72690

ЛАБОРАТОРНАЯ ДИАГНОСТИКА НАРУШЕНИЙ ГЕМОСТАЗА

Книга

Медицина и ветеринария

Оценка состояния свертывающей системы крови одна из самых сложных диагностических задач. В настоящем пособии этот вопрос рассматривается с различных точек зрения: общих биологических закономерностей функционирования многокомпонентных систем организма патофизиологических механизмов...

Русский

2014-11-26

10.55 MB

26 чел.

Министерство здравоохранения и социального развития Российской Федерации

Российская медицинская академия последипломного образования

В.В. ДОЛГОВ, П.В. СВИРИН

КАФЕДРА

КЛД

Москва 2005

ЛАБОРАТОРНАЯ ДИАГНОСТИКА НАРУШЕНИЙ ГЕМОСТАЗА


долгов

Владимир Владимирович

Заведующий

кафедрой

клинической

лабораторной

диагностики

РМАПО,

профессор.

доктор

медицинских наук

 УДК    616.151.5 ББК     54.11

Д 64

ЛАБОРАТОРНАЯ ДИАГНОСТИКА НАРУШЕНИЙ ГЕМОСТАЗА

Д64 Долгов В.В., Свирин П.В.  Лабораторная диагностика нару-

шений гемостаза. - М.-Тверь: ООО «Издательство «Триада», 2005. -227 с, 150 ил. ISBN 5-94789-114-Х

СВИРИН

Павел

Вячеславович

Врач Московского

городского

гематологического

центра

Измайловской

детской

клинической

больницы,

старший научный

сотрудник

НИИ детской

гематологии

 Книга подготовлена в качестве руководства по исследованию системы гемостаза в клинико-диагностических лабораториях. Оценка состояния свертывающей системы крови - одна из самых сложных диагностических задач. В настоящем пособии этот вопрос рассматривается с различных точек зрения: общих биологических закономерностей функционирования многокомпонентных систем организма, патофизиологических механизмов нарушений процесса свертывания крови, строения и функции отдельных структур и компонентов системы гемостаза, методологических подходов, приборного обеспечения, стандартизации, контроля качества и других аспектов. Изложение материала сопровождается большим количеством иллюстраций. Материал подобран на основе многолетнего опыта преподавания вопросов лабораторной диагностики нарушений гемостаза на кафедре клинической лабораторной диагностики Российской медицинской академии последипломного образования.

Книга предназначена для специалистов клинической лабораторной диагностики, врачей клинических отделений, заинтересованных в лабораторной диагностике системы гемостаза, и студентов медицинских вузов.

Основным спонсором издания книги является компания «Эко-Мед-СМ» (генеральный директор Н.А. Ворошилов), Авторы искренне благодарны компании за поддержку данного издания.

© В.В. Долгов, П.В. Свирин, 2005

© Оформление, издание ООО «Издательство «Триада», 2005

ООО «Издательство «Триада»

ИД №06059 от 16.10.01 г,

170034, г. Тверь, пр. Чайковского, д. 9, оф. 504,

тел./факс (0822) 42-90-22, 35-41-30

E-mail: triada@stels.tver.ru

Подписано к печати 11.08.2005

Формат 62x94 1/8, обрезной

Бумага мелованная

Гарнитура Times New Roman. Печать офсетная Усл. печ. л. 29. Тираж 3000 экз.

Заказ 1717

Отпечатано в ООО «Тверская фабрика печати» г. Тверь, Беляковский пер., 46

 Авторы признательны сотрудникам кафедры клинической лабораторной диагностики РМАПО и сотрудникам Измайловской детской больницы и НИИ детской гематологии за заинтересованное сотрудничество и помощь в подготовке этого издания.

ББК 54.11

ISBN 5-94789-114-Х


Список сокращений

СПИСОК  СОКРАЩЕНИЙ

α2-АП - α2-антиплазмин

β - β-тромбоглобулин

(синоним (3-TG)
Cl-Ing - ингибитор 1-го компонента

комплемента

С4-СП - С4-связывающий протеин

ELISA - Enzyme-Linked

ImmunoSorbent Assay
Fl+2 -
фрагменты протромбина

MCV - средний объем эритроцита

PAI - ингибитор активатора

плазминогена

PDGF - фактор роста тромбоцитов

PF4 - фактор 4 тромбоцитов

PIVKA - Proteins Induced by Vitamin К

Absence or Antagonists

(синоним - ПИВКА)
pNA -
паранитроанилин

RDW - red cell distribution width

(показатель анизоцитоза

тромбоцитов)
TAFI - тромбин-активируемый

ингибитор фибринолиза
ТХА
2 - тромбоксан

t-PA - активатор плазминогена

тканевого типа
u-РА - урокиназный активатор

плазминогена
u-PAR - рецептор урокиназного

активатора плазминогена
vWF - фактор Виллебранда

vWF:RCo       - ристоцетин-кофакторная

активность фактора

Виллебранда

vWF:Ag - антиген фактора Виллебранда

vWF:CB - коллаген-связывающая

активность фактора

Виллебранда

 vWF:F.VIIIB  - фактор VIII связывающая

активность фактора

Виллебранда

АПС - активированный протеин С

АТШ - антитромбин III

АФА - антифосфолипидные антитела

АФС - антифосфолипидный синдром

АЧТВ - активированное частичное

тромбопластиновое время

(синоним - АПТВ)
БВ - болезнь Виллебранда

ВА - волчаночный антикоагулянт

ВМК - высокомолекулярный

кининоген

ГГЦ - гипергомоцистеинемия

ГИТ - гепарин-индуцированная

тромбоцитопения

ГМК - гладкие мышечные клетки

ГП - гликопротеин (синоним - GP)

ДВС - диссеминированное

внутрисосудистое

свертывание
ИВП - ингибитор внутреннего пути

(синоним - TFPI)
ИЛ - интерлейкин

ИТП - иммунная

тромбоцитопеническая

пурпура

ИФА - иммуноферментный анализ

КК - калликреин

ЛВС - локализованное

внутрисосудистое свертывание

крови
ЛПНП - липопротеиды низкой

плотности ЛПОНП         - липопротеиды очень низкой

плотности
ME - международные единицы


Список сокращений

 МИЧ - международный индекс

чувствительности
MHO - международное

нормализованное отношение
НМГ - низкомолекулярные гепарины

(синоним - LMWH)
П
S - протеин S

ПС - протеин С

ПСИ - ингибитор протеина С

(синоним - PCI)
ПАП - плазмин-антиплазмин-

комплекс

ПВ - протромбиновое время

ПГ - простагландины

ПДФ - продукты деградации

фибрина/фибриногена
ПИ - протромбиновый индекс

ПК - прекалликреин

ПО - протромбиновое отношение

ПТ - протромбиновый тест

РАПС - резистентность

к активированному

протеину С
РФМК - растворимые

фибрин-мономерные

комплексы

 СКВ - системная красная

волчанка (синоним - SLE)
СФ - сфингомиелин

ТАТ - комплекс

тромбин-антитромбин
ТВ - тромбиновое время

ТМ - тромбомодулин

ТФ - тканевой фактор

ТЭЛА - тромбоэмболия легочной

артерии

ф. - фактор

ф.VIII:С         - коагуляционная активность

фактора VIII

ф.VII - фактор коагуляции VII

ф.VIIа - активированный фактор

коагуляции VII ФВ:RСо         - ристомицин-опосредованная

активность фактора

Виллебранда

ФЛ - фосфолипиды

ФМ - фибрин-мономеры

ФНО - фактор некроза опухоли

ФПА - фибринопептид А

ФПВ - фибринопептид В

ЭДТА - этилендиаминтетраацетат

 


Введение

Кровь - важнейшая интегрирующая система, которая обеспечивает обмен метаболитами и информацией между тканями и клетками, пластическую и защитную функции организма. Протекая по закрытому контуру, кровь контактирует со всеми органами. Общая поверхность капилляров человеческого организма составляет около 1000 м2. Многообразие и важность функций, огромная протяженность приводят к значительной уязвимости системы кровообращения. Гемостаз призван поддерживать нормальное агрегатное состояние крови. Изменения в системе гемостаза могут стать причиной развития как геморрагических, так и тромботических состояний, которые возникают у пациентов с самыми разными заболеваниями. Огромное значение системы гемостаза в патогенезе заболеваний современного человека доказывается статистикой: такие гемостатические нарушения, как атеротромбоз и ДВС, являются причиной смерти более чем в половине всех случаев. Неправильно и несвоевременно диагностированные геморрагические заболевания также вносят свою печальную лепту в смертность, особенно в практике акушеров-гинекологов и педиатров. Неконтролируемое применение препаратов, прямо или косвенно воздействующих на гемостаз, может оказаться опаснее самого заболевания. Из вышесказанного следует, что лабораторная диагностика состояния системы гемостаза - важ-

 нейший фактор эффективности лечения многих заболеваний и снижения смертности населения. В свою очередь, современная лабораторная диагностика основана на понимании общебиологических закономерностей функционирования системы гемостаза и выбора адекватных методов их оценки.

Исследованию гемостаза в последние годы уделяется большое внимание. Появляются новые диагностические методы, лекарственные препараты, схемы лечения больных. В то же время рутинная лабораторная практика в изучении системы гемостаза в нашей стране развивается недостаточно динамично. Необходима качественная подготовка как специалистов клинической лабораторной диагностики, так и клиницистов, для которых проблемы свертывания крови зачастую остаются «камнем преткновения».

Настоящая книга подготовлена совместно специалистом по клинической лабораторной диагностике и врачом-гемостазиологом. Надеемся, что изложенный материал, который во многом включил собственные навыки, умения, клинический опыт лечения детей с гемостазиологической патологией и многолетние навыки преподавания вопросов нарушения свертывания крови, будет полезен как врачам клинической лабораторной диагностики, так и врачам-клиницистам.

Ваши мнения о книге просим присылать по электронному адресу kafedra-kdl@list.ru.


Характеристика системы гемостаза

ХАРАКТЕРИСТИКА  СИСТЕМЫ   ГЕМОСТАЗА

Общее представление о гемостазе, гемостатический баланс

Гемостаз - это функция организма, обеспечивающая, с одной стороны, сохранение крови в кровеносном русле в жидком агрегатном состоянии, а с другой стороны - остановку кровотечения и предотвращение кровопотери при повреждении кровеносных сосудов. Органы и ткани, участвующие в выполнении этих функций, образуют систему гемостаза. Органы и ткани, участвующие в выполнении этих функций образуют систему гемостаза. Элементы системы гемостаза участвуют также в таких важных процессах жизнедеятельности, как воспаление, репарация тканей, поддержание гомеостаза и др. Система гемостаза активно реагирует на различные экзогенные и эндогенные воздействия, может иметь врожденные и приобретенные функциональные нарушения - «болезни системы гемостаза».

Составляющие систему гемостаза компоненты условно можно разделить на морфологические и функциональные.

Морфологические компоненты системы гемостаза:

Сосудистая стенка.

Тромбоциты и клеточные элементы крови.

Плазменные компоненты - белки, пептиды и
небелковые медиаторы гемостаза, цитокины,
гормоны.

Костный мозг, печень, селезенка тоже могут
рассматриваться как компоненты системы ге
мостаза, поскольку в них синтезируются и
пулируются тромбоциты и плазменные ком
поненты системы гемостаза.
Функциональные компоненты системы гемо
стаза:

Прокоагулянты.

Ингибиторы коагуляции, антикоагулянты.

Профибринолитики.

Ингибиторы фибринолиза.

На гемостаз могут оказывать влияние как физиологические, так и нефизиологические (патологические) факторы. К последним относятся бактериальные токсины, яды животных, собственные протеолитические ферменты, в физиологических условиях отсутствующие или имеющиеся в крови в незначительных концентрациях, лекарственные препараты.

Активность разных компонентов системы гемостаза может изменяться в широких пределах из-за генетических особенностей или экзогенных воздействий на организм. Взаимодействие компонентов гемостаза организовано серией механизмов «прямой» и «обратной» связи, которые обеспечивают несвертываемость крови и циркуляцию ее в сосудах в течение всей жизни человека. При относительно низкой или высокой активности какого-либо элемента общая интегрирующая активность гемостаза может оставаться среднефизиологической за счет компенсаторного изменения других компонентов системы. Сохранение общей активности гемостаза в физиологических пределах можно определить как поддержание гемостатического баланса (рис. 1). При смещении гемостатического баланса за рамки физиологических норм возникают условия для развития патологических кровотечений или тромбозов.

Хотя механизмы работы системы гемостаза сложны, итог нормальной ее работы прост. При отсутствии повреждения система препятствует свертыванию крови. Часто говорят, что она ин-тактна, однако на сохранение жидкого состояния крови затрачивается много энергии. При возникновении повреждения запускается процесс остановки кровотечения: происходит спазм сосуда, в зоне повреждения начинается процесс свертывания крови. Через короткое время сформирован-


Характеристика системы гемостаза

Рис. 1. Гемостатический баланс: за счет компенсаторного взаимодействия система гемостаза поддерживает кровь в жидком состоянии в течение всей жизни, в то же время при повреждении кровь быстро сворачивается, купируя кровотечение. При смещении гемостатического баланса за рамки физиологических норм возникают условия для развития патологических кровотечений или тромбозов

ный гемостатический тромб закрывает повреждение и прекращает кровопотерю. На поврежденном участке, защищенном тромбом, происходят процессы репарации. По мере восстановления повреждения тромб лизируется. Система гемостаза возвращается в исходное состояние.

Знакомство с физиологией и патологией системы гемостаза на первый взгляд создает впечатление излишней перегруженности различными элементами. Однако система гемостаза великолепно отрегулирована и способна эффективно функционировать в самых различных физиологических и патологических условиях. Система гемостаза изменяется в процессе онтогенеза, и при ее исследовании необходимо учитывать возраст человека.

Поскольку в организме различные мелкие повреждения возникают часто, в системе практически постоянно происходят локальные процессы. При нормальном гемостатическом балансе чувствительная для организма кровопотеря происходит лишь при массивном повреждении. Однако при нарушении гемостатического баланса значимая кровопотеря может возникнуть при незначительных повреждениях. Либо, наоборот, патологическое тромбообразование или неконт-

 ролируемое распространение процесса роста тромба приводят к нарушению кровообращения в жизненно важных органах. Возможно также возникновение смешанной проблемы: неконтролируемое тромбообразование приводит к потреблению прокоагулянтов и развитию ишемии и одновременно патологического кровотечения.

Система гемостаза регулируется не только своими внутренними механизмами. Она тесно связана с функционированием организма в целом и меняет свое функциональное состояние в зависимости от состояния макроорганизма. Кровотечение и особенно тромбоз могут быть смертельно опасны для организма. Эти состояния легче предотвратить, чем лечить. Все это диктует необходимость лабораторной оценки состояний системы гемостаза.

