72656

Способы описания алгоритмов

Доклад

Информатика, кибернетика и программирование

Алгоритм может быть следующим: задать два числа; если числа равны то взять любое из них в качестве ответа и остановиться в противном случае продолжить выполнение алгоритма; определить большее из чисел; заменить большее из чисел разностью большего и меньшего из чисел...

Русский

2014-11-26

14.12 KB

2 чел.

Способы описания алгоритмов

Алгоритмы  можно  записывать  не только при помощи слов. В настоящее время различают  несколько способов описания алгоритмов: 


1. Словесный,  т.е. записи на естественном языке, описание словами последовательности выполнения алгоритма.

Например:  Записать алгоритм нахождения наибольшего общего делителя (НОД) двух натуральных чисел. Алгоритм может быть следующим: задать два числа; если числа равны, то взять любое из них в качестве ответа и остановиться, в противном случае продолжить выполнение алгоритма; определить большее из чисел; заменить большее из чисел разностью большего и меньшего из чисел; повторить алгоритм с шага


2. Формульно-словесный, аналогично пункту 1, плюс параллельная демонстрация используемых формул.

В качестве примера можно привести ведение лекций преподавателем (словесный способ) с одновременной записью формул на доске (формульный).


3. Графический, т.е. с помощью блок-схем.

Графический способ представления алгоритмов является более компактным и наглядным по сравнению со словесным. При графическом исполнении алгоритм изображается в виде последовательности связанных между собой блочных символов, каждый из которых соответствует выполнению одного из действий. Такое графическое представление называется схемой алгоритма или блок-схемой. В блок-схеме каждому типу действий (вводу исходных данных, вычислению значений выражений, проверке условий, управлению повторением действий, окончанию обработки и т.п.) соответствует геометрическая фигура, представленная в виде блочного символа. Блочные символы соединяются линиями переходов, определяющими очередность выполнения действий. Символы, наиболее часто употребляемые в блок-схемах.


4. Программный, т.е. тексты на языках программирования.

Cls

input a, b

c = a + b

print c

Псевдокод

Псевдокод представляет собой систему обозначений и правил, предназначенную для единообразной записи алгоритмов.

Псевдокод занимает промежуточное место между естественным и формальным языками. С одной стороны, он близок к обычному естественному языку, поэтому алгоритмы могут на нем записываться и читаться как обычный текст. С другой строны, в псевдокоде используются некоторые формальные конструкции и математическая символика, что приближает запись алгоритма к общепринятой математической записи.

В псевдокоде не приняты строгие синтаксические правила для записи команд, присущие формальным языкам, что облегчает запись алгоритма на стадии его проектирования и дает возможность использовать более широкий набор команд, рассчитанный на абстрактного исполнителя.

Однако в псевдокоде обычно имеются некоторые конструкции, присущие формальным языкам, что облегчает переход от записи на псевдокоде к записи алгоритма на формальном языке. В частности, в псевдокоде, так же, как и в формальных языках, есть служебные слова, смысл которых определен раз и навсегда. Они выделяются в печатном тексте жирным шрифтом, а в рукописном тексте подчеркиваются.

Единого или формального определения псевдокода не существует, поэтому возможны различные псевдокоды, отличающиеся набором служебных слов и основных (базовых) конструкций.

Псевдокод также можно называть «Алгоритмический язык»


 

А также другие работы, которые могут Вас заинтересовать

19262. Многогрупповое приближение. Технология получения групповых констант. Понятие спектра свертки. Стандартные спектры. Библиотеки групповых констант нейтронов. Комбинированные библиотеки констант 139.5 KB
  Лекция 10. Многогрупповое приближение. Технология получения групповых констант. Понятие спектра свертки. Стандартные спектры. Библиотеки групповых констант нейтронов. Комбинированные библиотеки констант. 10.1. Многогрупповое приближение. Аналитическое решени...
19263. Методы моментов, сферических гармоник. Уравнение переноса в Р1-приближении. Границы применимости диффузионного приближения в задачах расчета защит 82.5 KB
  Лекция 11. Методы моментов сферических гармоник. Уравнение переноса в Р1приближении. Границы применимости диффузионного приближения в задачах расчета защит. 11.1. Методы моментов. Методы моментов или полиномиальные методы основаны на представлении угловой завис
19264. Метод дискретных ординат, SN-метод. Понятие квадратуры. Квадратуры Гаусса 48.5 KB
  Лекция 12. Метод дискретных ординат SNметод. Понятие квадратуры. Квадратуры Гаусса. 12.1. Особенности методов дискретных ординат. Методы дискретных ординат и связанные с ними методы получения численных решений уравнения переноса широко используются в реакторных р...
19265. Аппроксимации пространственной зависимости потока в уравнении переноса. Операторный вид уравнения переноса 97 KB
  Лекция 13. Аппроксимации пространственной зависимости потока в уравнении переноса. Операторный вид уравнения переноса. 13.1. Уравнение переноса в одномерной плоской геометрии. Одномерная плоская геометрия система бесконечных параллельных пластин – частный случ...
19266. Организация итерационного процесса. Проблемы сходимости численных схем. Улучшенные итерационные методы. Внутренние и внешние итерации 89.5 KB
  Лекция 14. Организация итерационного процесса. Проблемы сходимости численных схем. Улучшенные итерационные методы. Внутренние и внешние итерации. 14.1. Прямой метод решения уравнений в матричной форме. Систему конечноразностных уравнений записанную в матричной
19267. Физическая постановка задачи, алгоритм метода Монте-Карло в задачах переноса излучений. Генератор случайных чисел. Получение локальных и интегральных характеристик поля нейтронов и гамма-квантов 38.5 KB
  Лекция 15. Физическая постановка задачи алгоритм метода МонтеКарло в задачах переноса излучений. Генератор случайных чисел. Получение локальных и интегральных характеристик поля нейтронов и гаммаквантов. 15.1. Особенности метода МонтеКарло. Метод МонтеКарло п
19268. Понятие информационной системы. Классификация ИС. Понятие проекта и проектирования 254.06 KB
  Лекция 1. Понятие информационной системы. Классификация ИС. Понятие проекта и проектирования. Введение в методологию построения информационных систем. Объекты и субъекты проектирования ИС. Классификация методов и средств проектирования ИС. Основные задачи курса 1.1. ...
19269. Понятие жизненного цикла и модели жизненного цикла. Каскадная модель ЖЦ. Поэтапная модель с промежуточным контролем 311.49 KB
  Лекция 2. Понятие жизненного цикла и модели жизненного цикла. Каскадная модель ЖЦ. Поэтапная модель с промежуточным контролем. Спиральная модель ЖЦ. Процессы ЖЦ ПО. Rapid Application DevelopmentRAD. Extreme Programming XP. Rational Unified Process RUP. Microsoft Solution Framework MSF. Custom Development Method методика Oracle. 2.1...
19270. Каноническое проектирование. Типовое проектирование ИС. Параметрически-ориентированное проектирование. Модельно-ориентированное проектирование 280.39 KB
  Лекция 3. Каноническое проектирование. Типовое проектирование ИС. Параметрическиориентированное проектирование. Модельноориентированное проектирование. 3.1. Каноническое проектирование Организация канонического проектирования ИС ориентирована на использов...