72523

Производная

Лекция

Математика и математический анализ

Производной функции у = fx в точке х называется предел отношения приращения функции к приращению аргумента если он существует Используется также эквивалентное обозначение и употребляется точка сверху когда речь идет о функциях времени. Производная– это скорость изменения функции f при изменении аргумента x.

Русский

2014-11-24

126.5 KB

2 чел.

Лекция 4. Производная

Определение. Производной функции у = f(x) в точке х называется предел отношения приращения функции к приращению аргумента,  если он существует  

Используется также эквивалентное обозначение , и употребляется точка сверху, , когда речь идет о функциях времени. Операцию взятия производной называют дифференцированием. Функцию называют дифференцируемой в точке x, если существует производная.

Производная– это  скорость изменения функции f  при изменении аргумента x.

Когда функция - путь,  аргумент - время, производная — это обычная скорость. Действительно, разность s(t + ∆t) - s(t), равная пути, пройденному за время t, и отнесенная к промежутку времени t,  дает среднюю скорость на интервале ∆t. При ∆t → 0 получается мгновенная скорость в точке t.

На рис. 3.1 изображены два примера.

Как хорошо известно, если график s(t) -

прямая линия, то v(t) = const. В случае тела, брошенного вверх с начальной скоростью , высота меняется по закону s(t) =, скорость  .

Другую полезную интерпретацию производной дает рис. 3.2, из которого видно, что производная численно равна тангенсу угла наклона касательной к графику f(x) в точке х.

При дифференцировании нет необходимости искать непосредственно пределы.

Зачем нужны производные?

  •  Здесь возникает разговор о максимумах, выпуклости, асимптотике и вообще изучении поведения функций, — где производные, конечно, играют большую роль.
  •  Следующий виток — численные методы. Оптимизация, решение уравнений, неравенств, — почти везде используется дифференцирование. Скажем, итерационный метод Ньютона  для решения уравнения f(x)=0 в случае f(x)=x2-2 вычисляет корень квадратный из 2, давая последовательные приближения. Казалось бы, ничего особенного, однако дюжина итераций, начиная, допустим, с xо = 1, дает тысячу(!) верных знаков после запятой.
  •  Пусть Т обозначает температуру тела, находящегося в среде с температурой То. Как будет проходить процесс нагревания или охлаждения? Скорость Т’ изменения Т пропорциональна разности температур Т0 - Т, т. е. T’ = С(Tо-Т), где C > 0 — коэффициент пропорциональности.

Это простейший вариант дифференциального уравнения (содержащего производные). На подобного сорта уравнениях базируется вся физика и другие прикладные науки. Как, скажем, движутся механические тела? Один раз такую задачу удалось решить Кеплеру (планеты — по эллипсам), но это ничего не дало для решения других задач. Дифференциальный закон Ньютона (масса на ускорение равна силе),  = F, обеспечил путь к решению любых механических задач. Уравнения электродинамики, диффузии, распространения волн и эпидемий, гидро- и аэродинамики, квантовой механики — дифференциальные.

Основные правила дифференцирования.

Обозначим f(x) = u, g(x) = v- функции, дифференцируемые в точке х.

(u ±v) ' = u'±v'

(uv)'= uv'+ u'v

Производные основных элементарных функций.

Задание: Записать таблицу производных, выучить формулы.

Производная сложной функции.

Теорема. Пусть y = f(u); u = g(x), причем область значений функции u  входит в область определения функции f. В предположении, что все функции имеют производные, мы получим формулу для дифференцирования сложной функции. Тогда .

Дифференциалы.

Гипотетически рассуждая, в условиях неведения о производных, можно было бы задаться вопросом, когда приращение функции представимо в виде ∆у = Ax + о(∆х),           (*)

где А — некоторая константа.

Ответ очевиден.

Это представление имеет место тогда и только тогда, когда функция дифференцируема в точке х. При этом А = f'(x).

Таким образом, проблема тривиальна, и на этом можно было бы закончить, но традиционно на данном аспекте сфокусировалось слишком много внимания, чтобы его теперь можно было обойти стороной.

Определение. Линейная часть приращения ∆у, равная А∆х в представлении, называется дифференциалом функции у = f(x) и обозначается dy.

Следовательно, ∆y = dy+о(∆х), т. е. приращение ∆у равно сумме линейного приращения dy и нелинейной части о(∆х). Полагая для независимого приращения  ∆х  = dx, имеем откуда, собственно, и возникло обозначение производной

Теоремы о среднем

Теорема Ферма. Пусть f(x) в точке х=а дифференцируема и принимает локально максимальное значение, т. е. f(a)>f(x) для всех х из достаточно малой окрестности точки а. Тогда f’(a) =0.