Представление о нормальном функционировании системы гемостаза очень условно и не имеет четких рамок. Клинически трудно определить нормальную кровопотерю при каждой конкретной травме. А резистентность к протромботичес-ким воздействиям вообще клинически оценить нельзя. Человек, не имевший в течение своей жизни ни одной тяжелой травмы, может никогда не узнать, что у него легкая форма коагулопатии. Относительно низкий уровень ингибитора свертывания крови может клинически проявиться тромбозом в старости или во время тяжелого заболевания, и развившийся тромбоз не будет оценен врачом правильно.

Поскольку лабораторные нормы определяют при исследовании здоровых лиц, врачи, как правило, не имеют четких границ нормальных показателей гемостаза. В сложных случаях диагноз строится на анализе лабораторных и клинических данных. Многие компоненты системы гемостаза лабильны, а на результаты анализа влияет целый ряд факторов. Поэтому для решения вопроса о диагнозе в сомнительных случаях необходимо проводить неоднократные исследования с использованием различных методов и реактивов для определения одного и того же показателя.

Ниже мы рассмотрим отдельно разные элементы гемостаза, их взаимодействие и патологические процессы, являющиеся следствием нарушения гемостатического баланса.

 


Сосудистая стенка

СОСУДИСТАЯ СТЕНКА

Структура и функции сосудистой стенки

Кровь в организме человека протекает по замкнутой системе кровеносных сосудов. Сосуды не только пассивно ограничивают объем циркуляции и механически предотвращают кровопо-терю, но и обладают целым спектром активных функций в гемостазе. В физиологических условиях неповрежденная сосудистая стенка способствует поддержанию жидкого состояния крови. Неповрежденный эндотелий, контактирующий с кровью, не обладает свойствами инициировать процесс свертывания. Кроме того, он содержит на своей поверхности и выделяет в кровоток вещества, которые препятствуют свертыванию. Это свойство предотвращает образование тромба на интактном эндотелии и ограничивает рост тромба за пределы повреждения. При повреждении или воспалении стенка сосуда принимает участие в образовании тромба. Во-первых, субэндотели-альные структуры, контактирующие с кровью только при повреждении или развитии патологического процесса, обладают мощным тромбо-генным потенциалом. Во-вторых, эндотелий в зоне повреждения активируется и у него появля-

 ются прокоагулянтные свойства. Строение сосудов показано на рис. 2.

Сосудистая стенка у всех сосудов, кроме пре-капилляров, капилляров и посткапилляров, состоит из трех слоев: внутренней оболочки (интимы), средней оболочки (медии) и наружной оболочки (адвентиции).

Интима. На всем протяжении кровеносного русла в физиологических условиях кровь контактирует с эндотелием, образующим внутренний слой интимы. Эндотелий, который состоит из монослоя клеток эндотелиоцитов, играет наиболее активную роль в гемостазе. Свойства эндотелия несколько различаются на разных участках кровеносной системы, определяя разный ге-мостатический статус артерий, вен и капилляров. Под эндотелием находится аморфное межклеточное вещество с гладкими мышечными клетками, фибробластами и макрофагами. Также встречаются вкрапления липидов в виде капель, чаще расположенных внеклеточно. На границе интимы и медии находится внутренняя эластичная мембрана.

Рис. 2. Сосудистая стенка состоит из интимы, луминальная поверхность которой покрыта однослойным эндотелием, медии (гладкомышечные клетки) и адвентиции (соединительно-тканный каркас): А - крупная мышечно-эластичная артерия (схематическое изображение), Б - артериолы (гистологический препарат), В - коронарная артерия в поперечном разрезе

Сосудистая стенка

Медия состоит из гладких мышечных клеток и межклеточного вещества. Ее толщина значительно варьирует в различных сосудах, обуславливая их разную способность к сокращению, прочность и эластичность.

Адвентиция состоит из соединительной ткани, содержащей коллаген и эластин.

Артериолы (артериальные сосуды с общим диаметром менее 100 мкм) представляют собой переходные сосуды от артерий к капиллярам. Толщина стенок артериол немногим меньше ширины их просвета. Сосудистая стенка самых крупных артериол состоит из трех слоев. По мере ветвления артериол их стенки становятся тоньше, а просвет уже, однако сохраняется соотношение ширины просвета и толщины стенки. В самых мелких артериолах на поперечном срезе видны один-два слоя гладких мышечных клеток, эндо-телиоциты и тонкая, состоящая из коллагеновых волокон наружная оболочка.

Капилляры состоят из монослоя эндотелио-цитов, окруженных базальной пластиной. Кроме того, в капиллярах вокруг эндотелиоцитов находят другой тип клеток - перициты, роль которых изучена недостаточно.

Капилляры открываются на своем венозном конце в посткапиллярные венулы (диаметр 8-30 мкм), для которых характерно увеличение количества перицитов в сосудистой стенке. Посткапиллярные венулы, в свою очередь, впадают в

 собирательные венулы (диаметр 30-50 мкм), стенка которых, помимо перицитов, имеет наружную оболочку, состоящую из фибробластов и коллагеновых волокон. Собирательные венулы впадают в мышечные венулы, имеющие один-два слоя гладких мышечных волокон в средней оболочке. В целом венулы состоят из эндотелиальной выстилки, базальной мембраны, непосредственно прилегающей снаружи к эндотелиоцитам, перицитов, также окруженных базальной мембраной; кнаружи от базальной мембраны имеется слой коллагена. Вены снабжены клапанами, которые ориентированы таким образом, чтобы пропускать кровь по направлению к сердцу. Больше всего клапанов в венах конечностей, а в венах грудной клетки и органов брюшной полости они отсутствуют.

Функция сосудов в гемостазе:

Механическое ограничение кровотока.

Регуляция кровотока по сосудам, в том чис
ле спастическая реакция поврежденных со
судов.

Регуляция гемостатических реакций путем
синтеза и представления на поверхности эн
дотелия и в субэндотелиальном слое белков,
пептидов и небелковых веществ, непосред
ственно участвующих в гемостазе.

Представление на поверхности клеток рецеп
торов для энзиматических комплексов, вов
леченных в коагуляцию и фибринолиз.

 

Эндотелий

Характеристика энлотелиального покрова

Сосудистая стенка имеет активную поверхность, с внутренней стороны выстланную эндо-телиальными клетками. Целостность эндотели-ального покрова является основой нормального функционирования кровеносных сосудов. Площадь поверхности эндотелиального покрова в сосудах взрослого человека сопоставима с площадью футбольного поля. Клеточная мембрана эндотелиоцитов обладает высокой текучестью, что является важным условием антитромбоген-ных свойств сосудистой стенки. Высокая текучесть обеспечивает гладкую внутреннюю поверхность эндотелия (рис. 3), который функционирует как целостный пласт и исключает контакт про-коагулянтов плазмы крови с субэндотелиальны-ми структурами.

Эндотелиоциты синтезируют, представляют на своей поверхности и выделяют в кровь и субэндотелиальное пространство целый спектр биологически активных веществ. Это белки, пептиды и небелковые вещества, регулирующие гемостаз. В табл. 1 перечислены основные продукты эндотелиоцитов, участвующие в гемостазе.


Сосудистая стенка

 Рис. 3. Эндотелиальный покров сосудов. Гладкая поверхность покрыта одним слоем эндотелиальных клеток. Целостность эндотелиального покрова - важнейшее условие сохранения жидкого состояния крови

Антикоагулянтная активность интактного эндотелия

Антикоагулянтные свойства эндотелия обеспечиваются несколькими механизмами.

Интактный эндотелий не обладает прокоагу-
лянтной активностью.

Эндотелий пассивно предотвращает контакт
крови с субэндотелиальными структурами,
обладающими выраженными прокоагулянт-
ными свойствами.

Интактный эндотелий синтезирует, выделя
ет в кровь или представляет на своей поверх
ности вещества, препятствующие коагуляции,
адгезии, агрегации и спазму сосудов.

Гликокаликс

Со стороны просвета сосуда на поверхности эндотелиальных клеток сформирован слой глико-

 каликса (прежнее название - мукополисахарид), состоящий из протеогликанов, гликопротеидов, гликолипидов (рис. 4).

Основу гликокаликса образуют молекулы протеогликанов (рис. 5). Стержнем протеогликанов служит очень длинный филамент гиалу-роновой кислоты. К гиалуронату с помощью контактных белков крепятся внутренние (ядерные) белки. Основными элементами протеогликанов являются цепочки глюкозаминогликанов, в частности гепарансульфата и хондроитинсуль-фата, расположенные на внутреннем (ядерном) белке. На одной молекуле ядерного белка длиной около 300 нм размещается до 200 молекул глюкозаминогликанов. На долю гепарансульфата в некоторых зонах эндотелиального покрова приходится до 80% глюкозаминогликанов.

Таблица 1

Продукты эндотелиоцитов, участвующие в гемостазе

Антикоагулянты

Прокоагулянты

Гепарансульфат

Тканевой фактор*

Тромбомодулин

Ингибитор активатора плазминогена 1-го типа

Аденозиндифосфатаза

Фактор Виллебранда

Простациклин, ПГЕ2, ПГБ2

Рецептор для фактора Ха

Оксид азота

Коллаген IV (рецептор для фактора IX i

Тканевой активатор плазминогена

Индуцированный гипоксией активатор фактора X

Урокиназный активатор плазминогена

Липополисахарид-индуцированный активатор протромбина

Ингибитор пути тканевого фактора

Эндотелиальный рецептор протеина С

Аннексии V

Аннексии II

Протеин S

Эндотелий-продуцируемый фактор релаксации

* Доказано в экспериментах in vitro, in vivo имеются лишь единичные данные.


Сосудистая стенка

Рис. 4. Гликокаликс эндотелиального покрова представляет собой молекулярный слой, состоящий из протеоглика-нов, гликопротеидов, гликолипидов, именно в нем осуществляются пристеночные метаболические процессы. Слой гли-кокаликса практически предупреждает прямой контакт клеток крови с поверхностью эндотелиальных клеток

 

Рис. 5. Протеогликан - основной элемент гликокалик-

са, сформированного на поверхности сосудистой стенки

 

Гепарансульфат обладает мощным антикоагу-лянтным действием, являясь кофактором антитромбина. Именно гепарансульфат служит основой гепарина, когда последний получают вытяжкой из биологических тканей. Комплекс гепарансульфат-антитромбин является самым активным ингибитором свертывания. На его долю приходится около 80% антикоагулянтной активности крови.

Крайними молекулами глюкозаминогликанов, как правило, являются сиаловые кислоты, которые формируют отрицательный поверхностный заряд. Клетки крови также имеют на поверхности сиаловые кислоты, поэтому между поверхностью сосудистой стенки и клетками крови формируются силы электростатического отталкивания.

Внутренние пространства протеогликанов гид-ратированы и формируют вязкий гель, устойчивый к компрессионному давлению. В результате образуется пристеночный молекулярный слой, куда, с одной стороны, не проникают крупные клеточные элементы, с другой стороны, именно в этом слое функционируют такие ферменты, как липопроте-инлипаза, целый ряд АДФаз, ферменты, разрушающие кинины, серотонин, норадреналин и другие биологически активные вещества, в том числе обладающие прокоагулянтной активностью.

Контроль активности тромбоцитов

Способность интактного эндотелия контролировать активность тромбоцитов связана с по-

 стоянным синтезом простациклина, эктоадено-зиндифосфатазы и оксида азота (NO), которые препятствуют активации, адгезии и агрегации тромбоцитов.

Оксид азота (N0) - мощный антиагрегант и вазодилататор. NO образуется из аргинина под влиянием постоянно экспрессированной на эндотелии NO-синтетазы. Прежде чем N0 был идентифицирован как вазоактивный метаболит, его эффект приписывали релаксирующему фактору эндотелия (EDRF - endothelium-derived relaxing factor). Брадикинин, гистамин, ацетилхолин повышают образование и освобождение N0 из эндотелиальных клеток. Все эти вещества стимулируют гуанилатциклазу, которая переводит ГТФ в цикло-ГМФ. Циклический ГМФ в свою очередь активирует NO-синтетазу.

В местах спонтанной репарации эндотелия кратковременно образуются участки деэндотели-зации. Этот процесс не сопровождается пристеночным тромбообразованием. Видимо, адгезию тромбоцитов к субэндотелию блокирует облако простациклина, формирующееся над эндотели-альным покровом (рис. 6).

Антиагрегационное действие простациклина связано со способностью усиливать действие аде-нилатциклазы тромбоцитов. Это ведет к увеличению синтеза цАМФ, удалению ионов Са2+ в пулы хранения из плазмы и снижению способности тромбоцитов к агрегации (рис. 7).


Сосудистая стенка

 Другие простагландины, образующиеся в эн-дотелиальных клетках и отчасти в тромбоцитах, оказывают эффекты по типу обратной связи. ПГD2 является ингибитором агрегации, причем антиагрегационный эффект он оказывает в очень низких концентрациях (50 нмоль). Тем не менее ингибиторный эффект ПГD2 в 10 раз слабее, чем у простациклина. ПГЕ, в малых дозах (10-8 моль) потенцирует тромбоцитарную агрегацию, а в больших (10-5 моль) - является ингибитором агрегации. Кроме того, ПГЕ, оказывает ингибиру-ющий эффект на лимфоциты и другие клетки, принимающие участие в воспалительных и аллергических реакциях.

Рис. 6. Деэндотелизация при спонтанной репарации эндотелия не сопровождается адгезией тромбоцитов к сосудистой стенке, по-видимому, из-за облака простациклина, формирующегося пристеночно в зоне гликокаликса

 Молекулярный каскад образования простациклина и тромбоксана

В эндотелиальных клетках, активированных тромбоцитах и других клетках из мембранных фосфолипидов под действием фосфолипаз освобождается арахидоновая кислота, которая в свою очередь является предшественником эйкозанои-дов - кислородсодержащих производных. В эндотелиальных клетках из полиненасыщенной ара-хидоновой кислоты при участии специфического мультиферментного комплекса циклооксигеназы синтезируются простациклин и ряд активных про-стагландинов (рис. 8).

В тромбоцитах при активации фосфолипаз из образующейся арахидоновой кислоты синтезируется в основном тромбоксан (ТХА,), он оказывает выраженный сосудосуживающий эффект и является мощным стимулятором адгезии тромбоцитов. Механизм действия ТХА связан с активацией фос-фоинозитольного механизма и с прямым эффектом по увеличению проницаемости плазматической мембраны для ионов Са2+. ТХА2, связывая Са2+ своими гидрофобными группами, обеспечивает перенос его через мембраны, тем самым оказывается выраженный прямой эффект на гладкомышечные клетки сосудов и бронхов. Его вазоконстрикторный эффект такой же, как у ангиотензина II, что делает ТХА2 важнейшим местным регулятором распределения крови и стимулятором гемостаза.

