72517

Возрастание и убывание функций

Лекция

Математика и математический анализ

Точки максимума и минимума функции называются точками экстремума. необходимое условие существования экстремума Если функция fx дифференцируема в точке х = х1 и точка х1 является точкой экстремума то производная функции обращается в нуль в этой точке.

Русский

2014-11-24

165.5 KB

3 чел.

Лекция 5

Повторение предыдущего материала

Возрастание и убывание функций.

Теорема. 1) Если функция f(x) имеет производную на отрезке [a, b] и возрастает на этом отрезке, то ее производная на этом отрезке неотрицательна, т.е. f(x) 0.

2) Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на промежутке

(а, b), причем f (x) > 0 для a < x < b, то эта функция возрастает на отрезке [a, b].

Точки экстремума.

Определение. Функция f(x) имеет в точке х1 максимум, если ее значение в этой точке больше значений во всех точках некоторого интервала, содержащего точку х1. Функция f(x) имеет в точке х2 минимум, если f(x2 +x) > f(x2) при любом х (х может быть и отрицательным).

Определение. Точки максимума и минимума функции называются точками экстремума.

Теорема. (необходимое условие существования экстремума) Если функция f(x) дифференцируема в точке х = х1 и точка х1 является точкой экстремума, то  производная функции обращается в нуль в этой точке.

Определение. Критическими точками функции называются точки, в которых производная функции не существует или равна нулю.

Пример: f(x) = x                                               Пример: f(x) =   

       y                                                                             y

             x

          x

     

В точке х = 0 функция имеет минимум, но           В точке х = 0 функция не имеет ни

не имеет производной.                                            максимума, ни минимума, ни произ-

      водной.

Теорема. (Достаточные условия существования экстремума)   Пусть функция f(x) непрерывна в интервале (a, b), который содержит критическую точку х1, и дифференцируема во всех точках этого интервала (кроме, может быть, самой точки х1). Если при переходе через точку х1 слева направо производная функции f (x) меняет знак с “+” на “-“, то в точке х = х1 функция f(x) имеет максимум, а если производная меняет знак с “-“ на “+”- то функция имеет минимум в точке х = х1.

На основе вышесказанного можно выработать единый порядок действий при нахождении наибольшего и наименьшего значения функции на отрезке:

Найти критические точки функции.

Найти значения функции в критических точках.

Найти значения функции на концах отрезка.

Выбрать среди полученных значений наибольшее и наименьшее.

Выпуклость и вогнутость кривой. Точки перегиба.

Определение. Кривая обращена выпуклостью вверх на интервале (а, b), если все ее точки лежат ниже любой ее касательной на этом интервале. Кривая, обращенная выпуклостью вверх, называется выпуклой, а кривая, обращенная выпуклостью вниз – называется вогнутой.

    у

               x

На рисунке показана иллюстрация приведенного выше определения.

Теорема .  Если во всех точках интервала (a, b) вторая производная функции f(x) отрицательна, то кривая y = f(x) обращена выпуклостью вверх (выпукла).

Если f (x) > 0 на интервале (a, b), то кривая y=f(x) вогнута на интервале (a, b).

Определение. Точка, отделяющая выпуклую часть кривой от вогнутой, называется точкой перегиба.

Очевидно, что в точке перегиба касательная пересекает кривую.

Теорема. Пусть кривая определяется уравнением y = f(x). Если  вторая производная

f (a) = 0 или f(a) не существует и при переходе через точку х = а  f(x) меняет знак, то точка кривой с абсциссой х = а является точкой перегиба.

Асимптоты.

При исследовании функций часто бывает, что при удалении координаты х точки кривой в бесконечность кривая неограниченно приближается к некоторой прямой.

Определение. Прямая называется асимптотой кривой, если расстояние от переменной точки кривой до этой прямой при удалении точки в бесконечность стремится к нулю.

Следует отметить, что не любая кривая имеет асимптоту. То есть асимптоты может и не быть.

Асимптоты бывают вертикальные и наклонные. Исследование функций на асимптоты позволяет более точно определить характер функции и поведение графика кривой.

Вообще говоря, кривая, неограниченно приближаясь к своей асимптоте, может и пересекать ее, причем не в одной точке, как показано на приведенном ниже графике функции . Ее наклонная асимптота у = х.

 

Рассмотрим правила нахождения асимптот кривых.

Вертикальные асимптоты.

Вертикальные асимптоты следует искать в точках, где функция не является непрерывной.

Например, для функции  прямая х = 5 является вертикальной асимптотой.

В общем случае, если  или  или , то прямая х = а – асимптота кривой y = f(x).

