72465

Химический состав клетки

Лекция

Биология и генетика

Ферменты ядра белки хроматина и рибосомальные белки а также свободные нуклеотиды необходимые для построение ДНК и РНК аминокислоты все виды РНК продукты деятельности ядрышка и хроматина транспортируемые из ядра в цитоплазму. Хроматин содержит ДНК и белки и представляет собой...

Русский

2014-11-22

135.5 KB

1 чел.

Лекция № 2

     Тема «Химический состав клетки»

План:

  1.  Единство и разнообразие клеточных типов
  2.  Химический состав клетки

2.1. Неорганические вещества клетки

2.2. Органические вещества клетки

  1.  Лекарственные препараты белковой природы

Единство и разнообразие клеточных типов

Существует два основных морфологических типа клеток, различающиеся по организации генетического аппарата: эукариотический и прокариотический. В свою очередь, по способу питания различают два основных подтипа эукариотических клеток: животную (гетеротрофную) и растительную (автотрофную).

Эукариотическая клетка состоит из трех основных структурных компонентов:

  •  ядра,
  •  плазмалеммы
  •  цитоплазмы.

Эукариотическая клетка отличается от остальных типов клеток, в первую очередь, наличием ядра. Ядро – это место хранения, воспроизведения и начальной реализации наследственной информации. Ядро состоит из ядерной оболочки, хроматина, ядрышка и ядерного матрикса.

Ядерная оболочка – часть мембранной системы клетки. Выросты внешней ядерной мембраны соединяются с каналами эндоплазматической сети.

Ядерный сок – бесструктурная масса, заполняющая промежутки между структурами ядра. В состав входят белки, в т.ч. ферменты ядра, белки хроматина и рибосомальные белки, а также свободные нуклеотиды, необходимые для построение ДНК и РНК, аминокислоты, все виды РНК, продукты деятельности ядрышка и хроматина, транспортируемые из ядра в цитоплазму.

Хроматин содержит ДНК и белки и представляет собой спирализованные и уплотненные участки хромосом. Спирализованные участки хромосом в генетическом отношении неактивны. Свою специфическую функцию могут осуществлять только деспирализованные участки хромосом. Форма хромосом зависит от положения перетяжки – центромеры – области, к которой во время деления клетки прикрепляются нити веретена деления. Центромера делит хромосому на два плеча. Расположение центромеры определяется три типа хромосом:

  1.  равноплечие
  2.  неравноплечие
  3.  палочковидные.

Число хромосом не зависит от уровня организации и не всегда указывает на родство. Число хромосом не является видоспецифическим признаком. Однако характеристика хромосомного набора видоспецифична, т.е. свойственна только одному какому-то виду организмов растений или животных.

Совокупность количественных (число и размер) и качественных (форма) признаков хромосомного набора соматической клетки называют кариотипом.

Хромосомный набор соматической клетки, в котором каждая хромосома имеет себе пару, носит название двойного или диплоидного и обозначается 2n. Количество ДНК, соответствующее диплоидному набору хромосом, обозначают .

Из каждой пары гомологичных хромосом в половые клетки попадает только одна, и поэтому хромосомный набор гамет называют одинарным или гаплоидным. Кариотип таких клеток обозначается как 1n1с.

Ядрышко – это скопление рРНК и рибосом на разных этапах формирования.

Плазмалемма (плазматическая мембрана) – это биологическая мембрана, покрывающая всю клетку и отграничивающая её живое содержимое от внешней среды. Поверх плазмалеммы часто располагаются разнообразные клеточные оболочки (клеточные стенки). В животных клетках клеточные оболочки, как правило, отсутствуют.

Цитоплазма – это часть живой клетки (протопласта) без плазматической мембраны и ядра. Цитоплазма пространственно разделена на функциональные зоны (компартменты), в которых протекают различные процессы. В состав цитоплазмы входят: цитоплазматический матрикс, цитоскелет, органоиды и включения (иногда включения и содержимое вакуолей к живому веществу цитоплазмы не относят). Все органоиды клетки делятся на немембранные, одномембранные и двумембранные. Вместо термина «органоиды» часто употребляют устаревший термин «органеллы».