В лейкоцитах арахидоновая кислота является предшественником липоксигеназного пути образования лейкотриенов (ЛТА4, ЛТВ4, ЛТС4, ЛТD4, ЛТЕ4).

Рис. 7. Эндотелий ингибирует активацию тромбоцитов за счет выработки простациклина


Сосудистая стенка

Рис. 8. Каскад метаболитов, образующихся из арахидоновой кислоты. Арахидоновая кислота освобождается из фосфолипидов клеточных мембран за счет ферментов фосфолипизы А2 или фосфолипазы С. В эндотелиальных клетках и тромбоцитах с участием циклооксигеназы синтезируются эндоперекиси ПГG2 и ПГН2, в лейкоцитах под влиянием липок-сигеназы образуются лейкотриены, Из эндоперекисей в эндотелии образуется антиагрегант простациклин (ПП2) и ряд других простагландинов, в тромбоцитах - проагрегант тромбоксан (ТХА2)

На молекулярный каскад образования про-стациклина и тромбоксана влияет ряд лекарственных препаратов, часто применяемых в терапии (рис. 9). Стероидные гормоны, используемые как противовоспалительные средства, ингибируют фосфолипазы, при этом угнетается образование широкого спектра медиаторов из фосфолипидов клеточных мембран, в том числе медиаторов воспаления и продуктов каскада арахидоновой кислоты. Поэтому наряду с противовоспалительным стероидные гормоны оказывают ряд эффектов, в том числе и на систему гемостаза. Ацетилсалициловая кислота (аспирин) ацетилирует и ингиби-рует фермент циклооксигеназу в тромбоцитах и эндотелиальных клетках, что способствует инги-бированию синтеза в них соответственно тромбоксана (ТХА) и простациклина (ПГI2). Инактивация происходит очень быстро и практически необратимо. Тромбоциты не способны ресин-тезировать циклооксигеназу (они получают ее из

 мегакариоцитов), тогда как метаболически активные эндотелиальные клетки вновь ресинтезиру-ют циклооксигеназу и восстанавливают образование ПГI2 Поэтому ацетилсалициловая кислота в низких дозах широко используется для лечения и как профилактическое средство артериальных тромбозов. Однако не следует применять ее в высоких дозах, так как при этом тормозится образование простациклина, что блокирует ее антитром-ботическое действие и может привести к тромбозу.

Тромбомодулин

Антикоагулянтная активность эндотелия связана также с наличием специфического мембранного белка - тромбомодулина. На поверхности ин-тактного эндотелия содержится значительное количество ТМ. Тромбомодулин с высокой аффинностью связывает тромбин, меняя «направленность» его действия. Комплекс тромбин-тромбо-


Сосудистая стенка

 

Рис. 9. Механизм влияния стероидных и нестероидных противовоспалительных препаратов на ферменты каскада образования тромбоксана и простациклина. Стероиды, подавляя активность фосфолипаз, угнетают образование широкого спектра медиаторов воспаления и продуктов каскада арахидоновой кислоты, Ацетилсалициловая кислота и ее аналоги ингибируют циклооксигеназу: в малых дозах влияют в основном на тромбоциты и оказывают антиагрегантный эффект, а в высоких концентрациях подавляют образование простациклина в эндотелии и оказывают проагрегантное действие

 модулин активирует протеин С (рис. 10). Последний в комплексе с протеином S ингибирует активные факторы каскада коагуляции Va и Villa. Кроме того, комплекс тромбин-тромбомодулин подвергается эндоцитозу эндотелиальными клетками с последующей деградацией тромбина в эн-дотелиоците и рециркуляцией тромбомодулина на клеточную поверхность.

Другой функцией комплекса тромбин-тромбомодулин является активация прокарбоксипеп-тидазы Y до активного ингибитора - карбокси-пептидазы Y или тромбин-активируемого ингибитора фибринолиза (TAFI), который замедляет фибринолиз.

В норме ТМ связан с мембраной эндотелио-цитов и практически отсутствует в циркуляции. Появление сколько-нибудь значимой концентрации ТМ в токе крови свидетельствует о повреждении эндотелиальных клеток. Повышение ТМ наблюдается при системной красной волчанке, ДВС-синдроме, респираторном дистресс-синдроме взрослых, эмболии легочной артерии, инфаркте миокарда, после использования тромболити-ков при инфаркте миокарда, при диабетической микроангиопатии, после транслюминальной ангиопластики коронарных артерий. Значение ТМ для регуляции гемостаза имеет клинические под-

Рис. 10. Прокоагулянтный и антикоагулянтный эффекты тромбина. Тромбин оказывает прямой активирующий эффект на факторы V и VIII и инактивирующее действие на факторы Va и VIIIa. Фактор VIII может быть активирован высокими концентрациями фактора IXa или следовыми концентрациями тромбина. В то же время тромбин в комплексе с тром-бомодулином стимулирует антикоагулянтный эффект протеина С. Эти формы регуляции существенны для эффективного участия факторов Va и Villa в процессах свертывания крови


Сосудистая стенка

тверждения. Некоторые мутации гена ТМ сопровождаются артериальными тромбозами, определенный полиморфизм ТМ имеет значение в развитии инфаркта миокарда.

Другие антикоагулянты. Эндотелий синтезирует и постоянно высвобождает в плазму инги-

 битор пути тканевого фактора (ИПТФ), роль которого в гемостазе будет описана ниже.

Фибринолиз. Роль эндотелиоцитов в фибри-нолизе связана с синтезом тканевого и урокиназ-ного активаторов плазминогена (см. ниже).

 

Прокоагулянтная роль эндотелия, регуляция сосудистого тонуса

В ответ на различные стимулы эндотелиоци-ты отвечают активацией и изменением направленности воздействия на гемостаз. Наиболее значимыми стимулами, активирующими эндотелиоци-ты, являются воспалительные цитокины, эндотоксины, тромбин, гистамин, гипоксия, свободные радикалы кислорода, турбулентные потоки крови, внутриклеточные инфекционные агенты, механические повреждения, иммунные комплексы и др.

У стимулированных эндотелиальных клеток появляются прокоагулянтные и провоспалитель-ные свойства:

Стимулированные эндотелиоциты могут
представлять на своей поверхности тканевой
фактор (ТФ). Этот процесс был исследован
in vitro и частично подтвержден in vivo в сосу
дах некоторых злокачественных опухолей.

На стимулированных эндотелиальных клет
ках снижается количество тромбомодулина.

Они начинают секретировать ингибитор ак
тиватора плазминогена.

Из пула хранения эндотелиоцитов (тельца
Вейбла-Паллада) высвобождается фактор
Виллебранда. Наиболее активными стимула
ми высвобождения фактора Виллебранда яв
ляются тромбин и гистамин.

Происходит изменение фосфолипидного со
става наружной поверхности мембраны эндо
телиальных клеток с появлением рецепторов
для ферментных комплексов коагуляционно-
го каскада.

В дополнение к ферментам классического
коагуляционного каскада эндотелиальные
клетки вырабатывают ряд дополнительных
энзимов, в том числе гипоксия-индуцирован-
ный активатор фактора
X, липополисахарид-
индуцируемый активатор протромбина.
Помимо прямого влияния активированных

эндотелиальных клеток на гемостаз, существует

 обратное влияние белков гемостаза на эндотелиальные клетки. Комплекс фактор VIIa - ТФ, тромбин, фактор Ха, возможно, и другие факторы передают сигналы на эндотелиоциты, вызывающие различные реакции со стороны клетки и выработку медиаторов, влияющих на глубокие слои сосудистой стенки, в частности на гладкомышечные клетки медии.

Роль эндотелия в регуляции сосудистого тонуса

В течение нескольких секунд после повреждения сосудистой стенки происходит сокращение поврежденного и соседних кровеносных сосудов, свободные края сосуда вокруг повреждения вворачиваются внутрь кровеносного русла, при этом кровоток в месте повреждения частично перекрывается. Ведущую роль в модуляции этих изменений выполняет эндотелии.

Эндотелии (ЕТ) - пептидный гормон, состоящий из 21 аминокислоты, относится к группе ци-токинов, имеет 3 изоформы (ЕТ-1, ЕТ-2 и ЕТ-3). Образуется эндотелии из предшественника пре-про-ЕТ (который иногда обозначается как большой эндотелии) при участии металлопептида-зы - эндотелинпревращающего фермента.

В низких концентрациях эндотелии действует на эндотелиальные рецепторы, вызывая высвобождение факторов релаксации, а в более высоких - активирует рецепторы на гладких мышечных клетках, стимулируя стойкую вазокон-стрикцию.

ЕТ-1 - наиболее сильный вазоконстриктор из всех известных факторов, доминирует в эндотелиальных клетках сосудов человека. Он также присутствует в небольших количествах в гладких мышечных клетках (ГМК) и кардиомиоцитах. ЕТ не хранится в клетках, а постоянно синтезируется de novo. Синтез ЕТ и освобождение его из эн-


Сосудистая стенка

 дотелиальных клеток стимулируют тромбин, адреналин, ангиотензин, вазопрессин, некоторые цитокины.

Большая часть ЕТ секретируется внутрь сосудистой стенки, где расположены специфичные высокоаффинные рецепторы. ЕТ, секретируе-мый наружу, взаимодействует с собственными рецепторами на клеточной мембране, а также стимулирует ангиотензинпревращающий фермент (АПФ), который переводит неактивный ангиотензин I в вазоконстриктор ангиотензин II (рис. 11).

Рецепторы для эндотелина сопряжены с G-бел-ками, присутствуют в 2 формах: ЕТ-А и ЕТ-В. Рецепторы ЕТ-А характеризуются высокой аффинностью и постоянно экспрессированы в миокарде на ГМК сосудов. Они обеспечивают прямое вазоконстрикторное действие эндотелина за счет активации поступления Са2+ в клетку через неселективные ионные каналы. Рецепторы ЕТ-В экспрессированы на эндотелиальных клетках и ГМК в отдельных сосудистых бассейнах. Стимуляция ЕТ-В сопровождается освобождением N0 (вазодилататор), тромбоксана (вазоконстриктор) и PGI2 (вазодилататор). Таким образом, один и тот же фактор реализует две противоположные сосудистые реакции (сокращение и расслабление), вызываемые различными химическими механизмами.

 Доказано, что дисбаланс эндотелий-зависимой сократимости и релаксации сосудов при артериальной гипертензии может способствовать повышению общего периферического сопротивления сосудов (ОПС) и появлению сердечно-сосудистых осложнений. Характерно увеличение эндотелина крови с возрастом. Наиболее высокий уровень эндотелина отмечен при атеросклерозе, неспецифическом аортоартериите, облите-рирующем тромбангиите, т. е. при заболеваниях, протекающих с повреждением эндотелия. Поскольку эндотелии действует преимущественно местно, естественно предположить, что повышенное образование и поступление его в кровь может быть причиной возникновения и усугубления тяжести течения ИБС.

Мы исследовали чувствительность лабораторных тестов повреждения сердечно-сосудистой системы у пациентов с нестабильной стенокардией (п = 11, возраст 60,7 ± 9,9 года) в состоянии компенсации. Все пациенты в течение, по крайней мере, 1 года находились на низкокалорийной диете и корригирующей терапии гиполипидемически-ми препаратами, в том числе статинами. В группу сравнения входили практические здоровые люди (п = 13), средний возраст которых был 27,4 ± 1,5 года. Результаты измерений уровня эндотелина-1 и липидных показателей сыворотки представлены в табл. 2.

Рис. 11. Эндотелии - основной вазоконстриктор сосудистой стенки, вырабатывается и реализуется сосудистым эндотелием. ЕТ - эндотелии, AI и АII - ангиотензин I и II, АПФ - ангиотензинпревращающий фермент, ЕТ-А и ЕТ-В - рецепторы к эндотелину

Сосудистая стенка

Таблица 2

Сравнительная характеристика эндотелина и липидов у пациентов с нестабильной стенокардией

Значения приведены из инструкции к набору Parameter-Human Endothelin-1 Assay производства R&D System Inc., США.

У пациентов с нестабильной стенокардией после длительного срока наблюдения и интенсивной терапии (более 1 года приема статинов) удалось достичь целевых уровней основных показателей липидограммы для вторичной профилактики сердечно-сосудистых заболеваний, хотя эти показатели были выше, чем у здоровых молодых людей. В то же время уровень ЕТ-1 у пациентов был выше не только показателей группы сравнения, но и рекомендуемого референтного значения. Это расценивается как свиде-

 тельство того, что, несмотря на интенсивную терапию, у больных сохраняется активный процесс дисфункции эндотелия. Поэтому пациенты с нестабильной стенокардией, даже при условии нормализации показателей липидного обмена, должны быть под наблюдением кардиолога. В свою очередь, определение ЕТ-1 можно рекомендовать в качестве лабораторного теста активности процесса повреждения сосудистой стенки и, следовательно, прогноза течения болезни.

Субэндотелий

В состав субэндотелиальной базальной мембраны (рис. 12) входят различные типы коллагена, фибронектин, витронектин, ламинин, про-теогликаны, гликозаминогликаны, тромбо-спондин, фактор Виллебранда, а в местах повреждения и воспаления - фибрин. Большая часть этих компонентов синтезируется и секре-тируется эндотелиальными клетками, однако перициты и ГМК также вносят свой вклад в формирование внеклеточного матрикса. Внеклеточные белки субэндотелия играют важную роль в межклеточном взаимодействии, формировании скелета сосуда, процессе клеточной адгезии, репарации и росте сосудов.

Субэндотелий является стимулятором адгезии тромбоцитов и активации каскадной системы свертывания крови.

Прокоагулянтные свойства клеток субэндотелия (макрофагов, фибробластов, лейкоцитов и гладких мышечных клеток) обусловлены наличием на их поверхности тканевого фактора. Колла-

 

Рис. 12. Субэндотелий сосудистой стенки организован полимерными белками: коллагеном, эластином и другими, Субэндотелий обладает выраженным тромбогенным эффектом, стимулируя процессы свертывания крови

ген субэндотелия является субстратом для адгезии тромбоцитов. Связь коллагена с рецепторами тромбоцитов вызывает активацию последних. Помимо этого, коллаген, видимо, обладает свойством активировать белки системы контактной активации.