Результат очевиден с разных точек зрения:

Первый вариант. В точке максимального удаления скорость обнуляется — надо остановиться, чтобы двинуться обратно.

Другой вариант. Геометрически понятно, что касательная к локальному максимуму (рис. 3.4) должна быть горизонтальна (tg у = 0).

Третий вариант. В предположении противного, f’(a)>0,  например, линейная (самая большая при малом ∆x) часть приращения f(a)∆x > 0 при ∆x > 0, т. е. f(a +∆x) > f(a) при достаточно малых Ах > 0, что противоречит наличию локального максимума в а.

Обратное, разумеется, неверно. У x3 производная в нуле равна нулю, но нет никакого максимума (в нуле точка перегиба).

Теорема Ролля. Пусть f(x) дифференцируема на [а, b] и f(a) = f(b). Тогда есть точка c [а, b], в которой f’(c) = 0.

Действительно, из того, что f(а) = f(b) вытекает, что f(x) на [а, b] имеет или минимум, или максимум. Далее решает ссылка на предыдущую теорему.

Теорема Лагранжа. Пусть f(x) дифференцируема на [а, b]. Тогда существует точка c (а, b), в которой f’(c). Последнее равенство чаще записывают в виде произведения , подчеркивая способ выражения ∆f(x) с помощью умножения ∆x на «среднюю скорость роста. 

Формула Тейлора

Пусть функция f(x) п+1 раз дифференцируема в некоторой окрестности точки а. Тогда для x, достаточно близких к а, справедлива формула

, где  при

Легко видеть, что многочлен  имеет в точке а те же производные (до n-й включительно), что и f(x).  

Монотонность, выпуклость, экстремумы

При изучении поведения функции дифференцирование работает весьма эффективно. Основу составляют несколько простых соображений, которые позволяют решать сложные задачи. В этом, кстати, нет противоречия. Элементарные причины могут порождать весьма замысловатые последствия.

Даже такой простой факт, как f '(x) = 0 => f(x) = const, может приносить плоды. Например, для какого-нибудь сложно доказуемого тождества f(x) = g(x) проверка f '(x) = g'(x) может оказаться совсем легкой. Тогда остается убедиться лишь в равенстве f(a) = g(a)  и задача решена.

Функция f(x) монотонно растет, если , и убывает – если . Тоже совсем прозрачный результат. Скорость изменения положительна — функция растет, отрицательна — убывает. Строго положительна — строго растет и т. д. Характер роста f(x) играет важную роль во многих задачах. В случае f'(a) = 0, например, полезно выяснить поведение производной f(x) в окрестности точки а.

Если  и слева от а производная положительна, справа — отрицательна, то у f(x) в точке а — максимум. Если наоборот, то минимум. Производная сохраняет знак — точка перегиба, как у=х3 в нуле.

Еще одна полезная категория мышления — выпуклость. Функцию называют выпуклой, когда ее график выглядит, как на рис. 3.5 а, и вогнутой — в случае, изображенном на рис. 3.5 б.

Выпуклая функция с увеличением х растет все быстрее, т. е. скорость f’(x) возрастает (ускорение f’’(x) положительно). Вогнутая функция, наоборот, с увеличением х растет медленнее.

Из рис. 3.5 геометрически ясно, что вертикальный луч, идущий вверх из любой точки с [а, b], пересекает сначала график f(x), потом отрезок AB, что можно записать как

f(pa + qb) < pf(a) + qf(b), при любых неотрицательных р и q, удовлетворяющих условию p+q = 1. Это называют неравенством Йенсена и обычно принимают за определение выпуклой функции, а монотонность производной уже выводят как следствие.

Вообще говоря, выпуклость часто путают с вогнутостью. Поэтому, во избежание недоразумений, многие предпочитают говорить о выпуклости снизу или о выпуклости сверху.

Функцию обычно считают выпуклой, если она имеет выпуклый надграфик, представляющий собой множество точек (x, у), удовлетворяющих неравенству у >f(x).

Достаточно очевидна и возможная роль второй производной  (ускорения).

Как уже отмечалось, влечет за собой выпуклость f(x) на соответствующем участке, —вогнутость. Таким образом, точки, в которых f"(x) обращается в нуль и меняет знак, определяют смену выпуклости на вогнутость (либо наоборот) и классифицируются как точки перегиба. Рис. 3.6 демонстрирует более общий случай, чем х3.