К немембранным органоидам эукариотической клетки относятся органоиды, не имеющие собственной замкнутой мембраны, а именно: рибосомы и органоиды, построенные на основе тубулиновых микротрубочек – клеточный центр (центриоли) и органоиды движения (жгутики и реснички). В клетках большинства одноклеточных организмов и подавляющего большинства высших (наземных) растений центриоли отсутствуют.

К одномембранным органоидам относятся: эндоплазматическая сеть, аппарат Гольджи, лизосомы, пероксисомы, сферосомы, вакуоли и некоторые другие. Все одномембранные органоиды связаны между собой в единую вакуолярную систему клетки. В растительных клетках настоящие лизосомы не обнаружены. В то же время в животных клетках отсутствуют настоящие вакуоли.

К двумембранным органоидам относятся митохондрии и пластиды. Эти органоиды являются полуавтономными, поскольку обладают собственной ДНК и собственным белоксинтезирующим аппаратом. Митохондрии имеются практически во всех эукариотических клетках. Пластиды имеются только в растительных клетках.

Прокариотическая клетка не имеет оформленного ядра – его функции выполняет нуклеоид, в состав которого входит кольцевая хромосома. В прокариотической клетке отсутствуют центриоли, а также одномембранные и двумембранные органоиды – их функции выполняют мезосомы (впячивания плазмалеммы). Рибосомы, органоиды движения и оболочки прокариотических клеток имеют специфическое строение.

Химический состав клетки.

В живых организмах содержится большое количество химических элементов. Они образуют два класса соединений – органические и неорганические.

Неорганические вещества, входящие в состав клетки.

В клетках разных организмов обнаружено около 70 элементов периодической системы химических элементов Д.И. Менделеева, но лишь 24 из них имеют установленное значение и встречаются постоянно во всех типах клеток.

Наибольший удельный вес в элементном составе клетки приходится на кислород, углерод, водород и азот. Это так называемые основные или биогенные элементы. На долю этих элементов приходится более 95% массы клеток, причем их относительное содержание в живом веществе гораздо выше, чем в земной коре.

Жизненно важными являются кальций, фосфор, сера, калий, хлор, натрий, магний и железо. Их содержание в клетке исчисляется десятыми и сотыми долями процента. Перечисленные элементы составляют группу макроэлементов.

Другие химические элементы: медь, кобальт, марганец, молибден, цинк, бор, фтор, хром, селен, алюминий, йод, кремний – содержатся исключительно в малых количествах (менее 0,01% массы клеток). Они относятся к группе микроэлентов.

Процентное содержание в организме того или иного элемента никоим образом не характеризует степень важности и необходимости в организме. Так, например, многие микроэлементы входят в состав различных биологически активных веществ – ферментов, витаминов, гормонов, оказывают влияние на рост и развитие, кроветворение, процессы клеточного дыхания и т.д.

Вода. Играет важную роль в жизни клеток и живых организмов в целом. Помимо того, что она входит в их состав, для многих организмов это еще и среда обитания. Роль воды в клетке определяется ее свойствами. Свойства эти довольно уникальны и связаны главным образом с малыми размерами молекул воды, с полярностью ее молекул и с их способностью соединяться друг с другом водородными связями.

Молекулы воды имеют нелинейную пространственную структуру. Атомы в молекуле воды удерживаются посредством полярных ковалентных связей, которые связывают один атом кислорода с двумя атомами водорода. Полярность ковалентных связей объясняется в данном случае сильной электроотрицательностью атомов кислорода по отношению к атому водорода; атом кислорода оттягивает на себя электроны их общих электронных пар.

Вследствие этого на атоме кислорода возникает частично отрицательный заряд, а на атомах водорода – частично положительный. Между атомами кислорода и водорода соседних молекул воды возникают водородные связи.

Вода является превосходным растворителем для полярных веществ, например солей, сахаров, спиртов, кислот. Вещества, растворимые в воде, называются гидрофильными. 

Не растворимые в воде вещества называются гидрофобными.

Вода обладает высокой теплоемкостью. Для разрыва водородных связей, удерживающих молекулы воды, требуется поглотить большое количество энергии. Это свойство обеспечивает поддержание теплового баланса организма при значительных перепадах температуры в окружающей среде. Кроме того, вода обладает высокой теплопроводностью, что позволяет организму поддерживать одинаковую температуру во всем его объеме. Вода обладает также высокой теплотой парообразования, т.е. способностью молекул уносить с собой значительное количество тепла, охлаждая организм. Это свойство воды используется при потоотделении у млекопитающих, тепловой одышке у крокодилов и транспирации (испарении) у растений, предотвращая их перегрев.

