726

Определение теплопроводности твёрдого тела (пластина).

Лабораторная работа

Физика

Определить коэффициент теплопроводности твёрдых тел методом сравнения с теплопроводностью эталонного материала. Физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. Коэффициент теплопроводности алюминия методом сравнения с теплопроводностью эталонного материала (латуни).

Русский

2013-01-06

133.5 KB

382 чел.

Министерство образования и науки Российской Федерации

Санкт-Петербургский государственный горный университет

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №18

Определение теплопроводности твёрдого тела (пластина).

По дисциплине  __________________________________________________________

________________________________________________________________________

(наименование учебной дисциплины согласно учебному плану)

    

Автор: студент гр.   ________       ____________________  /________________/

                    (подпись)   (Ф.И.О.)

ОЦЕНКА: _____________

Дата: ___________________

ПРОВЕРИЛ

Преподаватель      ___________           ________________          /________________/

                   (должность)                                      (подпись)                                                 (Ф.И.О.)

Санкт-Петербург

2012 год

Цель работы: определить коэффициент теплопроводности твёрдых тел методом сравнения с теплопроводностью эталонного материала.

Краткие теоретические сведения: 

  1.  Явление, изучаемое в работе: теплопроводность.
  2.  Основные определения:

Количество теплоты — энергия, которую получает или теряет тело при теплопередаче.

Температура - физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы и определяющая направление теплообмена между телами, [Т]=К.

Теплопередача — физический процесс передачи тепловой энергии от более горячего тела к более холодному либо непосредственно (при контакте), либо через разделяющую (тела или среды) перегородку из какого-либо материала.

Теплопроводность - это перенос теплоты структурными частицами вещества (молекулами, атомами, электронами) в процессе их теплового движения.

Энергия — скалярная физическая величина, являющаяся единой мерой различных форм движения материи и мерой перехода движения материи из одних форм в другие.

  1.  Используемые законы:

Закон Фурье:

В установившемся режиме поток энергии, передающийся посредством теплопроводности, пропорционален градиенту температуры:

 

jE = −λ*(dTdx),

где , jE - плотность теплового потока – величина, определяемая энергией, переносимой в форме теплоты в единицу времени через единичную площадку, перпендикулярную оси х,

λтеплопроводность (Вт/(м*К),

 dTdxградиент  температуры, равный скорости изменения температуры на единицу длины х в направлении нормали к этой площадке (К/м).

Знак минус показывает, что энергия переносится в направлении убывания температуры.

λ = 1/3*cVρ<υ><ℓ>,

где cV – удельная теплоёмкость газа при постоянном объёме (Дж/(кг*К)), ρ – плотность газа (Па),

<υ> - средняя скорость теплового движения молекул (м/с),

<ℓ> - средняя длина свободного пробега (м).

  1.  Теоретически ожидаемый результат:

χ= 80 Вт/(м*К)

Схема установки:

1 - нагреватель, 2,3 – пластины, 4 – холодильник, 5 – стенки, 6 – блок питания, 7 – пульт термостата, 8,9,10 – термопары, 11,12,13 – табло термопар, 14 – блок питания

Технические характеристики установки:

Эталонная пластина – латунь.

Исследуемая пластина – алюминий.

d1 эталонной пластины = 6 мм = 6 * 10-3 м

d2 исследуемой пластины = 10 мм =10-2 м

χ1 эталонного материала = 110 Вт/(м*К)

Расчётные формулы:

(1)

где χ1 – коэффициент теплопроводности эталонной пластины, d1 – толщина эталонной пластины, d2 – толщина исследуемой пластины, ΔТ1 – перепад температур на эталонной пластине,  ΔТ2 – перепад температур на исследуемой пластине.

        ΔТ1 = Т1 - Т2   (2)

где Т1 – температура на 1 термопаре, Т2 – температура на 2 термопаре.

        ΔТ2 = Т2 – Т3   (3)

где Т2 – температура на 2 термопаре, Т3 – температура на 3 термопаре.

Погрешности прямых измерений:

U прибора =1 B

Δ(ΔТ1) прибора = ±0,01К

Δ(ΔТ2) прибора = ±0,01К

ΔТ1 прибора = ±0,01ºС

ΔТ2 прибора = ±0,01ºС

ΔТ3 прибора = ±0,01ºС

Δd1 прибора = ±0,001 м

Δd2 прибора  = ±0,001 м

Расчёт абсолютной погрешности косвенных измерений:

-абсолютная погрешность коэффициента теплопроводности:

Результаты измерений:

Таблица 1

Физ. величина

U

Т1

Т2

Т3

ΔТ1

ΔТ2

χ2

Δχср

 Ед. изм.