 

А также другие работы, которые могут Вас заинтересовать

21905. Растровая модель. Оверлейные структуры. Трехмерные модели 158 KB
  Трехмерные модели. При этом каждой ячейке растровой модели соответствует одинаковый по размерам но разный по характеристикам цвет плотность участок поверхности объекта. В ячейке модели содержится одно значение усредняющее характеристику участка поверхности объекта. В растровых моделях в качестве атомарной модели используют двухмерный элемент пространства пиксель ячейка.
21906. Введение в дистанционное зондирование. Восстановление (коррекция) видеоинформации. Предварительная обработка изображений. Классификация. Преобразование изображений 145.5 KB
  К настоящему времени накоплен огромный фонд более 100 миллионов аэрокосмических снимков полностью покрывающих всю поверхность Земли а для значительной части районов с многократным перекрытием. Геометрическая коррекция или трансформирование снимков предназначено для устранения искажений вызванных кривизной и вращением Земли а также углом наклона орбиты спутника к плоскости экватора. Часто для представления и совместной обработки материалов разных видов типов съемок а также разновременных снимков одной и той же территории используется...
21907. Отраслевые геоинформационные проекты 139.5 KB
  Создание карт распределения геологической продукции и информации: а по административным районам; б по геологическим структурам. Создание двумерных и трехмерных моделей подсчета запасов полезных ископаемых и карт в изолиниях. Персональные компьютеры в руках геолога представляют собой надежный инструмент который дает большие возможности как по созданию геологических отчетов геологических карт научных разработок так и по решению различных модельных задач по теории рудообразования геотектонике стратиграфии металлогении и т.
21908. Некоторые вопросы оценки качества цифровых карт 110 KB
  Для быстрой оценки точности цифровой карты необходимо проверить значения реальных координат объектов карты. Проверить значения координат в углах рамки карты. в зависимости от вида и масштаба карты. Если югозападный угол карты имеет неточную привязку то весьма вероятно что все объекты карты будут иметь координаты со сдвигом.
21909. История развития ГИС 77.5 KB
  Одна из наиболее интересных черт раннего развития ГИС особенно в шестидесятые годы заключается в том что первые инициативные проекты и исследования сами были ГЕОГРАФИЧЕСКИ РАСПРЕДЕЛЕНЫ по многим точкам причем эти работы осуществлялись независимо часто без упоминания и даже с игнорированием себе подобных. Возникновение и бурное развитие ГИС было предопределено богатейшим опытом топографического и особенно тематического картографирования успешными попытками автоматизировать картосоставительский процесс а также революционным достижениями...
21910. Классификация ГИС технологий 96.5 KB
  Множество задач решаемых современными ГИС научных прикладных образовательных наконец бытовых не поддается исчислению складываясь из необозримого числа достойных внимания и описания объектов реальности помноженных на разнообразие мотивов и целей человеческой деятельности. При всем многообразии типов ГИС возможна их классификация по нескольким основаниям: пространственному охвату объекту и предметной области информационного моделирования проблемной ориентации функциональным возможностям уровню управления и некоторым другим...
21911. Ввод данных в ГИС. Базовые структуры данных в ГИС. Представление пространственных данных. Структура геоинформационных систем 73 KB
  Базовые структуры данных в ГИС. Представление пространственных данных. Ввод данных в ГИС.
21912. Определение положения точек на поверхности Земли. Координатные данные. Взаимосвязи между координатными моделями. Определение положения точек на поверхности Земли 71 KB
  Определение положения точек на поверхности Земли Координатные данные составляющие один из основных классов геоинформационных данных используют для указания местоположения на земной поверхности Поверхность Земли имеет сложную форму. Эта информация образует класс координатных данных ГИС являющийся обязательной характеристикой геообъектов. Будучи частью классом общей модели данных в ГИС координатные данные определяют класс координатных моделей Основные типы координатных моделей Класс координатных моделей можно разбить на типы. При этом...
21913. Антенны с круговой диаграммой направленности 224 KB
  Наиболее широкое применение в этой группе получили антенны типа Ground Plane GP – рис.1 – Конструкция антенны GP Штыревая конструкция антенны удобна для размещения как на крыше здания так и на автомобиле.6 – Длина элементов антенны GP Диаметр трубки мм 2 6 20 40 Длина штыря l мм 2690 2670 2650 2620 Для нормальной работы антенны она снабжается тремя противовесами которые можно выполнить из трубки или антенного канатика.