):

где ρв - плотность воды, g - ускорение свободного падения, h1 - высота столба жидкости в момент отсчета.

Затем атмосферный воздух натекает через капилляр, давление сверху увеличивается, и выдавливается следующая капля

За то время пока уровень жидкости понижается от h1 до h2,  через капилляр натекает некоторое количество воздуха, и равенство давлений примет вид

Разность давлений станет равной

Так как воздух натекает непрерывно и различие между  и  невелики, то разность давлений в течение эксперимента можно  представить как среднее арифметическое

(10)

Цель работы: определение длины свободного пробега и эффективного диаметра молекул воздуха. Для вычисления средней длины свободного пробега молекулы газа формулу (6) удобнее представить в виде двух сомножителей: в первый множитель войдут, все константы и измеряемые величины, остающиеся во время опыта постоянными (r, l, T и pат), во второй множитель войдут все изменяющиеся при измерениях величины:

(11)

Первый множитель обозначим к, второй множитель - а.

Так как радиус капилляра и его длина указаны на резиновой пробке с капилляром, то после всех измерений можно отдельно сосчитать первый сомножитель. Числитель второго сомножителя является линейной функцией от его знаменателя. Необходимо построить график Δpt = f(V). Обработав численные данные этого графика по методу наименьших квадратов, находят тангенс угла наклона графика к оси абсцисс, т.е. значение величины а и ее доверительную границу Δа .

Произведение обоих сомножителей дает среднее значение длины свободного пробега молекулы воздуха.

Порядок выполнения работы

1. Открыть кран и, дождавшись когда вода начнет вытекать из сосуда каплями, подставить под сосуд предварительно взвешенный стаканчик и, отмерив по шкале высоту уровня воды в сосуде, одновременно включить секундомер.

2. Когда в стаканчике будет приблизительно 30 - 35 см3 воды, перекрыть кран и остановить секундомер. Записать время истечения жидкости. Записать новый уровень воды в сосуде h2.

3. Взвесить стаканчик с водой и по весу вытекшей воды определить ее объем. Это и будет объем воздуха, вошедшего в сосуд через капилляр (плотность воды ρв = 1000 кг/м3).

4. Вычислить Δp по формуле (10).

5. Измерить температуру воздуха в комнате.

6. Измерить атмосферное давление барометром.

7. Повторить эксперименты, описанные в пп. 1 - 4, еще четыре раза таким образом, чтобы количество воды, вытекающей из сосуда, каждый раз увеличивалось и было бы приблизительно равно соответственно 50, 75, 100 и 150 см3.

8. Вычислить среднюю длину свободного пробега молекулы воздуха по формуле (11).

9. Эффективный диаметр молекулы воздуха вычисляется по формуле (9).

Формулы для вычисления погрешностей

Абсолютная погрешность определения средней длины свободного пробега молекулы воздуха  вычисляется по формуле

Абсолютная погрешность измерения эффективного диаметра молекулы воздуха определяется по формуле

Содержание отчета

1. Рисунок установки

2. Измеренные значения температуры комнаты и атмосферного давления воздуха.

3. Размеры капилляра установки.

4. Таблица измеренных в каждом опыте значений Δp, t, V.

5. Расчет сомножителя a и Δa по методу наименьших квадратов по линейной зависимости Δpt = f(V) по пяти снятым точкам.

6. График линейной зависимости: Δpt = f(V).

7. Расчет сомножителя к.

8. Окончательный расчет средней длины свободного пробега молекулы воздуха (произведение сомножителя к на a).

9. Расчет эффективного диаметра молекулы воздуха.

10. Расчет погрешностей полученных значений  и d.

11. Запись окончательного результата работы с погрешностями.

Вопросы

1. Какой газ называется идеальным?

2. В чём заключается отличие реального газа от идеального?

3. Зависит ли  и d от температуры газа?

5


 