№ измерения

В

ºС

ºС

ºС

К

К

Вт/(м*К)

Вт/(м*К)

1

25

20,04

20,02

20,00

0,02

0,02

183,3

155,18

2

50

20,14

20,08

20,00

0,06

0,08

137,5

3

100

20,56

20,31

20,00

0,25

0,31

147,85

4

200

22,25

21,23

20,00

1,02

1,23

152,03

Пример вычислений:

χ2 = (110*10-2*0,06)/(6*10-3*0,08) =137,5 Вт/м*К

Δχср = (183,3+ 137,5 + 147,85 + 152,03)/4 =155,18 Вт/м*К

Расчёт погрешностей косвенных измерений:

Δχ2 = 155,18* (0,001/0,01+0,02/20,04+1/110+0,001/0,006+0,02/20,02) = 0,43 Вт/м*К

Окончательный результат:

χ2= 137,5±0,43 Вт/м*К

Вывод: В ходе работы определен коэффициент теплопроводности алюминия методом сравнения с теплопроводностью эталонного материала (латуни) χ = 137,5±0,43 Вт/м*К. Табличное значение коэффициента теплопроводности латуни χ = 110 Вт/м*К. Полученное значение отличается от исходного примерно  на 25 %.


 

А также другие работы, которые могут Вас заинтересовать

50194. Работа с текстовыми файлами 55.5 KB
  Цель: Приобрести практические навыки в проектировании структуры файла а также закрепить навыки по вводу данных в текстовый файл и их обработке. Этим звеном является файловая структура. Ввод и вывод информации в файл обеспечивается с помощью так называемого указателя на файл который является указателем на файловую структуру в памяти.
50195. ИЗУЧЕНИЕ ПРИНЦИПА ДЕЙСТВИЯ И ХАРАКТЕРИСТИК ЭЛЕКТРОННЫХ ЛАМП 336.5 KB
  Важнейшей характеристикой диода является зависимость силы тока текущего через лампу анодного тока от разности потенциалов между катодом и анодом анодного напряжения. Анодный ток зависит от анодного напряжения и от температуры катода. При постоянной температуре катода анодный ток возрастает с увеличением анодного напряжения . Поскольку механизм возникновения электрического тока в этом случае отличается от механизма возникновения тока в проводниках то зависимость анодного тока от анодного напряжения не описывается законом Ома.
50197. Развитие русской социологической мысли: этапы, школы, представители 17.23 KB
  Социологическая мысль в России развивается как часть общемировой социологической науки. Изменение общественных отношений, вызванное развитием капитализма в России после реформ 60-70-х гг.
50198. Нечеткая логика 68 KB
  Согласно заданным вариантам разработать программу на любом алгоритмическом языке, способную: А. Различать степени изменения лингвистической переменной в трех степенях – «Очень – Нормально – Слабо» Б. Изменять порог чувствительности. Негр – Мулат – Белый
50199. ВИВЧЕННЯ ДИФРАКЦІЇ ФРАУНГОФЕРА НА ДВОХ ЩІЛИНАХ 132 KB
  Всі деталі установки розміщаються в рейтерах. Пластини зі щілинами встановлюються в тримач, який містить пристрій, що дозволяє регулювати і встановлювати пластини відносно світлового променя. На оптичній лаві закріплена масштабна лінійка довжиною 1м з ціною поділки 1мм.
50200. Нечеткая логика 69 KB
  А. Различать степени изменения лингвистической переменной в трех степенях – «Очень – Нормально – Слабо» Б. Изменять порог чувствительности. Адский – земной – святой
50201. Основы построения систем и комплексов подвижной радиосвязи. Методическая разработка 117.5 KB
  МЕТОДИЧЕСКАЯ РАЗРАБОТКА ДЛЯ ПРОВЕДЕНИЯ КУРСОВОЙ РАБОТЫ по учебной дисциплине Средства и комплексы подвижной радиосвязи ДД41505 Тема № 03 Основы построения систем и комплексов подвижной радиосвязи Занятие № 21 Расчет основных характеристик сети подвижной радиосвязи Обсуждена на заседании ПМК . Учебные цели Сформировать навыки самостоятельного применения полученных знаний для расчета и обоснования основных характеристик сети подвижной радиосвязи. Исходные данные: стандарт системы подвижной радиосвязи; ТТХ элементов сети;...
50202. Дослідження спектрального розподілу оптичної густини і визначення концентрацій водних розчинів 591.5 KB
  В даній лабораторній роботі для дослідження спектрального розподілу оптичної густини розчинів використовується фотоелектричний спектрофотометр типу КФК3 оптична схема якого наведена на рис. Головним елементом оптичної схеми спектрофотометра є дифракційна гратка 4 яка працює на відбивання. За рахунок виникнення оптичної різниці ходу променів що відбиваються від кожного з елементів решітки на âекраніâ дзеркало 5 утворюється дифракційний спектр який спрямовується на вихідну діафрагму Д2 так що в її щілину проходить лише невелика...