Сосудистая стенка

Тканевой фактор

Тканевой фактор (ТФ) - трансмембранный белок (рис. 13), локализованный на клетках субэндотелия (фибробластах, макрофагах, гладких 18 мышечных клетках). Предположительно ТФ есть на базальной мембране эндотелиоцитов, а на апикальной мембране он может появляться после активации клеток. ТФ в норме нет на поверхности циркулирующих лейкоцитов или эритроцитов.

Роль ТФ в процессе свертывания крови очень велика. При связывании фактора VIla с ТФ формируется активный комплекс, который в присутствии ионов Са2+ активирует фактор X. По современным представлениям этот процесс является основным физиологическим путем запуска процесса свертывания крови.

ТФ обладает очень большой тромбогенной активностью. При патологии он выявлен на некоторых опухолевых клетках. Это является одним из факторов риска развития тромбоза при онкологических заболеваниях.

Изначально ТФ классифицировали как один из плазменных факторов свертывания (тканевой тромбопластин, ф.Ш). Исследования показали, что ТФ фиксирован на клеточной мембране и в физиологических условиях не поступает в кровоток, поэтому он был исключен из классификации плазменных факторов гемостаза.

ТФ присутствует практически во всех тканях, кроме сухожилий. Атеросклеротические бляшки и моноциты после стимуляции липополисахари-дами (например, клеточной мембраной бактерий)

Рис. 13. Формирование активного комплекса внешнего пути активации свертывания на тканевом факторе, ТФ -тканевой фактор, VIIa - активный фактор VII свертывания крови (протеолитический фермент), X - неактивный фактор X свертывания крови (субстрат)

 или ИЛ-1 могут генерировать ТФ. После повреждения или после стимуляции клеток ТФ может экспонироваться или вновь синтезироваться. Физиологическими стимуляторами синтеза ТФ являются такие цитокины, в том числе ИЛ-1, фактор некроза опухоли (ФНО), фрагмент комплемента С5а и др. Повышение экспрессии ТФ на моноцитах обнаружено при воспалении, сепсисе, опухолях, при сердечно-сосудистой патологии, особенно у больных, перенесших инфаркт миокарда, после экстраваскулярной циркуляции крови. Имеются отдельные сообщения, что стероидные контрацептивы, принимаемые внутрь, курение вызывают повышение ТФ в системе циркуляции, что увеличивает риск тромбоза.

Определение экспрессии ТФ на моноцитах проводят методом проточной цитометрии. Есть предположения, что этот метод для оценки состояния гиперкоагуляции в будущем может заменить коагулометрические методы, проводимые на цельной крови.

Коллаген

Коллагены - наиболее распространенные белки в организме животных. Они составляют 25% от общего количества белка. Коллагены образуют нерастворимые нити (фибриллы), которые входят в состав межклеточного матрикса и соединительных тканей.

Типичная молекула коллагена состоит из трех полипептидных цепей разных типов (а-спи-ралей), скрученных в виде правой тройной спирали. В свою очередь полипептидные цепи построены из часто повторяющихся фрагментов, имеющих характерную последовательность -Gly-X-Y-. Каждым третьим аминокислотным остатком является глицин. Пролин (Pro) часто встречается в положениях X, положение Y может быть занято как пролином, так и 4-гидрокси-пролином (4Нур). Кроме того, молекула коллагена содержит остатки 3-гидроксипролина (ЗНур) и 5-гидроксилизина (5Ну1). Присутствие в полипептидной цепи остатков гидроксиаминокис-лот является характерной особенностью коллагена. Остатки пролина и лизина гидроксилиру-ются посттрансляционно, т. е. после включения в полипептидную цепь. На одном из концов молекула коллагена сшита поперечными связями,


Сосудистая стенка

образованными боковыми цепями остатков лизина. Количество поперечных связей возрастает по мере старения организма. Известно, по крайней мере, 12 вариантов коллагена, характеризующихся различным сочетанием полипептидных ос-цепей. Молекулы коллагенов обладают свойством спонтанно агрегировать с образованием более сложных структур, микрофибрилл и фибрилл. Большинство коллагенов образуют фибриллы цилиндрической формы (диаметром 20-500 нм) с характерными поперечными полосами, повторяющимися через каждые 64-67 нм.

В гемостазе коллагены выполняют несколько важных функций: •     Они образуют эластичный «каркас» сосуда и

во многом определяют его прочность, устой-

 чивость к нагрузкам и реологические характеристики.

Типы III и VI коллагена обладают высокой прокоагулянтной активностью, связывая с высокой аффинностью фактор Виллебранда, и тем самым обеспечивают адгезию тромбоцитов.

Типы I и IV коллагена непосредственно взаимодействуют с тромбоцитарным рецептором GPIa-IIa, следствием чего также является адгезия тромбоцитов. Типы I, III, IV и V коллагена активируют тромбоциты, воздействуя непосредственно на тромбоцитарные рецепторы или опосредованно через фактор Виллебранда. Это влечет за собой изменение формы тромбоцитов, их адгезию и дегрануляцию.

 

КАФЕДРА

клд

 ЦИКЛЫ ТЕМАТИЧЕСКОГО УСОВЕРШЕНСТВОВАНИЯ

«МЕТОДЫ ИССЛЕДОВАНИЯ СИСТЕМЫ ГЕМОСТАЗА»

Циклы тематического усовершенствования «Методы исследования системы гемостаза» более 20 лет систематически проводятся на кафедре клинической лабораторной диагностики Российской медицинской академии последипломного образования для заведующих и врачей клинической лабораторной диагностики.

В программу циклов включены лекции по наиболее актуальным проблемам гемостаза, семинары по вопросам организации исследований гемостаза, разбору клинических случаев, интерпретации коагулограммы. На практических занятиях в малых группах осваиваются и отрабатываются лабораторные методы исследования гемостаза. К работе цикла привлекаются производители оборудования и реагентов с информацией о новейших разработках в этой области, организуются посещения ведущих лабораторий Москвы.

Продолжительность циклов 2 недели, иногородним предоставляется общежитие гостиничного типа, по окончании выдаются свидетельства о повышении квалификации государственного образца.

Заявки для участия в циклах усовершенствования принимаются:

по почте: 125424, Москва, а/я 32 (кафедра КЛД)

по факсу (095) 945-84-00 или телефону (095) 945-82-22

по электронной почте: kafedra-kdl@list.ru


Тромбоциты

 ТРОМБОЦИТЫ

Тромбоцитопоэз

Дифференцировка и созревание клеток мега-кариоцитопоэза происходят в костном мозге, где из коммитированных, морфологически неиденти-фицируемых клеток-предшественников (КОЕ-Мгкц) формируются колонии мегакариоцитар-ных клеточных элементов. При созревании клетки проходят три морфологически дифференцируемые стадии: мегакариобласт, который не превышает 10% всей популяции, промегакариоцит (около 15%) и мегакариоцит (рис. 14) - на его долю приходится от 75 до 85%.

Процесс дифференцировки мегакариоцитар-ных элементов продолжается около 25 часов, такое же примерно время (около 25 часов) составляет созревание, а весь жизненный цикл - около 10 суток. Отличительной чертой клеточных элементов мега-кариоцитопоэза является их способность к эндоми-тозу (полиплоидизации) - делению ядра без разде-

Рис. 14. Мегакариоцит, диаметр 30-40 мкм. Ядро темно-фиолетового цвета, лопастное, с бухтообразными вдавле-ниями, фрагментированное. Хроматин распределен неравномерно, Цитоплазма обильная, содержит обильную зернистость

 ления цитоплазмы, что приводит к появлению гигантского размера клеток (мегакариоцитов). В процессе мегакариоцитопоэза (рис. 15) клетки проделывают от 3 до 6 эндомитозов, что соответствует плоидности мегакариоцита от 8 п до 64 п.

Регуляция мегакариоцитопоэза осуществляется по принципу обратной связи: избыток тромбоцитов в крови тормозит тромбоцитопоэз, а тром-боцитопения его стимулирует. Основными регуляторами, стимулирующими мегакариоцитопоэз, являются ИЛ-1, ИЛ-3, ИЛ-4, ИЛ-6, ИЛ-11, фактор стволовых клеток, лейкоз-ингибирующий фактор, гранулоцитарно-макрофагальный колониестиму-лирующий фактор (ГМ-КСФ), гранулоцитарный колониестимулирующий фактор (Г-КСФ), эритро-поэтин, тромбопоэтин. К факторам, ингибирую-щим тромбоцитопоэз, относят тромбоцитарный фактор 4, трансформирующий фактор роста Рр ин-терфероны-а и -у и другие ингибиторы.

В а-гранулах мегакариоцитов содержится значительное количество белков: фактор Вилле-бранда, тромбоцитарный фактор 4, тромбоспон-дин, фибриноген, фибронектин, тромбоцитарный ростовой фактор, трансформирующие ростовые факторы, тромбоцитарный ингибитор коллагена-зы. Основная масса их синтезируется в мегакарио-цитах, некоторые белки, такие, как альбумин, фибриноген, IgG, поступают в клетку путем эн-доцитоза. Способность зрелых мегакариоцитов к эндоцитозу проявляется в явлении эмпириопо-лезиса, суть которого заключается в захвате ге-мопоэтических клеток. Частота его возрастает при злокачественных новообразованиях. Тромбо-цитарная пероксидаза присутствует на всех стадиях созревания клеток мегакариоцитарной линии, включая тромбоциты. Мегакариоциты, синтезируя трансформирующий ростовой фактор (3,


Тромбоциты

Рис. 15. Схема регуляции мегакариоцитопоэза. Внизу рисунка показаны периоды стимулирующего действия на мега-кариоцитоз основных стимуляторов. LIF - лейкоз-ингибирующий фактор, ТРО - тромбопоэтин

участвуют в накоплении коллагена и развитии фиброза.

Основная функция мегакариоцитопоэза -репопуляция тромбоцитов, поддержание их количества в кровотоке на постоянном уровне. Мегакариоциты располагаются в костном мозге вблизи костно-мозговых синусов и по мере созревания внутрь клетки врастают раздели-

 тельные мембраны, по которым в дальнейшем происходит деление цитоплазмы на тромбоциты. Существует точка зрения, что цитоплазма-тические отростки мегакариоцита (в виде лент диаметром 2-4 мкм) через миграционные поры проникают в синусы костного мозга, где и происходит отшнуровка тромбоцитов (тромбоци-тообразование).

Жизненный цикл тромбоцитов

Около 1/3 всей массы тромбоцитов находится в селезенке (селезеночный пул): при спленомегалии этот пул возрастает, что может приводить к перераспределительной тромбоцитопении. При стимуляции адренорецепторов (физическая нагрузка, стресс) происходит выброс тромбоцитов в циркуляцию, что приводит к кратковременному тромбо-цитозу (рис. 16). После спленэктомии также в течение некоторого времени наблюдается тромбоцитоз, который иногда достигает очень больших величин (до 800-1200 х 107л). Остальные 2/3 тромбоцитов циркулируют в крови. Средняя продолжительность жизни тромбоцитов составляет 9-10 суток.

Референтные значения. У здорового человека количество тромбоцитов может несколько менять-

 ся в течение суток. Нормальное содержание тромбоцитов в крови колеблется в пределах 150-320 х 109/л. (В последнее время в связи с поступлением на отечественный рынок зарубежных гематологических счетчиков и анализаторов, в инструкции к которым даются зарубежные нормы, стали приводить значения нормального содержания тромбоцитов в диапазоне от 150 до 450 х 109/л.)

При отсутствии в крови гемопоэтических стимулов общий объем циркулирующих тромбоцитов довольно постоянен. В патологических условиях количество и объем тромбоцитов могут меняться (рис. 17). При снижении продукции тромбоцитов гемостатический потенциал может быть частично компенсирован за счет


Тромбоциты

 Рис. 16. Жизненный цикл тромбоцитов. Тромбоциты образуются в костном мозге из мегакариоцитов, примерно 2/3 периферического пула находится постоянно в системе циркуляции, 1/3 - в селезенке. При стимуляции адрено-рецепторов может возникнуть временный тромбоцитоз из-за выброса тромбоцитов в систему циркуляции из костного мозга и селезенки, Опустошение тромбоцитов в селезенке происходит и при ДВС-синдроме при тромбоцитопе-нии потребления, в последнем случае могут появляться макротромбоциты с недостаточными функциональными свойствами адгезии и агрегации - возникает тромбоцитопатия

Рис. 17. Тромбоциты в периферической крови: А - нормальные тромбоциты, Б - анизоцитоз тромбоцитов при хроническом моноцитарном лейкозе (нарушение дифференцировки на уровне полипотентных коммитированных предшественников мегакариоцитопоэза), В - гигантские тромбоциты (макротромбоциты) при аутоиммунной тромбоцитопении

повышения их объема. В обратной ситуации, при повышении количества тромбоцитов выше 450 х 109/л, объем тромбоцитов не снижается ниже определенного физиологического уровня. Соответственно общий объем тромбоцитарного пула в крови возрастает пропорционально увеличению количества тромбоцитов. Это может

 приводить к увеличению тромбогенного потенциала.

С помощью автоматических гематологических анализаторов можно измерить средний объем тромбоцитов (MPV), дисперсию распределения тромбоцитов по объему (RDW) и оценить гистограмму распределения тромбоцитов по объему.

Структура тромбоцитов

Тромбоцит - безъядерная сферическая клетка диаметром 2-4 мкм, средний объем 7,5 мкм3 (от 3 до 10 мкм3, или фл-фемтолитры). Микроформы тромбоцитов имеют диаметр менее 1,5 мкм,

 макроформы могут достигать 6-10 мкм. Интакт-ные тромбоциты имеют форму диска или пластины диаметром 2,8-3,4 мкм, толщиной 0,8-1,2 мкм и объемом от 5,7 до 8,9 мкм3 (рис. 18). В циркули-


Тромбоцит

Рис. 18. Тромбоцит (рисунок и микрофотография). Интактные тромбоциты имеют форму диска, В цитоплазме расположены митохондрии, пероксисомы (содержат каталазу), включения гликогена, лизосомы и гранулы, содержащие пулы хранения различных веществ

рующем пуле преобладают зрелые пластинки ди-     ляют 1-10%, а «старые» - микротромбоциты ме-аметром 2-3 мкм (80-95%), «молодые» формы -    нее 2 мкм - 3-15%. макротромбоциты размером свыше 3 мкм - состав-

Мембрана и цитоскелет тромбоцитов

Структура поверхностной мембраны тромбоцита сложна. Наружная поверхность тромбоцита покрыта гликокаликсом, богатым глико-протеинами. В пространствах многослойной мембраны расположены микротрубочки, формирующие цитоскелет тромбоцита. Цитоплазмати-ческая мембрана тромбоцитов внедряется внутрь клетки с образованием многочисленных переплетенных канальцев, связанных с внеклеточным пространством. Эта система называется «связанной с поверхностью канальцевой системой», или «открытой канальцевой системой» (ОКС). Обнаружено, что на поверхности мембраны ОКС имеются те же гликопротеиды, что и на внешней мембране тромбоцитов. Таким образом, ОКС значительно увеличивает активную тромбоцитарную поверхность, что важно при изменении формы тромбоцита во время его активации.