Биологические свойства воды:

  1.  Транспортная. Вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма.
  2.  Метаболическая. Вода является средой для многих биохимических реакций в клетке.
  3.  Структурная. Цитоплазма клеток содержит от 60 до 95% воды. У растений вода определяет тургор клеток.
  4.  Вода участвует в образовании смазывающих жидкостей и слизей. Она входит в состав слюны, желчи, слез и т.д.

Минеральные соли. Большая часть неорганических веществ клетки находится в виде солей. В водном растворе молекулы солей диссоциируют на катионы и анионы. Наибольшее значение имеют катионы: K+, Na+, Ca2+, Mg2+ и анионы: Cl-, H2PO4-, HPO42-, HCO3-, NO3-, SO42-. Существенным является не только содержание, но и соотношение ионов в клетке.

От концентрации солей внутри клетки зависят буферные свойства клетки. Буферностью называют способность клетки поддерживать слабощелочную реакцию своего содержимого на постоянном уровне.

Органические вещества, входящие в состав клетки.

Химические соединения, основой строения которых являются атомы углерода, составляют отличительный признак живого. Эти соединения называются органическими. Органические соединения чрезвычайно разнообразны, но только четыре класса имеют всеобщее биологическое значение: белки, нуклеиновые кислоты, углеводы, липиды.

Белки. Это биополимеры, мономерами которых являются аминокислоты.

Аминокислоты представляют собой низкомолекулярные органические соединения, содержащие карбоксильную (-СООН) и аминную (-NН3) группы, которые связаны с одним и тем же атомом углерода. К атому углерода присоединяется боковая цепь – какой-либо радикал.

У большей части аминокислот имеется одна карбоксильная группа и одна аминогруппа, эти аминокислоты называют нейтральными. Существуют и основные аминокислоты – с более чем одной аминогруппой, а также кислые аминокислоты – с более чем одной карбоксильной группой.

Известно около 200 аминокислот, встречающихся в живых организмах, однако только 20 из них входят в состав белков.

В зависимости от радикала основные аминокислоты делят на 3 группы:

  1.  Неполярные (аланин, метионин, пролин, лейцин, изолейцин, триптофан, фенилаланин);
  2.  Полярные незаряженные (аспарагин, глутамин, серин, глицин, тирозин, треонин, цистеин);
  3.  Заряженные (аргинин, гистидин, лизин – положительно; аспарагиновая и глутаминовая кислоты - отрицательно).

Белки представляют собой полипептиды, в молекулу которых входит от 50 до нескольких тысяч аминокислот с молекулярной массой свыше 10000.

Каждому белку свойственна в определенной среде своя особая пространственная структура. При характеристике пространственной структуры выделяют четыре уровня организации молекул белков.

Первичная структура – последовательность аминокислот в полипептидной цепи. Первичная структура специфична для каждого белка и определяется генетической информацией, т.е. зависит от последовательности нуклеотидов в участке молекулы ДНК, кодирующем данный белок. От первичной структуры зависят свойства и функции белков. Замена одной единственной аминокислоты в составе молекул белка или изменение их расположения влечет за собой изменение функций белка.

В живых клетках молекулы белков или отдельные их участки представляют собой не вытянутую цепь, а скручены в спираль, напоминающую вытянутую пружину – α-спираль или сложены в складчатый слой – β-структура. Вторичная структура возникает в результате образования водородных связей между -СО- и -NН2-группами двух пептидных связей в одной полипептидной цепи (спиральная структура) или между двумя полипептидными цепями (складчатый слой).

У большинства белков спиральные и неспиральные участки полипептидной цепи складываются в трехмерное образование шаровидной формы – глобулу – третичная структура. Третичная структура стабилизируется ионными, водородными связями, ковалентными дисульфидными связями, которые образуются между атомами серы, а также гидрофобными взаимодействиями.

Многие белки, обладающие третичной структурой, могут выполнять свою биологическую роль в клетке. Однако для осуществления некоторых функций организма требуется участие белков с еще более высоким уровнем организации.