А также другие работы, которые могут Вас заинтересовать

33375. Состав модульного микроконтроллера SLC500 фирмы Allen Bradley 29.5 KB
  Шасси на 471013 слотов для установки модулей; Блок питания монтируется слева на шасси; Процессорный модуль SLS 5 01SLC 5 04; Входные дискретные модули переменного тока 1746I4816 1746IM4816; Входные дискретные модули постоянного тока 1746IB816 ITB16 IС16 IV816 IG16; Входной дискретный модуль c dc 1746IN16; Выходные дискретные модули переменного тока 1746O816 OP12; Выходные дискретные модули постоянного тока 1746OB816 OBP816 OV816 OVP16 OG16; Выходные релейные модули 1746OW4816 OX8;...
33376. Классификация СУ по степени совершенства 30.5 KB
  По степени совершенства и функциональным возможностям устройства ЧПУ делятся на следующие типы: NC Numericl Control УЧПУ для обработки изделий на станке по программе. все задачи в данных УЧПУ терминальная геометрическая логическая технологическая и диагностическая решаются на аппаратном уровне. В контурных УЧПУ типа NC основным элементом является интерполятор который обеспечивает обработку криволинейных поверхностей. Отличается от УЧПУ типа NC наличием электронного блока памяти.
33377. Классификация СУ по числу потоков информации. Разомкнутые и замкнутые СУ 29 KB
  Разомкнутые устройства ЧПУ называемые также импульсношаговыми характеризуются только одним потоком информации направляемым от программы управления к рабочему органу станка рис. Разомкнутые УЧПУ строят на основе применения силовых или несиловых шаговых двигателей ШД которые управляются устройствами управления шаговыми двигателями УУШД. Разомкнутое устройство ЧПУ Замкнутые устройства ЧПУ характеризуются двумя потоками информации: один поток поступает от программы управления а второй от датчиков обратной связи. Замкнутое устройство...
33378. Классификация СУ по числу потоков информации. Адаптивные СУ 29.5 KB
  Информация управляющей программы поступает в вычислитель УЧПУ который формирует сигналы задания перемещений по координатам. Сигнал задания и обратной связи поступают в сравнивающее устройство куда поступает также сигнал с датчика положения ИП измеряющего действительное перемещение стола. Сигнал рассогласования преобразованный в формирователе сигнала управления ФСУ поступает в устройство управления куда поступает также сигнал с тахогенератора датчика скорости. Сигнал сформированный в УУ преобразуется тиристорным преобразователем...
33379. Классификация СУ по виду движения исполнительных механизмов 27.5 KB
  По виду движения исполнительных механизмов станка определяемого геометрической информацией в программе УЧПУ подразделяются на устройства позиционного контурного комбинированного управления. Позиционное устройство ЧПУ это устройство обеспечивающее установку рабочего органа станка в позицию заданную программой управления станком чаще всего без обработки в процессе перемещения рабочего органа станка. Эти устройства применяются для управления станками сверлильно расточной группы. Контурное устройство ЧПУ представляет собой устройство...
33380. Принципы построения микропроцессорных СУ. Структура однопроцессорной СУ с одной магистралью 34.5 KB
  Схема микропроцессорной управляющей системы Расширители стандартных арифметических функций МП УЧПУ необходимы для повышения производительности МПС при выполнении операций входящих в базовый набор арифметических функций. Структуры однопроцессорных МПСУс одной магистралью Уже в однопроцессорных УЧПУ в полной мере определились основные принципы организации МПС УЧПУ обеспечивающие возможность расширения системы при сохранении функциональной гибкости и обеспечении надежности функционирования при малом времени восстановления в случае отказа. К их...
33381. Структура однопроцессорной СУ с двумя магистралями 35 KB
  Схема микропроцессорной управляющей системы Расширители стандартных арифметических функций МП УЧПУ необходимы для повышения производительности МПС при выполнении операций входящих в базовый набор арифметических функций. Примером реализации данной структуры являются УЧПУ 2С42 Маяк600. Уже в однопроцессорных УЧПУ в полной мере определились основные принципы организации МПС УЧПУ обеспечивающие возможность расширения системы при сохранении функциональной гибкости и обеспечении надежности функционирования при малом времени восстановления в...
33382. Структура многопроцессорной СУ с параллельным обменом информации между процессорами 29 KB
  Верхний уровень управления системная магистраль. Нижний уровень управления локальные магистрали ВЧС1 ВЧС n. В качестве примера реализации данной структуры можно назвать СУ промышленных роботов: РБ242Б двухпроцессорная двухуровневая система управления с БОП Сфера 36 семипроцессорная двухуровневая система управления с модулем связи.
33383. Структура многопроцессорной СУ с последовательным обменом информации между процессорами 29.5 KB
  2 б в отличие от первой МП ВЧС имеют равные возможности обмена данными. Обмен осуществляется через адаптеры связи АС1АС3 подключенные к локальным магистралям соответствующих вычислителей и имеющих выходы на два последовательных канала обмена. Достоинством данной структуры является конструктивная автономность локальных ВЧС вычислитель возможность их встраивания в аппаратуру расположенную в различных местах общей системы управления при минимальном числе линий обмена и хорошей а в перспективе при использовании оптических каналов обмена ...