 Непосредственно в подмембранном пространстве расположены плотные микротрубочки, образующие особую плотную микротубуляр-ную систему (ПМТС), не связанную с внеклеточным пространством. ПМТС развивается из ме-гакариоцитарного эндоплазматического ретику-лума. Эта система является местом депонирования кальция и синтеза простагландинов. Кроме того, образуя концентрические субмембранные структуры, ПМТС является частью цитоскелета тромбоцитов.

Важное свойство мембраны интактных тромбоцитов - это разный фосфолипидный состав наружной и внутренней поверхности. Основные фосфолипиды, входящие в состав тромбоцитов, можно разделить на 2 группы: 1) не обладающие прокоагулянтной активностью холиновые: фос-фатидилхолин (ФХ) и сфингомиелин (СФ), 2) обладающие прокоагулянтными свойствами кис-


Тромбоциты

 лые: фосфатидилсерин (ФС), фосфатидилэтано-ламин (ФЭ) и фосфатидилинозитол (ФИ). Фос-фолипиды первой группы распределены как на наружней, так и на внутренней поверхности клеточной мембраны неактивированных тромбоцитов. Фосфолипиды второй группы в неактивированных тромбоцитах локализованы преимущественно на внутренней поверхности клеточной мембраны. В процессе активации тромбоцита концентрация ФС, ФЭ и ФИ на наружной поверхности значительно возрастает и образует прокоагулянтную поверхность, необходимую для фиксации, активации и взаимодействия плазменных белков гемостаза. Кроме того, это перераспределение меняет вязкость клеточной мембраны, что тоже важно для протекания гемостатических реакций. Кислые фосфолипиды мембраны тромбоцитов - ФС, ФИ и ФЭ называют фактором 3 тромбоцитов (ф.З, PF3), или тромбоцитарным тромбоплас-тином.

Помимо ПМТС, цитоскелет тромбоцитов образуют нити актина, спектрина и других протеинов, связанные с мембраной и пронизывающие тромбоцит во всех направлениях.

Функциями белков цитоскелета тромбоцитов являются:

поддержание формы интактных тромбоци
тов;

изменение формы при активации тромбоци
тов;

«фиксация» плазматической части трансмем
бранных гликопротеидов;

передача сигнала от внутренних структур к
рецепторам;

участие в «направленном» внутритромбоци-
тарном движении органелл, белков;

передача внутриклеточных сигналов.

Рецепторы мембраны тромбоцитов

Специфические функции тромбоцитов в гемостазе требуют активного взаимодействия с другими клетками, плазменными белками и небелковыми веществами. Роль посредника между тромбоцитом и различными факторами внешней среды, в том числе другими участниками процесса гемостаза, играют рецепторы тромбоцитов.

 На поверхности каждого тромбоцита расположено значительное количество различных рецепторов. В самом тромбоците имеется сложная система передачи и обработки сигналов, поступающих извне.

Большинство рецепторов являются гликопро-теинами (ГП), фиксированными на цитоплазмати-ческой мембране тромбоцита. Один конец молекулы рецепторных ГП находится во внеклеточном пространстве, а другой «пронизывает» мембрану и контактирует со структурами тромбоцита, расположенными на внутренней стороне ци-топлазматической мембраны. На наружных частях ГП молекул располагаются рецепторные ло-кусы (рис. 19), специфичные для разных веществ (лигандов). Лиганды - вещества, которые могут специфически взаимодействовать с рецептором, вызывать его конформационные изменения и таким образом модулировать функциональную активность тромбоцита.

Каждый рецептор имеет один или несколько физиологических агонистов и может связывать их с высокой или с низкой аффинностью.

В табл. 3 представлены данные об основных рецепторах на поверхности тромбоцитов и их агонистах.

Рис. 19. Поверхностные гликопротеиновые (GP) рецепторы тромбоцита. На наружных частях молекул гликопро-теинов располагаются рецепторные локусы. Молекула ре-цепторного гликопротеина «пронизывает» мембрану. После соединения рецепторных локусов с лигандами создается сигнал активации, передающийся к внутренним частям тромбоцитов


Тромбоциты

Рецепторы на тромбоцитарной мембране

 Таблица 3

Мембранные рецепторы

Агонисты (лиганды)

Число рецепторов на 1 тромбоците

Рецепторы для высокомолекулярных белков

GPIb-V-IX

Фактор Виллебранда, тромбин

50 000

GPIIb-IIIa

Фибриноген, фактор Виллебранда, фибрин, фибронектин, витронектин, тромбоспондин

50 000

GPIc-IIa

Фибронектин, ламинин

1000

VN-R

Витронектин, тромбоспондин

100

GPIa-IIa

Коллаген

1000

GPIIIb

Тромбоспондин

GPVI

Коллаген

Рецепторы для физиологических стимуляторов

P2-R

АДФ

Выc. афф. 600 Низ. афф. 60 000

α2-adr-R

Адреналин

300

5-HT2-R

Серотонин

50

HrR

Гистамин

V,-R

Вазопрессин

Thr-R (STDR)

Тромбин

1700-2000

TP-R

Тромбоксан

1000-1700

 

Выс. афф. - высокоаффинные места связи, низ. афф. - низкоаффинные места связи.

Рецепторы для высокомолекулярных белков

Гликопротеиновый комплекс GPIb-V-IX тромбоцитов участвует в опосредованной фактором Виллебранда адгезии тромбоцитов к субэндотели-альным структурам и активации тромбоцитов.

Полипептидные цепи GPIba, GPIb(3, GPV, GPIX полностью расшифрованы по аминокислотной последовательности, известны их кодирующие гены. Характерной особенностью комплекса является включение в пептидные цепи 24 аминокислотных остатков с лейцином, которые находятся в строго определенных местах. Эти белки получили название богатых лейцином глико-протеинов (LRG - leucine rich glycoproteins).

Связывание фактора Виллебранда с GPIb-V-IX интактных тромбоцитов незначительно. Контакт молекулы фактора Виллебранда с субэн-дотелиальным слоем, особенно при воздействии высокой скорости кровотока, приводит к конфор-мационным изменениям в молекуле, что значительно повышает сродство фактора Виллебранда к GPIb-V-IX.

Нефизиологическими стимуляторами процесса взаимодействия фактора Виллебранда и GPIb-V-IX являются антибиотик ристомицин и протеин змеиного яда - ботроцетин. Ристомицин свя-

 зывается с богатым пролином участком молекулы фактора Виллебранда и с одним или более доменами GPIb на тромбоцитах, а ботроцетин -только с фактором Виллебранда. Эти воздействия приводят к аналогичным физиологическим кон-формационным изменениям молекулы фактора Виллебранда и GPIb-V-IX и резко увеличивают сродство между фактором Виллебранда и тромбоцитарной мембраной.

Тромбоцитарный GPIb-V-IX также является высокоаффинным местом связывания тромбина. Взаимодействие GPIb-V-IX с фактором Виллебранда и тромбином приводит к активации тромбоцитов.

При врожденной недостаточности рецептор-ного комплекса не происходит связывания с фактором Виллебранда (vWF), что характерно для болезни Бернара-Сулье.

Интегрины

Кроме богатых лейцином гликопротеинов, на мембране тромбоцитов находится большое количество адгезивных рецепторов, относящихся к семейству иншегринов. Интегрины - трансмембранные гликопротеины, характеризующиеся общно-


Тромбоциты

стью протеиновых цепей, антигенных свойств и функции. Они принимают участие во взаимодействии клетки с клеткой и клетки с субэндотелиаль-ным матриксом. Благодаря способности образовывать связи со многими белками интегрины участвуют в процессах распознавания, адгезии, миграции клеток на матриксе, репаративных, иммунных и других реакциях. К семейству интегринов относятся рецепторы к фибриногену, витронекти-ну, фибронектину, коллагену и другим белкам. Интегрины способны распознавать характерную аминокислотную последовательность RGD (трипеп-тид Arg-Gly-Asp), имеющуюся в лигандах. Эта последовательность присутствует во всех адгезивных белках крови, белках α-гранул тромбоцитов, фибриногене, факторе Виллебранда, фибронектине, витронектине, ламинине. Для соединения интегринов с лигандами типична зависимость от двухвалентных катионов Са2+ и Mg2+.

Комплекс GPIIb-IIIa является интегриновым рецептором тромбоцитов, который взаимодействует в первую очередь с фибриногеном (фиб-риногеновый рецептор). Это взаимодействие обеспечивает основной путь агрегации тромбоцитов друг с другом через «фибриновые мостики». При врожденном дефиците этого рецептора -тромбостении Гланцмана - резко нарушена или отсутствует агрегация тромбоцитов с большинством индукторов агрегации, в том числе коллагеном, тромбином, АДФ. Агрегация тромбоцитов с этими индукторами также отсутствует в плазме пациентов с афибриногенемией, если фибриноген отсутствует также и в пулах хранения самих тромбоцитов.

Наличие в комплексе GPIIb-IIIa мест распознавания RGD объясняет способность этого ин-тегрина соединяться с фактором Виллебранда, фибронектином, витронектином. Показано, что связь GPIIb-IIIa с фактором Виллебранда важна для эффективной агрегации тромбоцитов в условиях воздействия высоких скоростей кровотока. Ключевой особенностью комплекса GPIIb-IIIa является способность исполнять роль рецептора только на поверхности активированных тромбоцитов. Аффинность этого комплекса на поверхности неактивированных клеток очень низкая, а его антигенная характеристика отличается от таковой на активных тромбоцитах. Активация тромбоцитов приводит к значительному повышению аффинности и изменению антигенной характеристики GPIIb-IIIa.

Активированные тромбоциты могут связывать на своей поверхности более 40 000 молекул фибриногена посредством GPIIb-IIIa. Это взаимо-

Рис. 20. Тромбиновый рецептор тромбоцитарной мембраны, Схожее строение имеют рецепторы к АДФ, адреналину, серотонину, эйкозаноидам и другим низкомолекулярным соединениям. За счет нескольких петель рецептор имеет многофункциональный характер. Внутриклеточный С-конец взаимодействует с цАМФ-зависимой протеинкиназой, гидрофильные петли рецептора активируют опосредуемые G-белками внутриклеточные функциональные перестройки. Со стороны N-конца тромбин вызывает частичный протеолиз и тем самым активирует рецептор

Тромбоциты

действие происходит в присутствии двухвалентных катионов (Са2+) и поначалу является обратимым. Далее, по мере образования дополнительных кон-тактов, происходит стабилизация агрегата.

У 25% жителей Северной Европы в связи с полиморфизмом аллелей в GPIIIa имеется ассоциация В развитием ишемической болезни сердца и инфаркта миокарда в относительно молодом возрасте.

Использование ингибиторов для комплекса GPIIb-IIIa на ранних стадиях тромбоза приводит к быстрому восстановлению кровотока по тром-бированному сосуду и позволяет избежать инфаркта тромбированного органа.

Рецепторы для физиологических стимуляторов

Рецепторы для физиологических стимуляторов (тромбина, АДФ, адреналина, серотонина,

 эйкозаноидов и др.) представляют собой трансмембранные пептиды с 7 гидрофобными повторами, которые 7 раз пересекают плазматическую мембрану (рис. 20). Между ними расположены крупные гидрофильные участки, обращенные наружу и внутрь клетки. Цитоплазматический С-конец может фосфорилироваться протеинки-назами, прежде всего цАМФ-зависимой кина-зой. В цитоплазматических петлях находятся места связывания с системой G-белков, которые в качестве внутриклеточных посредников обеспечивают разнообразные физиологические реакции, в первую очередь освобождение внутреннего пула Са2+. Каждый активированный тром-биновый рецептор приводит к образованию нескольких внутриклеточных мессенджеров активации тромбоцитов.

 

Органеллы тромбоцитов

В цитоплазме тромбоцитов расположены митохондрии, пероксисомы (содержат катала-зу), включения гликогена, лизосомы и гранулы, содержащие пулы хранения различных веществ. В тромбоцитах выделяют 3 вида органелл хранения: а-гранулы, электронно-плотные тельца (8-гранулы) и лизосомы (у-гранулы). На рис. 21 представлены основные компоненты, которые могут освобождаться из гранул и цитозола тромбоцитов при действии разных стимуляторов.

В а-гранулах хранится до 30 различных белков, большинство из которых были синтезированы еще в мегакариоцитах: β-тромбоглобулин, фактор 4 тромбоцитов, фактор V, фактор Виллеб-ранда, фибриноген, тромбоспондин, фибронек-тин, витронектин, оц-макроглобулин, Р-селектин, фактор роста тромбоцитов (PDGF), ингибитор тканевого активатора плазминогена типа 1 (PAI-1), α2-антиплазмин, α1-антитрипсин, протеин S, лейкоцитарный хемотаксический фактор, высокомолекулярный кининоген и др. Участие белков α-гранул в физиологических и патологических процессах многостороннее: а) митогенный и хемотаксический эффекты; б) адгезивное действие, модулирование агрегации тромбоцитов; в) участие в пламенном гемостазе; г) вазоактивное действие; д) иммунные и другие эффекты.

 В плотных тельцах (5-гранулы) хранятся субстанции, вызывающие, прежде всего, сосудистые реакции и агрегацию тромбоцитов: адениловые

Рис. 21. Секретируемые факторы тромбоцитов присутствуют в тромбоцитах в 3 видах гранул хранения. Разные стимуляторы приводят к освобождению содержимого гранул тромбоцитов


Тромбоциты

 нуклеотиды (АТФ, АДФ, АМФ, ц-АМФ, ГДФ),

серотонин, адреналин, норадреналин, дофамин, гистамин, Са2+ и др. Высвобождающиеся из пула хранения АТФ и АДФ быстро метаболизируют-ся в плазме до АМФ и аденозина; последние обладают прямым коронарорасширяющим действием. АДФ является важнейшим физиологическим метаболитом, обеспечивающим первичный гемостаз, стимулируя агрегацию тромбоцитов.

В лизосомах (γ-гранулы) находятся гидролитические ферменты - пероксидаза, глюкозидазы, галактозидаза или β-глицерофосфатаза, кислая фосфатаза, неспецифическая эстераза. Лизосомы секретируют хранящийся в них секрет только при необратимой активации.