Такую организацию называют четвертичной структурой. Она представляет собой функциональное объединение нескольких молекул белка, обладающих третичной структурной организацией.

Функции белков:

1. Ферментативная. Практически все ферменты являются белками.

2. Структурная (коллаген соединительных тканей (у млекопитающих составляет около 25% от общей массы белков), эластин, кератин).

3. Гормональная (инсулин, вазопрессин).

4. Транспортная (например, гемоглобин переносит О2, СО, СО2).

5. Защитная (антитела, фибрин).

6. Сократительная (актин-миозиновый комплекс).

7. Опорная (тубулин микротрубочек).

8. Двигательная. Сократимые и опорные комплексы обеспечивают все виды движения.

9. Гомеостатическая. Практически все белки обладают буферными свойствами, поддерживая постоянную величину рН.

10. Запасающая (овальбумин – запасной альбумин яичного белка).

11. Энергетическая. При гидролизе белков образуется аминокислоты, часть которых окисляется с высвобождением энергии.

Липиды. Это сборная группа органических веществ, которые плохо растворимы в воде, но хорошо растворимы в органических (неполярных) растворителях. В молекулах липидов имеются неполярные (углеводородные) и полярные (–СООН, –ОН, –NH2) участки. Неполярные участки не смачиваются водой и называются гидрофобными. Полярные участки смачиваются водой и называются гидрофильными.

К липидам относятся триглицериды, фосфолипиды, стероиды, терпены, воски и некоторые другие вещества.

Липиды могут образовывать соединения с углеводами (гликолипиды) и белками (липопротеиды, или липопротеины).

Функции липидов:

  1.  Структурные. Фосфолипиды – основа клеточных мембран.
  2.  Энергетическая. 1 г = 38,9 кДж.
  3.  Запасающие. Твердые и жидкие жиры (триглицериды).
  4.  Регуляторные. Многие гормоны.
  5.  Защитная и теплоизоляционная. Жир.
  6.  Смазывающая и водоотталкивающая. Воска.
  7.  Метаболическая.

Углеводы, или сахара – это органические вещества,  состав которых может быть описан формулой Cn(H2O)m. К углеводам относятся моносахариды, олигосахариды и полисахариды.

Моносахариды – это простейшие углеводы. В их состав входят углерод, водород и кислород в соотношении 1:2:1. Молекула моносахарида состоит из углеродного скелета, в боковых цепях которого содержатся водород и функциональные группы (гидроксильные –ОН, альдегидные –СНО, кетогруппы =С=О).

Функции моносахаридов:

1. Играют роль промежуточных продуктов реакций.

2. Входят в состав нуклеотидов и их производных

3. Входят в состав некоторых коферментов

4. Служат основными источниками энергии при дыхании.

5. Служат исходными веществами для синтеза аминокислот, сложных углеводов и других веществ (например, аскорбиновой кислоты).

Полисахариды – это углеводы, состоящие из остатков множества моносахаридов (тысячи и десятки тысяч), связанных гликозидными связями. Гигантские молекулы (макромолекулы), в состав которых входят сходные, многократно повторяющиеся структуры,  называются полимеры, а сами повторяющиеся структуры называются мономеры. Полимеры могут быть линейными и разветвленными. К полисахаридам относятся многие полимеры глюкозы: крахмал, гликоген, целлюлоза (клетчатка).

Функции полисахаридов:

1. Запасающие (гликоген у грибов и животных, крахмал у растений).

2.Структурные, или опорно-защитные (целлюлоза, муреин, мукополисахариды).

Нуклеиновые кислоты. Это фосфорсодержащие биополимеры живых организмов, обеспечивающие хранение и передачу наследственной информации. Открыты они в 1869 году швейцарским химиком Иоганном Фридрихом Мишером в ядрах лейкоцитов. В последствии нуклеиновые кислоты были обнаружены во всех растительных и животных клетках, бактериях, вирусах и грибах.

Существует два типа нуклеиновых кислот. Преимущественно в ядре содержится ДНК, в цитоплазме, а также частично в ядре содержится РНК.