Наклонные асимптоты.

Как выглядит график функции, имеющей наклонную асимптоту? Мы можем составить представление, посмотрев на рисунок.

Пусть прямая y = kx + b – асимптота кривой. Для точного определения этой прямой ниже приведены формулы для вычисления коэффициентов k и b.

,         .

Отметим, что горизонтальные асимптоты являются частным случаем наклонных асимптот при k =0.

Примеры

Пример. Найти асимптоты и построить график функции .

1) Вертикальные асимптоты: Вполне возможно, что вертикальная асимптота х = 0.

Нужно посмотреть, что происходит с y при x0. При вычислении пределов получается, что  y+ при x0-0 и y-  при x0+0, следовательно, х = 0 - вертикальная асимптота.

2) Наклонные асимптоты:

Вычисляем по формулам

Таким образом, прямая у = х + 2 является наклонной асимптотой.

Построим график функции:

Пример. Найти асимптоты и построить график функции .

Прямые х = 3 и х = -3 являются вертикальными асимптотами кривой.

Найдем наклонные асимптоты:

y = 0 – горизонтальная асимптота.

 

Пример. Найти асимптоты и построить график функции .

Прямая  х = -2 является вертикальной асимптотой кривой.

Найдем наклонные асимптоты.

Итого, прямая у = х – 4 является наклонной асимптотой.

Схема исследования функций

Для наиболее полного представления о поведении функции и характере ее графика необходимо отыскать:

  1.  Область определения функции.
  2.  Точки разрыва. (Если они имеются). Если есть точки разрыва, то посмотреть  нет ли вертикальных асимптот.
  3.  Наклонные асимптоты, если имеются.
  4.  Найти точки пересечения графика функции с осями координат. Определить промежутки знакопостоянства функции (т.е. промежутки, на которых функция сохраняет знак).
  5.  Найти производную  и критические точки. Определить знаки производной и найти интервалы возрастания и убывания. Определить точки максимума и минимума.  
  6.  Найти вторую производную  и критические точки второго рода (т.е. такие точки, в которых вторая производная равна нулю или не существует). Определить знаки второй производной и найти интервалы выпуклости и вогнутости. Определить точки перегиба.  
  7.  Построение графика.

Применение этой схемы рассмотрим на примере.

Пример. Исследовать функцию и построить ее график.

  1.  Областью определения функции является область (-; -1) (-1; 1) (1; ).
  2.  Точками разрыва функции являются точки  х = 1, х = -1. Прямые  х = 1, х = -1 являются вертикальными асимптотами кривой.
  3.  Теперь найдем наклонные асимптоты.

     Итак, уравнение наклонной асимптоты –     y = x.

  1.  Найдем точки пересечения с осями Ox  и  Oy: Если x=0, то y=0. Если y=0, то x=0. В этом случае есть только одна точка (0,0).

  1.  Найдем производную функции

Критические точки: x = 0; x = -; x = ;  x = -1;  x = 1. Находим промежутки возрастания и убывания функции. Для этого определяем знаки производной функции на промежутках.

- < x < -,      y > 0, функция возрастает

- < x < -1,       y < 0,  функция убывает

-1 < x < 0,            y < 0,  функция убывает

0 < x < 1,             y < 0,  функция убывает

1 < x < ,         y < 0,   функция убывает

 < x < ,        y > 0,   функция возрастает

Значит, точка х = - является точкой максимума, а точка х =  является точкой минимума. Значения функции в этих точках равны соответственно 3/2 и -3/2.

  1.  Найдем вторую производную функции

.

Определим выпуклость и вогнутость кривой на промежутках.

- < x < -,      y < 0,  кривая выпуклая

- < x < -1,       y < 0,  кривая выпуклая

-1 < x < 0,            y > 0,  кривая вогнутая

0 < x < 1,             y < 0,  кривая выпуклая

1 < x < ,         y > 0,   кривая вогнутая

< x < ,        y > 0,   кривая вогнутая

  1.  Построим график функции:

Домашнее задание

Исследуйте функции с помощью производной и постройте графики функций:

у = 3х2х3.      .

.

Используя правило Лопиталя, вычислите пределы функций:

.   .   .

Найдите наибольшее и наименьшее значения следующих функций
(укажите точки, в которых достигаются эти значения):

у = х4 – 8х2 +3 на отрезке [–2; 2].