Тромбоциты способны секретировать содержимое гранул как частично при обратимой ак-

 тивации и в процессе трофических взаимодействий с органной капиллярной сетью, так и полностью при реакции освобождения, связанной с необратимой активацией. После дегрануляции цитоплазма тромбоцитов «опустошена». В неактивированных тромбоцитах цитоплазма может выглядеть «опустошенной» при врожденном дефекте заполнения гранул, приводящем к дефициту пула хранения - синдрому «серых» тромбоцитов.

После секреции большинство гранулярных мембран деградирует, гранулы не восстанавливаются, и тромбоциты теряют свою физиологическую активность. Если они находятся в токе крови, измененная форма способствует их быстрой элиминации в селезенке.

Тромбоцитарные факторы

Антигепариновый фактор тромбоцитов (фактор 4 тромбоцитов, ф.4, PF4)

PF4 является специфическим тромбоцитар-ным белком. PF4 синтезируется в мегакариоци-тах, хранится в α-гранулах, высвобождается после стимуляции тромбоцитов агонистами агрегации.

Физиологическая роль PF4:

Нейтрализация гепарина. Связывая с высо
ким сродством гепарин,
PF4 препятствует
взаимодействию гепарина с антитромбином.
Следствием этого является повышение про-
коагулянтного потенциала и усиление про
цесса образования тромбина.

Хемотаксис нейтрофилов и моноцитов.

Активация фибробластов.

Проагрегантная функция.

Нейтрализация коллагеназы.

На С-конце PF4 находятся две пары лизино-вых остатков, которые важны для соединения фактора с гепарином и нейтрализации последнего. Один тетрамер PF4 может соединяться с 1 молекулой гепарина низкой молекулярной массы (<10 кДа) и с 2 и более молекулами гепарансуль-фатов высокой молекулярной массы. Конкурентное связывание гепарансульфатов с PF4 нарушает его взаимодействие с антитромбином, ингиби-

 рует стимуляцию антитромбина PF4. Это ведет к снижению активности антитромбина и способствует формированию тромба.

PF4 способен подавлять коллагеназу. При врожденной недостаточности ос-гранул тромбоцитов и мегакариоцитов - синдроме серых тромбоцитов - на поздних стадиях этого заболевания происходит развитие фиброза. Это, вероятно, является следствием избыточной активности коллагеназы.

$-тром6оглобулин ф-ТГ,

(З-TG - белок а-гранул тромбоцитов, обладает выраженной хемотаксическои активностью по отношению к лейкоцитам. Его освобождение из тромбоцитов опосредовано циклооксигеназ-ной реакцией и происходит до секреции других белков.

После активации тромбоцитов освобождение из них β-TG и PF4 происходит в эквимолярных концентрациях. Однако PF4 быстро элиминируется из плазмы, связываясь с гликозаминоглика-нами, а β-TG относительно долго циркулирует, выделяясь через почки. Поэтому уровень в плазме β-TG в 3-6 раз выше, чем PF4. Влияние быстрой элиминации PF4 сохраняется и в патологических ситуациях, когда наблюдается значи-


Тромбоциты

гельное повышение β-TG и увеличение отношения (3-TG/PF4 (табл. 4).

Таблица 4

Содержание β-тромбоглобулина и фактора 4 тромбоцитов в плазме при патологии

Здесь и далее: Н - норма, t - увеличено, Tt - значительно увеличено, I - снижено.

У больных с тромбоцитопенией и тромбоци-тозом необходимо рассматривать уровень (3-TG и PF4 с учетом количества циркулирующих тромбоцитов. По отношению к числу тромбоцитов концентрация тромбоцитарных факторов в плазме повышена при ДВС-синдроме и при тромбо-тической тромбоцитопенической пурпуре, хотя абсолютные значения этих показателей могут быть в пределах нормальных значений.

Фактор роста тромбоцитов (PDGF)

PDGF синтезируется мегакариоцитами, в тромбоцитах содержится в α-гранулах. Каждая клетка содержит порядка 1000 молекул PDGF. Фактор является сильным стимулятором репарации поврежденных тканей.

В сосудистой стенке рецепторы к PDGF присутствуют на фибробластах и гладких мышечных клетках; PDGF стимулирует пролиферацию этих клеток, а также усиливает продукцию гликозами-ногликанов, коллагена и других элементов соединительной ткани. В настоящее время установлено, что рецепторы к PDGF имеются в клетках лимфо-идной (Т-лимфоциты) и миелоидной линии.

 Нарушение хранения PDGF в мегакариоци-тах костного мозга может быть причиной развития фиброза, в том числе сопровождающего мие-лопролиферативные заболевания. Некоторые опухолевые клеточные линии могут продуцировать PDGF, в частности остеосаркома, гепатома, некоторые карциномы, опухоли костного мозга. [3-цепь PDGF имеет характерные черты для основной структуры вируса саркомы. В связи с этим PDGF является важной составляющей сложных влияний тромбоцитов на онкогенез.

Фибриноген

Фибриноген α-гранул тромбоцитов составляет примерно 3% от плазменного пула, однако роль его в агрегации тромбоцитов, по-видимому, сопоставима со значением плазменного фибриногена. Тромбоциты получают фибриноген из ме-гакариоцитов, которые, в свою очередь, захватывают плазменный фибриноген, синтезированный гепатоцитами, или синтезируют определенное количество фибриногена de novo. Поэтому даже отмытые тромбоциты образуют агрегаты, включающие молекулы фибриногена. У больных с семейной афибриногенемией основным источником фибриногена являются тромбоциты.

Фактор V

Фактор V α-гранул тромбоцитов - коагуля-ционный белок, синтезируемый в мегакариоци-тах. Иммунологически фактор V тромбоцитов схож с фактором V плазмы, формирующим с фактором X протромбиназный комплекс. На долю фактора V тромбоцитов приходится 18-25% этого белка крови человека, однако его влияние на формирование протромбиназного комплекса весьма существенно. Описан врожденный геморрагический диатез, при котором единственным нарушением было наличие неактивной формы тромбоцитарного фактора V. Введение протромбиназного комплекса, сформированного из плазменных факторов, не корригировало геморрагических проявлений.

Фактор XIII

Фактор XIII - трансглютаминаза, участвующая в стабилизации фибринового сгустка и

 


Тромбоциты

формировании соединительной ткани. Все количество ф.ХШ распределяется примерно поровну между плазмой и тромбоцитами. Большая часть тромбоцитарного пула находится в цитоп-

 лазме клеток. Тромбоцитарный ф.ХШ синтезируется мегакариоцитами, плазменный пул - тканевыми макрофагами печени и гемопоэтических тканей.

Функция тромбоцитов

 Основными функциями тромбоцитов являются:

формирование первичной тромбоцитарной
пробки в зоне повреждения сосуда за счет ад
гезии и последующей агрегации;

катализ гуморальных реакций гемостаза за
счет:

а) предоставления фосфолипидной поверх
ности
(фактор 3 тромбоцитов или тром-
боцитарный тромбопластин),
необходи
мой для взаимодействия большинства
плазменных белков гемостаза;

б) выброса прокоагулянтов из пулов хране
ния;

• ретракция сгустка крови;

 • стимуляция локальной вазоконстрикции, ре
парации тканей, регулирование местной вос
палительной реакции за счет высвобождения
соответствующих медиаторов из пулов хра
нения тромбоцитов.

Формирование первичной тромбоцитарной пробки в зоне повреждения сосудов возникает вследствие процесса, который можно условно разделить на 3 стадии:

1 - адгезия тромбоцитов к субэндотелиаль-
ным структурам;

2 - активация этих тромбоцитов с выбросом
медиаторов из гранул хранения;

3 - агрегация тромбоцитов.

Адгезия тромбоцитов

На рис. 22 показаны адгезированные тромбоциты на участке деэндотелизации. Через несколько минут после повреждения сосудистой стенки формируется сплошной слой адгезиро-ванных и агрегированных тромбоцитов, которые являются основой тромбоцитарного тромба (рис. 23).

 В процессе адгезии важную роль играют 2 механизма. Один из них - непосредственная адгезия тромбоцитов через рецепторы GPIa-IIa и GPVI к коллагену субэндотелия. Однако это взаимодействие недостаточно для удержания тромбоцитов в местах воздействия высоких скоростей кровотока - артериях и артериолах. Другой ме-

Рис. 22. Адгезированные тромбоциты на поврежденной (деэндотелизированной) сосудистой стенке

 Рис. 23. Тромбоцитарный тромб, сформированный на поврежденной сосудистой стенке


Тромбоциты

ханизм, эффективно удерживающий тромбоциты при высокой скорости кровотока, включает адгезию тромбоцитов, опосредованную молекула-ми адгезии - фактором Виллебранда, фибронек-тином, витронектином, ламинином, тромбоспон-дином и др. In vivo оба эти механизма работают параллельно. Возможно, что первичный контакт тромбоцитов с субэндотелием осуществляется благодаря первому механизму, тогда как окончательная фиксация тромбоцитов происходит за счет формирования связей субэндотелий - фак-тор Виллебранда - GPIb-V-IX и связей, опосредованных другими молекулами адгезии.

Молекулы адгезии

Фактор Виллебранда (vWF) - один из самых больших гликопротеидов плазмы, имеет молекулярную массу от 540 до нескольких тысяч кДа, содержит в цепочке более 2000 аминокислот.

Ген фактора Виллебранда находится на коротком плече 12-й хромосомы. Синтез фактора Виллебранда происходит в эндотелиоцитах и мегака-риоцитах. Фактор Виллебранда из эндотелиоци-гов секретируется или в плазму, или в субэндоте-лиальное пространство; кроме того, он может содержаться в тельцах Вейбла-Палада эндотелиоци-тов (пулы хранения) и секретироваться после стимуляции эндотелиальных клеток. Фактор Виллебранда, синтезированный мегакариоцитами, содержится в альфа-гранулах тромбоцитов.

Информация о синтезе фактора Виллебранда получена в основном при изучении его в культурах эндотелиальных клеток. Первичный продукт синтеза, обозначаемый как пpe-пpo-vWF, найден в эндотелии и тромбоцитах, он иммуно-логически отличается от зрелого фактора Виллебранда. Его уровень снижен у пациентов с болезнью Виллебранда.

Пре-про-vWF содержит 2813 аминокислотных остатков. В эндоплазматическом ретикулу-ме после гликозилирования npe-npo-vWF преобразуется в пpo-vWF, который превращается в зрелый vWF после отщепления пептида, состоящего из 741 аминокислотного остатка. Этот полипептид идентифицируется как антиген II vWF (vWF:AgII).

Процесс димеризации и полимеризации vWF происходит одновременно. Зрелая субъединица

 vWF содержит 2050 аминокислотных остатков, 169 из которых - цистеин, сгруппированный в областях, расположенных в амино- и карбокси-концах молекулы (N- и С-концы). Процесс димеризации связан с образованием дисульфидных мостиков между С-концами молекулы, а дальнейшая полимеризация происходит за счет образования дисульфидных связей между N-концами. Конечный продукт накапливается в тельцах Вейбла-Палада в эндотелиоцитах и в α-гранулах тромбоцитов.

Фактор Виллебранда состоит из ряда полимеров прогрессивно увеличивающейся молекулярной массы: разделяют легкие, средние, тяжелые и сверхтяжелые мультимеры. Молекулярная масса vWF варьирует от 540 кДа у димеров до 20 тысяч кДа у самых крупных мультимеров, содержащих от 50 до 100 субъединиц. Самым большим тромбоген-ным потенциалом обладают молекулы vWF с наибольшей молекулярной массой.

В плазме нет мономеров фактора Виллебранда, он всегда образует комплексы. Концентрация vWF в плазме составляет примерно 10 мкг/мл.

При исследовании vWF, содержащегося в пулах хранения, было выявлено, что его молекулярная масса, а следовательно, и тромбогенный потенциал существенно выше, чем у vWF, содержащегося в плазме, и наиболее высок в а-гранулах тромбоцитов (так называемый сверхвысокомолекулярный фактор Виллебранда). После сильной стимуляции тромбоцитов и эндотелиоцитов сверхвысокомолекулярный фактор Виллебранда некоторое время обнаруживается в плазме. Однако потом в сосудистом русле молекулярная масса vWF довольно быстро снижается до «нормальной» под воздействием кальпаиновых про-теаз плазмы. Такое распределение позволяет создавать высокий тромбогенный потенциал в местах повреждения эндотелия при выбросе vWF из пулов хранения, в то же время сохраняя тромбогенный потенциал на «обычном» уровне в интак-тном сосудистом русле.

Фактор Виллебранда имеет два пути секреции: непосредственная секреция после синтеза и полимеризации, которая создает определенный уровень vWF в крови, и регуляторная секреция из пулов хранения в ответ на различную стимуляцию. Фоновая активность vWF в крови у каждого человека может меняться в значительных

 


Тромбоциты

 пределах. Реализация vWF из тромбоцитарных гранул возникает при активации тромбоцитов под воздействием различных физиологических и нефизиологических индукторов (АДФ, коллаген, адреналин, вазопрессин, серотонин, тромбин, простагландин Е1, тромбоксан А2 и др.), и в том числе плазменного vWF. Уровень vWF в крови возрастает при воспалении различного генеза, повреждении эндотелия сосудов при васкулитах, стрессе, у женщин во время беременности. Повышение активности vWF в патологических ситуациях может способствовать развитию тромбозов.

Вторичные изменения структуры vWF и его активности являются следствием иммунных процессов, тромботической тромбоцитопенической пурпуры, гемолитико-уремического синдрома и др. Описаны заболевания (болезнь Виллебран-да, тип Виченза; врожденная тромботическая тромбоцитопеническая пурпура), при которых дефект этих ферментов приводит к накоплению сверхвысокомолекулярных мультимеров vWF и преждевременной секвестрации тромбоцитов из кровотока.

Основными функциями фактора Виллебранда являются:

опосредование адгезии тромбоцитов к субэн-
дотелиальным структурам, в первую очередь
к коллагену, и последующей агрегации тром
боцитов (участие в первичном сосудисто-
тромбоцитарном гемостазе);

связывание свободного фактора VIII и защи
та его молекулы от преждевременной инак
тивации (участие во вторичном плазменном
гемостазе).

Опосредование адгезии и агрегации тромбоцитов. Роль фактора Виллебранда в адгезии и агрегации тромбоцитов наиболее велика в условиях воздействия высоких скоростей кровотока. Молекулы vWF специфически связываются с рецепторами тромбоцитов GPIb-V-IX и коллагеном субэндотелия. Это обеспечивает прочную фиксацию тромбоцитов к субэндотелиальным структурам в тех участках сосудистого русла, где сила потока крови существенно мешает формированию гемостатической пробки и другие механизмы адгезии не могут обеспечить надежной фиксации тромбоцитов. В частности, известно, что vWF является ключевым при формировании

 тромба в мелких артериях, артериолах и артериальных капиллярах. В местах, где интенсивность кровотока невелика, роль vWF уменьшается, преобладающим становится взаимодействие, опосредованное другими молекулами, в том числе прямая адгезия тромбоцитов к коллагену посредством GPIa-IIa.