Нуклеиновые кислоты обладают способностью растворяться в воде и щелочах. Биологические полимеры – нуклеиновые кислоты, распадаясь, образуют мономеры – нуклеотиды. Структурными единицами каждого нуклеотида являются остаток фосфорной кислоты (фосфат), углеводный остаток сахара, содержащего пять атомов углерода, - дезоксирибозы или рибозы.

Кроме фосфата и углеводного компонента, в состав каждого нуклеотида входят по одному из пяти азотистых оснований: аденин, гуанин, цитозин и тимин (в ДНК) или урацил (в РНК).

ДНК. Структура молекулы ДНК была предложена в 1953 году учеными Джеймсом Уотсоном и Френсисом Криком. Согласно этой модели, каждая молекула ДНК состоит из длинных, спирально закрученных вокруг общей оси полинуклеотидных цепей. Эти цепи антипараллельны, т.е. одна цепь направлена снизу вверх, а другая сверху вниз. Важнейшим условием модели Уотсона и Крика является комплементарность оснований двойной спирали ДНК. Это значит, что против каждого данного основания может находиться только комплементарное (т.е. соответствующее ему) азотистое основание.  Такими комплементарными парами являются аденин и тимин, гуанин и цитозин.

Правила Чаргаффа:

  1.  Сумма молекул пуриновых оснований (А,Г) равна сумме молекул пиримидиновых оснований (Т,Ц).
  2.  Число молекул аденина равно числу молекул тимина.
  3.  Число молекул гуанина равно числу молекул цитозина.
  4.  Число молекул оснований с 6-аминогруппами (А,Ц) равно числу молекул оснований с 6-оксигруппами (Т,Г).

Репликация (самоудвоение) ДНК – это один из важнейших биологических процессов, обеспечивающих воспроизведение генетической информации. В результате репликации одной молекулы ДНК образуется две новые молекулы, которые являются точной копией исходной молекулы – матрицы. Каждая новая молекула состоит из двух цепей – одной из родительских и одной из сестринских. Такой механизм репликации ДНК называется полуконсервативным.

Реакции, в которых одна молекула гетерополимера служит матрицей (формой) для синтеза другой молекулы гетерополимера с комплементарной структурой, называются реакциями матричного типа. Если в ходе реакции образуются молекулы того же вещества, которое служит матрицей, то реакция называется автокаталитической. Если же в ходе реакции на матрице одного вещества образуются молекулы другого вещества, то такая реакция называется гетерокаталитической. Таким образом, репликация ДНК (то есть синтез ДНК на матрице ДНК) является автокаталитической реакцией матричного синтеза.

Кроме репликации ДНК к реакциям матричного типа относятся транскрипция ДНК (синтез РНК на матрице ДНК) и трансляция РНК (синтез белков на матрице РНК). Существуют и другие реакции матричного типа, например, синтез РНК на матрице РНК и синтез ДНК на матрице РНК. Два последних типа реакций наблюдаются при заражении клетки определенными вирусами. Синтез ДНК на матрице РНК (обратная транскрипция) широко используется в генной инженерии.

Все матричные процессы состоят из трех этапов: инициации (начала), элонгации (продолжения) и терминации (окончания).

Репликация ДНК – это сложный процесс, в котором принимает участие несколько десятков ферментов. К важнейшим из них относятся ДНК-полимеразы (несколько типов), праймазы, топоизомеразы, лигазы и другие.

Главная проблема при репликации ДНК заключается в том, что в разных цепях одной молекулы остатки фосфорной кислоты направлены в разные стороны, но наращивание цепей может происходить только с того конца, который заканчивается группой ОН. Поэтому в реплицируемом участке, который называется вилкой репликации, процесс репликации протекает на разных цепях по-разному. На одной из цепей, которая называется ведущей, происходит непрерывный синтез ДНК на матрице ДНК. На другой цепи, которая называется запаздывающей, вначале происходит связывание праймера – специфического фрагмента РНК. Праймер служит затравкой для синтеза фрагмента ДНК, который называется фрагментом Оказаки. В дальнейшем праймер удаляется, а фрагменты Оказаки сшиваются между собой в единую нить фермента ДНК–лигазы.

Репликация ДНК сопровождается репарацией – исправлением ошибок, неизбежно возникающих при репликации. Существует множество механизмов репарации.

Рибонуклеиновая кислота (РНК)

РНК – это нуклеиновая кислота,  мономерами которой являются рибонуклеотиды.