 а) на отрезке ;

  


 

А также другие работы, которые могут Вас заинтересовать

16841. Подготовка и решение задач на компьютере Этапы полготовки и решения задач на компьютере 428.5 KB
  Лекция 1. Подготовка и решение задач на компьютере Этапы полготовки и решения задач на компьютере Подготовка и решение задач на компьютере имеет следующие этапы: постановка задачи и разработка технического задания; разработка: а информационной мо
16842. ОБ ОДНОМ «МУРАВЬИНОМ» АЛГОРИТМЕ 281 KB
  ОБ ОДНОМ МУРАВЬИНОМ АЛГОРИТМЕ А.А. Кажаров В.М.Курейчик В этой работе рассматривается решение классической NPтрудной задачи о коммивояжере на основе муравьиных алгоритмов. Данная задача без какихлибо изменений в ее интерпретации решается для проектирования СБИС. В...
16843. Проблемы перевода Problems of Translation 142 KB
  Проблемы перевода Problems of Translation В.ГГак Типология преобразований в актантной структуре высказывания при переводе При переводе нередко приходится прибегать к преобразованиям в актантной структуре высказывания особенно когда мы име
16844. ПАТОФИЗИОЛОГИЯ МОЗГОВОГО КРОВООБРАЩЕНИЯ 22.04 KB
  П. РАВУССИН Д. БРАККО. ПАТОФИЗИОЛОГИЯ МОЗГОВОГО КРОВООБРАЩЕНИЯ. Отделение анестезиологии университетской клиники г. Лозанна Швейцария Большое количество церебральных процессов может вести к необратимому повреждению. Эти процессы могут быть классифицированы как трав...
16845. ВНУТРИЧЕРЕПНОЕ ДАВЛЕНИЕ И ВНУТРИЧЕРЕПНАЯ ГИПЕРТЕНЗИЯ 35.86 KB
  М.В. БАШКИРОВ А.Р. ШАХНОВИЧ А.Ю. ЛУБНИН. ВНУТРИЧЕРЕПНОЕ ДАВЛЕНИЕ И ВНУТРИЧЕРЕПНАЯ ГИПЕРТЕНЗИЯ. НИИ нейрохирургии им. Н.Н. Бурденко РАМН Москва ВВЕДЕНИЕ Первые попытки дать научное объяснение феномену внутричерепной гипертензии ВЧГ предпринимались еще 200 лет назад. Но...
16846. Основные принципы интенсивной терапии тяжелой черепно-мозговой травмы 26.8 KB
  Потапов А.А. Амчеславский В.Г. Гайтур Э.И. Парфенов А.Л. Островский А.Ю. Филимонов Б.А. Основные принципы интенсивной терапии тяжелой черепномозговой травмы. НИИ нейрохирургии им.Н.Н.Бурденко РАМН Москва Лечебные мероприятия при поступлении пострадавшего в стационар....
16847. Принципы интенсивной терапии при острых субарахноидальных кровоизлияниях нетравматической этиологии 30.58 KB
  Амчеславский В.Г. Тома Г.И. Тенедиева Н.Д. Фокин М.С. Элиава Ш.Ш. Мадорский С.В. Оганесян К.Р. Даушева А.А. Принципы интенсивной терапии при острых субарахноидальных кровоизлияниях нетравматической этиологии. НИИ нейрохирургии им. акад. Н.Н. Бурденко РАМН Москва Острые...
16848. ТОТАЛЬНАЯ ВНУТРИВЕННАЯ АНЕСТЕЗИЯ ИЛИ ИНГАЛЯЦИОННЫЙ НАРКОЗ ДЛЯ ИНТРАКРАНИАЛЬНЫХ ВМЕШАТЕЛЬСТВ 86.3 KB
  П. РАВУССИН Г. ВАН АКЕН Д. ВАН ХЕМЕЛЬРИК. ТОТАЛЬНАЯ ВНУТРИВЕННАЯ АНЕСТЕЗИЯ ИЛИ ИНГАЛЯЦИОННЫЙ НАРКОЗ ДЛЯ ИНТРАКРАНИАЛЬНЫХ ВМЕШАТЕЛЬСТВ Отделение анестезиологии университетской клиники Лозанна Швейцария отделение анестезиологии университетской клиники Леувен Бел
16849. СТАТУС ЮЖНОДУНАЙСКИХ РУМЫНСКИХ ДИАЛЕКТОВ 83.5 KB
  СТАТУС ЮЖНОДУНАЙСКИХ РУМЫНСКИХ ДИАЛЕКТОВ Для решения проблемы статуса южнодунайских диалектов требуется разграничить с одной стороны понятия €œязык€ и €œдиалект€ и с другой стороны понятия €œдиалект€ и €œнаречие€ или €œговор€. С генетической точки зрения...