Агрегация тромбоцитов в условиях воздействия активного тока крови тоже происходит с участием фактора Виллебранда. Помимо GPIb-V-IX, с фактором Виллебранда также связывается GPIIb-IIIа. Возможно, что это взаимодействие является ключевым в процессе агрегации в местах сосудистого русла с высокой скоростью тока крови.

Тест агрегации, опосредованный фактором Виллебранда, в лабораторных условиях может быть выполнен с использованием фиксированных тромбоцитов. Видимо, эта реакция не требует энергетических затрат. Однако стимуляция рецептора Ib-V-IX приводит к активации тромбоцита.

Учитывая особенности фактора Виллебранда, можно сказать, что он выполняет функцию «биологического клея», фиксируя тромбоциты на поврежденной сосудистой стенке (рис. 24).

Другая функция фактора Виллебранда - защита ф.VIII от протеолитической деградации системой протеин С - протеин S. В плазме vWF является белком-носителем фактора VIII.

Рис. 24. Фактор Виллебранда (vWF) выполняет роль «биологического клея», прикрепляя к коллагену субэндотелия адгезированные тромбоциты через гликопротеиновый комплекс GPIb-V-IX, Тромб увеличивается в размерах по мере адгезии и агрегации новых тромбоцитов, скрепление которых в агрегат обеспечивает фибриноген, имеющий дива-лентную структуру и взаимодействующий с рецепторами GPIIb-llla


Тромбоциты

Молярная концентрация vWF примерно в 50 раз выше, чем молярная концентрация фактора VIII. Фактор VIII практически весь связан с vWF (рис. 25). Это предупреждает быструю деградацию ф.VШ под влиянием протеина С. Связанный с vWF фактор VIII защищен от протео-литической инактивации в плазме, поскольку у него заблокированы сайты связывания с фос-фолипидной матрицей и заблокированы сайты связывания с протеином С. Поэтому недостаток vWF часто вызывает вторичный дефицит ф.VIII.

В области повреждения сосуда, в процессе vWF-опосредованной адгезии тромбоцитов происходит контакт комплекса vWF-ф.VIII и тромбина (ф.Па), который активирует ф.III, освобождая его из комплекса с фактором Виллебранда.

Фибронектин (плазматический, субэндоте-лиальный и тромбоцитарный) - гранулярный контактный белок, который способен образовывать комплексы с GPIc-Па-рецепторами тромбоцитов и коллагеном. Сродство фибронектина к коллагену и тромбоцитам меньше, чем у фактора Виллебранда, однако молекулярная концентрация его выше. Видимо, фибронектин является основной молекулой адгезии в венозной и капиллярной сети, образуя ось: тромбоцитарный рецептор GPIc-IIa - фибронектин - коллаген. Гликопротеиновый комплекс GPIc-IIa распознает в фибронектине RGD последовательность и осуществляет рецепторную функцию как в интактных, так и в активированных тромбоцитах. Характерная аминокислотная последовательность RGD - трипептид Arg-Gly-Asp имеется во всех адгезивных белках крови, белках а-гранул тромбоцитов, фибриногене, факторе Виллебранда, фибронектине, витронектине и других белках. Наличие RGD-последовательно-сти на фибронектине определяет зависимость процесса его взаимодействия со своим рецептором на тромбоцитах от двухвалентных катионов Са2+ и Mg2+.

Витронектин - гликопротеин плазмы, субэндотелия и а-гранул тромбоцитов. Имеет значение в гемостатических реакциях и в восстановлении поврежденных тканей сосудистой стенки. Витронектин, как и другие адгезивные белки, содержит трипептид RGD, распознающийся интегриновыми рецепторами эндотели-альных клеток и тромбоцитов. Витронектино-

 

Рис. 25. Комплекс фактор VIII - фактор Виллебранда (ф.VlllvWF) состоит из 2 отдельных белков, которые выполняют в гемостазе разные функции, имеют разную химическую и иммунологическую структуру. Фактор VIII необходим для активации фактора X в каскаде свертывания крови, его дефицит вызывает гемофилию А. Фактор Виллебранда (vWF) - полимерный белок, который составляет основную массу комплекса. Он необходим для адгезии тромбоцитов к поврежденной стенке сосудов, обеспечивая взаимодействие коллагена с гликопротеиновым комплексом тромбоцитов GPIb-V-IX. Кроме того, он участвует в агрегации тромбоцитов, взаимодействуя с интегринами GPIIb-llla. Недостаток vWF приводит к болезни Виллебранда

 


Тромбоциты

 вый рецептор на тромбоцитах функционирует постоянно, что отличает его от рецептора фибриногена, который работает только на активированных клетках. У витронектинового рецептора р-цепь аналогична фибриногеновому рецептору (GPIIIa), но а-цепь специфична. При некоторых формах тромбостении Гланцмана на тромбоцитах экспонируется нормальное количество витронектиновых рецепторов, что доказывает, что у этих больных имеет место дефект синтеза а-цепи фибриногенового рецептора, т. е. GPIIb.

Ламинин - один из главных компонентов эк-страцеллюлярного матрикса стенки сосудов, плотный субстрат, вызывает адгезию тромбоцитов. Из-за низкой аффинности между этим белком и рецептором тромбоцитов он лишь содействует адгезивному процессу, причем только при низких скоростях кровотока.

Тромбоспондин - гликопротеин, принимающий участие в адгезии и агрегации тромбоцитов. Он широко распространен в тканях, содержится в α-гранулах тромбоцитов и в небольшом количестве в плазме крови. На поверхности интакт-ных тромбоцитов очень мало тромбоспондина, но после их активации количество экспонированного на мембране тромбоцитов тромбоспондина резко увеличивается.

Одна из функций тромбоспондина - стабилизация комплекса фибриноген-GPIIb-IIIa в процессе агрегации тромбоцитов. Тромбоспондин увели-

 чивает его прочность и переводит агрегацию тромбоцитов из обратимой в необратимую (рис. 26).

Помимо этого, тромбоспондин связывается с рядом коагуляционных факторов (тромбином, факторами IХа, Ха), что приводит к повышению их локальной концентрации и защищает от действия ингибиторов.

Активация тромбоцитов

При контакте рецепторов адгезии тромбоцитов с субстратом и под воздействием синтезированного в области повреждения сосуда тромбина начинается процесс активации тромбоцитов. Видимо, основную роль в первичной активации тромбоцитов играет сигнал с рецепторов GPIa-IIa, GPIb-V-IX и GPVI, которые контактируют со своими агонистами, в первую очередь с коллагеном, фактором Виллебранда и тромбином. Помимо коллагена, свойством активировать тромбоциты обладают и другие субэндоте-лиальные структуры.

Активация тромбоцитов лежит в основе выполнения ими своих функций. В табл. 5 приведен список основных веществ, активирующих тромбоциты. Почти все эти вещества взаимодействуют с тромбоцитами через специфические рецепторы, которые были описаны выше. Несмотря на многообразие активаторов и большое количество рецепторов к ним, клетка имеет ограниченное количество путей передачи сигнала и эффекторных

Рис. 26. Взаимодействие рецепторов к фибриногену и тромбоспондину с соответствующими лигандами. При

взаимодействии тромбоцитов с фибриногеном на первой фазе происходит их обратимая активация, При стабилизации комплекса тромбоспондином процесс переходит в необратимую стадию агрегации


Тромбоциты

Субстанции, стимулирующие тромбоциты

 Таблица 5

Данные приведены по: Kinlough-Rathbone R.L. D.E. MacJntyre, J.L. Gordon. Amsterdam, 1987.

 Mustard J.F. // Platelets in biology and pathology, III / Eds

механизмов. Реакция тромбоцита на активирующие воздействия однотипна:

Тромбоцит меняет форму (рис. 27): у него по
являются псевдоподии, он «распластывается»,
за счет открытой канальцевой системы (ОКС)
увеличивается площадь его поверхности.

Меняются соотношения различных фосфоли-
пидов между наружным и внутренним лист
ками клеточной мембраны. Это приводит к
появлению на наружной поверхности тром
боцита большого количества кислых фосфо-
липидов с прокоагулянтными свойствами -
фактор 3 тромбоцитов (PF3).

На мембране тромбоцитов экспрессируются
или повышают аффинность интегрины.

Происходит секреция содержимого пулов
хранения тромбоцитов во внешнюю среду.

• Тромбоциты фиксируются на поверхностях
(субэндотелиальном матриксе и др.) и (или)
соединяются друг с другом и другими клет
ками крови (происходит адгезия и агрегация).
Активация тромбоцитов может быть
обрати
мой:
происходят лишь частичные конформацион-
ные изменения, обратимое соединение с другими
клетками и частичная секреция гранул. Спустя
небольшое время тромбоцит возвращается в ин-
тактное состояние и поступает в ток крови. Пос
ле обратимой активации и возвращения в неак-

 тивное состояние тромбоцит снова может активироваться и вступать во взаимодействие с другими клетками и структурами. Обратимая агрегация возникает при кратковременном воздействии слабого стимула.

Если стимуляция длительная или сильная, происходит необратимая активация тромбоцита. В этом случае тромбоцит прочно фиксируется к другим клеткам или внеклеточным структурам, происходит полная дегрануляция и секреция содержимого пулов хранения. Если тромбоцит после необратимой активации поступает в ток крови, он не может в дальнейшем вступать во взаимодействие с другими клетками и быстро элиминируется из кровообращения. В случае массивного поступления в ток крови необратимо активированных тромбоцитов выявляется достоверное снижение агрегации тромбоцитов со всеми индукторами. Микроскопия в этом случае позволяет выявить большое количество деформированных тромбоцитов.

Стимуляторы тромбоцитов можно разделить на слабые и сильные.

К слабым стимуляторам относятся АДФ, адреналин, вазопрессин, серотонин. Передача сигнала от рецепторов этих веществ проходит стадию усиления внутри клетки через дополнительный этап образования продуктов тромбоксано-вого завершения и секреции хранимых в грану-


Рис. 27. Стадии контактной активации тромбоцитов: А - неактивный тромбоцит (дискоцит, пластинка); Б - тромбоциты в обратимой стадии контактной активации (шаровидные формы с псевдоподиями); В - тромбоцит в необратимой стадии адгезии (распластанная форма без внутреннего содержимого - «тень тромбоцита»)

лах активных компонентов. При исследовании агрегации тромбоцитов в присутствии слабых стимуляторов на агрегатограммах кривая имеет двухступенчатую форму, что обусловлено усилением агрегации после выделения содержимого пулов хранения (рис. 28).

Сильные стимуляторы тромбоцитов - коллаген, тромбин, большие дозы АДФ - непосредственно после мембранной стимуляции приводят к необратимой активации.

В табл. 5 представлены наиболее важные активаторы тромбоцитов. Часть из них присутствует в подпороговых концентрациях в интактной плазме и избирательно накапливается в зоне повреждения сосудов; другие появляются в системе циркуляции при активации системы свертывания крови в физиологических или патологических условиях. Некоторые факторы выделяются из самих тромбоцитов (АДФ, серотонин, адреналино-подобные субстанции, фактор Виллебранда).

 

Рис. 28. Типы агрегатограмм. V пациентов при стимуляции агрегации адреналином в дозе 10 мкмоль/л в 83% случаев наблюдается двухфазная агрегация тромбоцитов, в 13% случаев - необратимая агрегация и в 4% - после начальной агрегации наблюдается дезагрегация (собственные данные)

Агрегация тромбоцитов

Процесс агрегации заключается в присоединении активированных тромбоцитов, находящихся в токе крови, друг к другу и ранее фиксированным в области повреждения. Основным рецептором агрегации является GPIIb-IIIa (интег-рин αIIbβ3). После активации тромбоцита GPIIb-IIIa значительно повышает свою аффинность по отношению к фибрину и меняет антигенную структуру (что свидетельствует о значительных кон-

 формационных изменениях). После этого происходит соединение тромбоцитов, опосредованное фибрином и фактором Виллебранда (рис. 24).

Вследствие распространения активирующего сигнала на агрегированные тромбоциты, удаленные от места повреждения, образуется толстый слой тромбоцитов, армированный фибрином. Этот процесс лежит в основе образования тром-боцитарного тромба. По мере удаления от зоны


Тромбоциты

повреждения концентрация агонистов активации и агрегации тромбоцитов снижается и соответственно уменьшается активация тромбоцитов. Дистально расположенные частично активированные тромбоциты отрываются от сгустка и возвращаются в кровоток. Таким образом, периферическая дезагрегация тромбоцитов предотвращает неограниченный рост сгустка.

Ретракция сгустка крови

Ретракцией сгустка крови называют уплотнение сгустка с выделением из него избытка сыворотки. Ретракция способствует улучшению механических характеристик сгустка и снижению ак-

 тивности фибринолиза внутри него. Ретракция сгустка связана с контрактильными свойствами тромбоцитов. Фибриллы миозина, расположенные в цитоплазме тромбоцитов, фиксированы к мембранному гликопротеину GPIIb-IIIa. В активированных тромбоцитах за счет миозина происходит процесс постепенного «сжимания» цитоплазмы, что приводит к уплотнению всего сгустка крови.

При врожденной недостаточности GPIIb-IIIa -тромбастении Гланцмана - грубо нарушается ретракция сгустка крови. Следствием этого является не только грубый дефект тромбоцитарного гемостаза, но и качественный дефект образовавшегося сгустка крови.

 


Роль лейкоцитов в гемостазе

РОЛЬ ЛЕЙКОЦИТОВ В ГЕМОСТАЗЕ

 Лейкоциты (нейтрофилы и моноциты) в зоне повреждения сосуда участвуют в гемостатических реакциях.

Участие нейтрофилов в пристеночном тромбообразовании

Агрегация тромбоцитов сопровождается освобождением из α-гранул активаторного рецептора Р-селектина (CD62), который остается ассоциированным с плазматической мембраной тромбоцитов. Экспрессия на мембране лейкоцитов Р-селек-тин-связывающего гликопротеина-1 (PSGL-1) позволяет нейтрофилам присоединять тромбоциты (рис. 29). Связь нейтрофилов с тромбоцитами обеспечивает репаративные и воспалительные реакции, возникающие в ответ на повреждение.