В пределах одной молекулы РНК имеется несколько участков, которые комплементарны друг другу. Между такими комплементарными участками образуются водородные связи. В результате в одной молекуле РНК чередуются двуспиральные и односпиральные структуры, и общая конформация молекулы напоминает клеверный лист на черешке.

Азотистые основания, входящие в состав РНК, способны образовывать водородные связи с комплементарными основаниями и ДНК, и РНК. При этом азотистые основания образуют пары А=У, А=Т и Г≡Ц. Благодаря этому возможна передача информации от ДНК к РНК, от РНК к ДНК и от РНК к белкам.

В клетках обнаруживается три основных типа РНК, выполняющих различные функции:

1. Информационная, или матричная РНК (иРНК, или мРНК). Составляет 5% клеточной РНК. Служит для передачи генетической информации от ДНК на рибосомы при биосинтезе белка. В эукариотических клетках иРНК (мРНК) стабилизирована с помощью специфических белков. Это делает возможным продолжение биосинтеза белка даже в том случае, если ядро неактивно.

2. Рибосомная, или рибосомальная РНК (рРНК). Составляет 85% клеточной РНК. Входит в состав рибосом, определяет форму большой и малой рибосомных субъединиц, обеспечивает контакт рибосомы с другими типами РНК.

3. Транспортная РНК (тРНК). Составляет 10% клеточной РНК. Транспортирует аминокислоты к соответствующему участку иРНК в рибосомах. Каждый тип тРНК транспортирует определенную аминокислоту.

Кроме того, в клетках имеются и другие типы РНК, выполняющие вспомогательные функции.

Все типы РНК образуется в результате реакций матричного синтеза. В большинстве случаев матрицей служит одна из цепей ДНК. Таким образом, синтез РНК на матрице ДНК является гетерокаталитической реакцией матричного типа. Этот процесс называется транскрипцией и контролируется определенными ферментами – РНК–полимеразами (транскриптазами).

Лекарственные препараты белковой природы.

  1.  Ферменты.

Основной и, может быть, главной функцией ферментов является их способность резко повышать (в десятки и сотни миллиардов раз) скорость химических реакций, то есть ферменты выполняют роль катализаторов огромного числа химических реакций, осуществляемых ежесекундно во всех живых системах. Более того, ферменты являются регуляторами скорости химических реакций, строго контролируя процессы синтеза и распада индивидуальных химических компонентов клетки и всего организма в целом. Благодаря этому свойству ферментов живые системы сохраняют постоянство внутренней среды (так называемый гомеостаз); они отличаются от современных крупных промышленных производств не мощностью или даже не грузоподъемностью, а высокой эффективностью, экономичностью, рациональностью и ювелирной точностью результатов в микропространстве клетки (никаких побочных продуктов, никаких отходов, загрязняющих окружающую среду).

Основные разделы  

Ферменты

Примеры использования

Диагностика

Лактатдегидрогеназа (изоферментЛДГ-1)

Инфаркт миокарда

Аспартатаминотрансфераза (ACT)

Инфаркт миокарда

Аланинаминотрансфераза (АЛТ)

Заболевания печени (например, инфекционный гепатит), инфаркт миокарда

КК (изоферментММ— мышечный тип изофермент MB—сердечный тип)

Прогрессирующая дистрофия Инфаркт миокарда

Кислая фосфатаза (КФ)

Рак предстательной железы

а-Амилаза

Заболевания поджелудочной железы

Лечение

Пепсин

Нарушение переваривания белков в желудке, нарушение синтеза или секреции пепсина

Трипсин, химотрипсин

Лечение гнойных ран

Стрептокиназа, урокиназа

Предотвращение тромбообразования при пересадке органов и других операциях

Гиалуронидаза

Рассасывание рубцов

Аспарагиназа

Лечение некоторых злокачественных образований

Нуклеазы (ДНКаза)

Вирусный конъюнктивит, ринит, гнойный бронхит

Уреаза

Удаление мочевины из организма в аппаратах «искусственная почка»

Использование

ферментов в качестве аналитических

реактивов

Глюкозооксидаза

Определениеконцентрацииглюкозывкрови

Холестеролоксидаза

Определение холестерина в крови

Липаза

Определение триацилглицеринов в крови

Уреаза

Определение мочевины в крови

  1.  Гормоны.

Гормоны – это биологически активные вещества, которые вырабатываются в железах внутренней секреции, а также определенными группами клеток в некоторых тканях. Все гормоны имеют огромное значение в регуляции разнообразных функций организма.

В медицинской практике гормональные препараты используются в основном в качестве средств заместительной терапии (при недостаточной функции какой-либо железы внутренней секреции).

Например, инсулин, вводимый при сахарном диабете, заменяет эндогенный инсулин, который в недостаточном количестве вырабатывается поджелудочной железой.

Также они используются как средства симптоматической (адреналин при гипотонии) или патогенетической (глюкокортикоиды при бронхиальной астме, полиартритах и ином как противовоспалительное средство) терапии.

Все гормональные препараты делятся на несколько групп по происхождению и вызываемым эффектам:

1) препараты гормонов гипоталамуса и гипофиза: кортикотропин, соматотропин, тиротропин, лактин, окситоцин, вазопрессин, питуитрин, рифатироин. Они применяются чаще как средства заместительной терапии при снижении функции гипофиза или гипоталамуса, окситоцин – для стимуляции родовой деятельности и остановки кровотечений, вазопрессин – для регуляции водного обмена;

2) препараты гормонов щитовидной железы) тироксин, L-тироксин, кальцитонин и др.). Они используются как заместительные средства;

3) препарат гормона поджелудочной железы – инсулина;

4) препараты гормонов коры и мозгового слоя надпочечников – глюкокортикоиды и минералокортикоиды, находящие самое широкое применение в повседневной медицинской практике, как при оказании экстренной медицинской помощи, так и в плановой терапии больных различными терапевтическими, хирургическими и другими заболеваниями;

5) препараты половых гормонов.

Женские половые гормоны используются как средства контрацепции, а также при лечении различных гинекологических и эндокринных расстройств.

Мужские половые гормоны применяются в виде анаболических стероидов для наращивания мышечной массы, ускорения роста костей при истощении, переломах, а также в спортивной практике. Тестостерон используется для восстановления потенции у мужчин.

Все гормональные препараты являются высокоактивными соединениями, способными далее в небольших дозах вызывать значительные физиологические эффекты.

Все они являются и высокотоксичными для организма, и их систематическое употребление сопровождается массой нежелательных побочных эффектов.

Поэтому применяться они должны только по назначению врача и после всестороннего обследования и попыток лечения другими группами лекарственных средств.

Контрольные вопросы для закрепления:

  1.  Единство и разнообразие клеточных типов
  2.  Строение эукариотической клетки
  3.  Строение прокариотической клетки
  4.  Химический состав клетки
  5.  Вода
  6.  Минеральные соли
  7.  Белки
  8.  Липиды
  9.  Углеводы
  10.  Нуклеиновые кислоты
  11.  Лекарственные препараты белковой природы

Рекомендуемая литература

Основная:

Биология. В 2 кн. Кн. 2: Учеб. для спец. вузов/ В.Н.Ярыгин, В.И.Васильева, И.Н.Волков, В.В.Синельщикова; Под ред. В.Н.Ярыгина.- 2-е изд., испр.- М.: Высш. шк., 2008.

Биология с общей генетикой. Слюсарев А.А. изд. 2-Е, М.: Медицина, 2007

Дополнительная:

Биология . Пособие для пост, в ВУЗы биол.-мед. профиля. -М.: Школа-Пресс, 2008.

Гилберт С. Биология развития: в 3 т. / Пер. с англ. - М.: Мир, 2008.

Грин Н., Стаут У., Тейлор Д. Биология: в 3 т. / Пер. с англ. - М. : Мир, 2009.

Богданова Т.Л. Биология: задания и упражнения. Пособие для поступающих в ВУЗы. - М.: Высшая школа, 2008.

Морозов Е.И., Тарасевич Е.И., Анохин B.C. Генетика в вопросах и ответах. - Минск, 2007.

Пехов А.П. Биология. Медицинская биология, генетика и паразитология. Учебник. Изд.2-е, испр. и доп.- М.: РУДН, 2007.- 664с.: ил.

Дж. Харрисон и др. Биология человека //самая полная электронная библиотека книг:   URL: http://bankknig.com/knigi/63750-biologiya-cheloveka.html (дата обращения 23.12.2010)

Хен Ю.В. Усовершенствование человека (евгеника) как проблема биоэтики. // всемирный философский конгресс: URL: http://www.congress2008.dialog21.ru/Doklady/21811.htm (дата обращения 23.12.2010)

Биология и генетика пола // Генетика: URL: http://www.twirpx.com/files/medicine/genetics/(дата обращения 23.12.2010)

Щербо С.Н. Генодиагностика в современной лаборатории // Этапы развития генодиагностики. Преимущества в использовании нуклеиновых кислот для диагностики. Молекулярно-генетические методы диагностики: URL: http://www.twirpx.com/file/297399/ (дата обращения 23.12.2010)

Строение хромосом // Конспекты лекций, учебные пособия: URL: http://www.twirpx.com/file/329582/ (дата обращения 23.12.2010)

Презентация - ФКУ PPTX // Конспекты лекций, учебные пособия: URL:  http://www.twirpx.com/file/286669/ (дата обращения 23.12.2010)

Хромосомные болезни пола (синдром Тернера, синдром трисомии X) // Конспекты лекций, учебные пособия:  URL: http://www.twirpx.com/file/113781/(дата обращения 23.12.2010)

Тесты по медицинской биологии и общей генетике // Конспекты лекций, учебные пособия:  URL: http://www.twirpx.com/file/266378/ (дата обращения 23.12.2010)


 

А также другие работы, которые могут Вас заинтересовать

80039. Школа Успіху, або формуємо компетентності 68.5 KB
  Завдання проекту Виявлення ключових проблем які гальмують підвищення якості освіти та надання рекомендацій щодо розв’язання основних проблем змісту освіти. Створення системи моніторингу формування ключових компетентностей на всіх ступенях освіти дітей.
80040. Довкілля – казка чарівна! 55 KB
  Мета: вчити оцінювати негативне і бездумне ставлення до природи; формувати інтерес до навколишнього середовища; поглиблювати знання про довкілля рідного краю; розвивати комунікативні, творчі здібності, вміння робити висновки, відстоювати свою, думку, презентувати свої дослідження...
80041. Край, у якому ти живеш. Україна – наша Батьківщина 417.5 KB
  Мета: збагачувати знання учнів про Україну, а також активний словниковий запас учнів; пробудити інтерес до вивчання рідного краю; розширити знання народні, історичні та культурні символи українського народу; сприяти формування національної свідомості, осмисленню себе як частини...
80042. Н.В.Гоголь и Т.Г.Шевченко: две судьбы, две личности, два пути великих сыновей украинского народа 134.5 KB
  В своих исследованиях, представленных на конференции по заявленной теме, учащиеся проследили, как среда и время определили разницу в судьбах и литературных путях двух великих украинцев Н.Гоголя и Т.Шевченко. Прилагается электронная презентация темы в формате Pover Point.
80043. Декоративна таця 473 KB
  Необхідність таці люди зрозуміли дуже давно, саме тому її почали використовувати як столове приладдя вже в стародавні часи. Перші таці були зроблені не з каменя, як можна було припустити, а з обпаленої глини, оскільки їм не була потрібна міцність. Представляла вона собою напівкулю.
80044. ПІДПРИЄМЛИВІСТЬ – ОСНОВА КОНКУРЕНТНОСПРОМОЖНОСТІ ВИПУСКНИКА 211.5 KB
  З учнями: діагностика: Виявлення характерних рис дитини Виявлення нахилів і здібностей школярів Виявлення спрямованості учнів 811 класів; анкетування: Мої успіхи і невдачі Формування життєвої компетентності особистості Настрій і його зображення Розуміння почуттів іншої людини...
80045. Громадянське виховання як метод правової соціалізації учнів 74 KB
  Виховання адаптованої людини, тобто людини, здатної пристосуватися до вимог суспільства. Прищеплення дітям з раннього віку національних цінностей: патріотизм, людяність, працелюбство, соціальна справедливість, правосвідомість.
80046. Я И МИР ПРОФЕССИЙ 62.5 KB
  Формирование у школьников представлений о мире профессий и о факторах, обуславливающих рациональный выбор профессии; активизация учащихся в профессиональном самоопределении; познакомить учащихся с учебными заведениями города...