Нейтрофилы после связывания на мембранах способны секретировать адгезивные молекулы и интерлейкины. Некоторые из интерлей-кинов, в частности интерлейкин-1 (ИЛ-1) и фактор некроза опухоли-ос (ФНО-а), активируют эндотелиальные клетки. Первичный контакт гранулоцитов приводит к перемещению их вдоль сосудистой стенки с последующей транс-эндотелиальной миграцией в субэндотелий. При действии повреждающих факторов, таких, как иммунные комплексы, эндотоксин, гранулоци-

 ты могут дегранулироваться и освобождать ИЛ-1, ФНО-α, протеолитические ферменты, такие, как эластаза и катепсин, активные формы кислорода (О2-, О2+), что в свою очередь ведет к повреждению сосудистой стенки. Этот процесс доминирует при воспалительных реакциях. Протеолитические ферменты, которые освобождаются из лейкоцитов, в участках воспаления вызывают нарушения структуры и функции эндотелия, это является условием развития петехий.

Роль нейтрофилов в модуляции реакций гемостаза требует уточнения. С одной стороны, экспрессия тканевого фактора на мембране нейтрофилов происходит либо при длительной стимуляции различными провоспалительными цитокинами, либо после длительного взаимодействия с Р-селектином активированных тромбоцитов. К этому времени на активированных тромбоцитах уже образуется сгусток крови. С другой стороны, экспериментально доказано моду-

Рис. 29. Участие активных нейтрофилов в повреждении сосудистого эндотелия


Роль лейкоцитов в гемостазе

лирующее воздействие лейкоцитов крови на функцию тромбоцитов при исследовании агрегации тромбоцитов в цельной крови. Кроме

того, исследования показали возможность сборки на нейтрофилах протромбиназного комплекса.

В последнее время описан феномен агрегации лейкоцитов (нейтрофилов) при ишемии тканей. Этот феномен особенно значим для повреждения легких при шоке. В развитии геморрагического шока он играет ведущую роль. На рис. 30 представлен агрегат из нейтрофилов, сформированный на поверхности сосудистой стенки.

 

Рис. 30. Агрегат из нейтрофилов, выделенный из сосудов легких, в которых формируются агрегаты при развитии респираторного дистресс-синдрома (РДС). Сканирующая электронная микроскопия

 

Участие моноцитов в свертывании крови

Уникальными свойствами обладают моноци-ты. Это единственные клетки, способные создавать на своей поверхности условия для сборки и успешного функционирования всех ферментатив-ных комплексов системы свертывания крови. Стимулированные моноциты экспрессируют около 16 000 сайтов связывания протромбиназного комплекса. Эффективность синтеза тромбина на их поверхности сопоставима с эффективностью синтеза тромбина на поверхности активированных тромбоцитов.

Синтез и экспрессия тканевого фактора, эффективно связывающего ф.VIIа, происходит на моноцитах под воздействием различных физиологических и патологических стимулов, в том числе бактериальных липополисахаридов, фактора некроза опухоли, интерлейкина-1, С-реактив-ного белка, иммунных комплексов. Сборка теназ-ного комплекса на моноцитарной мембране -ключевой момент в развитии процесса коагуляции. Комплекс тканевой фактор - ф.VIIа подавляется ингибитором пути тканевого фактора (ингибитором внутреннего пути - ИВП), также синтезируемым и экспрессируемым моноцитами.

Реакции свертывания крови, протекающие на моноцитарной мембране, усиливаются специфическими для моноцитов механизмами. Фиксированные на поверхности моноцитов эластаза и ка-тепсин G активируют ф.V до ф.Vа, поэтому ф.V не поступает в кровоток, а остается тут же на мембране моноцитов и формирует протромбиназный

 комплекс с ф.Ха. Причем этот комплекс защищен от протеолиза активированным протеином С (АПС), поэтому активность протромбиназы на моноцитарной мембране длительно сохраняется на высоком уровне. Помимо ф.Vа, катепсин G активирует ф.Х. В отличие от катепсина G действие эластазы дозозависимо. В малых концентрациях она активирует ф.V, а в больших - расщепляет ф.Vа. Эластаза, видимо, не обладает способностью инактивировать ф.Ха. Однако воздействие ее высоких концентраций на ф.Х изменяет последний так, что его в дальнейшем невозможно активировать.

Другим альтернативным путем, специфичным для моноцитов, является активация ф.Х после его соединения с мембранным рецептором Мас-1 (CDllb/CD18). Связавшись с Мас-1, ф.Ха частично активирует моноциты и вызывает экспрессию специфического моноцитарного рецептора EPR-1. Комплекс ф.Ха-EPR-l способен эффективно активировать протромбин в присутствии Са2+ без участия ф.Уа. Таким образом, на поверхности моноцита может собираться полноценный протромбиназный комплекс.

Прокоагулянтная активность моноцитов зависит от их микроокружения. Коллагены I и IV типов, фибронектин - активные субстраты для адгезии моноцитов в отличие от ламинина. Последний адгезирует моноциты в 6-10 раз хуже. Однако именно на моноцитах, адгезированных к ламинину, процессы коагуляции развиваются


Роль лейкоцитов в гемостазе

в 3-5 раз быстрее, чем на мембранах моноцитов, адгезировавшихся на других субстратах.

Помимо катализа гуморальных реакций свертывания крови, моноциты обладают про-агрегантной активностью. Катепсин G обладает свойством вызывать агрегацию тромбоцитов, изменение их формы, мобилизацию кальция, экзоцитоз α-гранул и плотных гранул, уси-

 ление адгезии тромбоцитов к лейкоцитам. Часть этих реакций катализируется моноцитар-ной эластазой.

В отличие от моноцитов нейтрофилы и лимфоциты не экспрессируют PAR-1, однако исследования показали, что на изолированных популяциях этих клеток происходит сборка протром-биназных комплексов.

КАФЕДРА

клд

 ЦИКЛЫ  УСОВЕРШЕНСТВОВАНИЯ

КАФЕДРЫ КЛИНИЧЕСКОЙ

ЛАБОРАТОРНОЙ ДИАГНОСТИКИ

РМАПО (Москва)

1.

Клиническая лабораторная диагностика (врачи и биологи, стажировка, профессиональная переподготовка, общее усовершенствование)

Очное, ПП

В течение 4 месяцев

2.

Лабораторная цитология (цитологи)

Очное СУ, выездной

Месячный

3.

Контроль качества лабораторных исследований (зав. КДЛ и врачи клинич. лаб. диагностики)

Очное ТУ

2 недели

4.

Клинико-лабораторное исследование эякулята (зав. КДЛ и врачи клинич. лаб. диагностики)

Очное ТУ

2 недели

5.

Методы исследования системы гемостаза (зав. КДЛ и врачи клинич. лаб. диагностики)

Очное ТУ

2 недели

6.

Лабораторная диагностика урогенитальных инфекций (врачи клинич. лаб. диагностики)

Очное ТУ

2 недели

7.

Иммуноферментный анализ в КДЛ (зав. КДЛ и врачи клинич. лаб. диагностики)

Очное ТУ

2 недели

8.

Изоиммунологические методы исследований (врачи станций переливания крови)

Очное ОУ

Месячный

9.

Клиническая лабораторная диагностика. Гематолог, и общеклинич. исследования (зав. КДЛ и врачи клинич. лаб. диагностики)

Очное ОУ

Месячный

10.

ПЦР в КДЛ (врачи и биологи клинич. лаб. диагностики)

Очное ТУ

2 недели

11.

Определение алкоголя в биологических жидкостях

Очное ТУ

2 недели

12.

Лабораторная диагностика лимфопролиферативных заболеваний

Очное ТУ

2 недели

Все циклы длительностью 1 месяц и более дают право сдавать сертификационный экзамен. По окончании более коротких циклов выдаются свидетельства о повышении квалификации государственного образца.

Заявки для участия в циклах усовершенствования принимаются:

по почте: 125424, Москва, а/я 32 (кафедра КЛД)

по факсу (095) 945-84-00 или телефону (095) 945-82-22

по электронной почте: kafedra-kdl@list.ru


Плазменные белки гемостаза

ПЛАЗМЕННЫЕ  БЕЛКИ  ГЕМОСТАЗА

Плазменные белки гемостаза образуют 2 ферментативные системы крови, имеющие своей целью поддержание гемостатического баланса (рис. 31):

  1.  Система свертывания плазмы. Система со
    стоит из ферментов, неферментативных бел
    ковых катализаторов (кофакторов) и инги
    биторов свертывания. Конечной целью этой
    системы является образование важнейшего
    фермента тромбина, а в конечном итоге -
    фибринового сгустка, составляющего осно
    ву гемостатического тромба.
  2.  Система фибринолиза. Конечной целью этой
    системы является образование главного фер
    мента фибринолиза плазмина и лизис фибри
    нового сгустка. Эту систему составляют плаз-
    миноген и его активаторы и ингибиторы.
    Обе эти системы имеют сходные черты:

•     В обеих системах происходит многоэтапный ферментативный процесс актива-

 ции, в котором участвует ряд белков - про-теаз.

По крайней мере, in vitro имеется несколько
путей запуска каждого процесса, а в итоге об
разуется один конечный продукт.

Многие реакции нуждаются в наличии спе
цифической поверхности и ионов кальция.
In vivo твердой фазой для фиксации реаги
рующих белков служат кислые фосфолипи-
ды клеточных мембран, в частности мемб
ран тромбоцитов, фибробластов, возможно
лейкоцитов.

Кроме каскадных систем свертывания плазмы и фибринолиза, к плазменным белкам гемостаза относятся многочисленные ингибиторы и активаторы, эффекты которых проявляются как действие антикоагулянтов или прокоагулянтов и соответственно ингибиторов или активаторов фибринолиза.

 

Рис. 31. Система свертывания крови и система фибринолиза - каскадные протеолитические ферментативные системы, обеспечивающие гемостатический баланс крови


Плазменные белки гемостаза

Система свертывания плазмы

 Система свертывания плазмы - ферментативная система, осуществляющая каскад протео-литических реакций, в результате которых происходит образование фибриновой пробки в месте повреждения сосуда. Система свертывания тесно связана с другими протеолитическими системами плазмы, в том числе с системой фибри-нолиза. Белки свертывания плазмы, входящие в каскад свертывания крови, принято называть термином «фактор». В соответствии с международной номенклатурой факторы свертывания плазмы обозначаются римскими цифрами (табл. 6). Активные формы факторов обозначаются теми же римскими цифрами, но с добавлением аббревиатуры «а».

Практически все факторы системы свертывания крови циркулируют в кровотоке в форме неактивных проэнзимов или в форме неактивных кофакторов. Исключение составляет фак-

 тор VII, примерно 1-2% которого в норме циркулируют в активной форме. При запуске свертывания крови происходит каскадная активация проэнзимов и кофакторов (рис. 32). Процесс активации представляет собой ограниченный протеолиз неактивных предшественников до активных энзимов и кофакторов. Активированные энзимы являются сериновыми протеа-зами (за исключением фактора XIII). Активированные кофакторы, не обладая самостоятельной ферментативной активностью, играют роль коферментов.

Сериновыми протеазами являются активированные факторы II, VII, IX, X, XI, XII, ПК.

Трансглютаминаза - фактор XIII.

Кофакторы - факторы V, VIII, ВМК.

Содержание компонентов гемостаза, в том числе плазменных факторов свертывания, в системе циркуляции существенно больше, чем необходимо

Таблица 6

Плазменные факторы свертывания крови

При разработке первой номенклатуры были использованы римские символы факторов от I до XIII. Для обозначения участия в свертывании плазмы тканевого фактора и ионов кальция им были приданы символы соответственно III и IV. Однако в настоящее время римская нумерация для них не используется, так как они не относятся к плазменным факторам свертывания (тканевой фактор - это тканевой компонент вне сосудистой системы, ионы Са не являются белком). Фактор VI в классификации не употребляется, так этим символом ошибочно был назван фактор Va.


Плазменные белки гемостаза

Рис. 32. Протеолитическая активация факторов гемостаза. Путем ограниченного протеолиза из неактивного предшественника образуются активный пептид и активированный фермент

для формирования фибринового сгустка. Процесс свертывания происходит в условиях насыщения субстратами (рис. 33). Вследствие этого образование гемостатического тромба может быть достигнуто при значительном диапазоне концентрации и активности конкретного фактора свертывания. Клинические проявления недостаточности компонентов свертывания возникают при их существенном уменьшении, если обратиться к рис. 33 - то это начальный диапазон, при котором скорость реакции зависит от концентрации фактора.

Для эффективного взаимодействия и активации белков свертывания крови необходимо образование комплексов этих белков, их кофакторов и субстрата (рис. 34). Эти условия не могут возникнуть в жидкой фазе. Поэтому большинство процессов активации промежуточных факторов свертывания протекают на фосфолипидах клеточных мембран. В месте сборки комплексов происходит концентрация факторов свертывания. Здесь же присутствуют кофакторы, которые существенно ускоряют процесс формирования сгустка. В создании активного комплекса участвуют:

Фермент (активный плазменный фактор -
протеолитический фермент).

Субстрат (профермент).

Активированный кофактор.

Ионы Са (Са2+).

Кислые фосфолипиды и специфические ре
цепторы на поверхности клеток.

Все белки системы свертывания крови можно разделить на две группы. Одни белки для полноценного формирования требуют наличия витамина К (витамин-К-зависимые белки), а другие - нет.

 Рис. 33. Соотношение между концентрацией факторов и скоростью процесса свертывания. В норме скорость коагуляции практически не определяется концентрацией факторов, так как они присутствуют в избытке и процесс идет в состоянии насыщения. Только после значительного истощения фактора его концентрация будет влиять на скорость реакции и соответственно на скорость свертывания плазмы

Рис. 34. Модель сборки комплекса факторов свертывания крови. На поверхность твердой фазы (фосфолипиды фибробластов, макрофагов, активированных тромбоцитов либо, в патологических ситуациях, мембраны поврежденных клеток, бактерий и др,) прикрепляется (интернали-зуется) крупный кофакторный белок, который организует место контакта факторов свертывания, те в свою очередь взаимодействуют друг с другом по принципу комплементарности

 


Плазменные белки гемостаза

Витамин-К-зависимые белки

 Витамин-К-зависимыми белками являются ф.II, -VII, -IX, -X, протеины С и S. Эти белки синтезируются в печени и имеют сходную структуру молекулы (рис. 35). Характерной их особенностью является наличие уникальной аминокислоты -у-карбоксиглутамина. Эта аминокислота образуется во время синтеза витамин-К-зависимых белков в печени путем у-карбоксилирования глута-мина ферментом у-карбоксиглутаминпептидазой, в работе которого принимают участие активированные формы витамина К (рис. 142). у-карбок-сиглутамин дает возможность витамин-К-зависи-мым белкам с помощью ионов Са2+ образовывать комплексы с кислыми фосфолипидами.

Рис. 35. Структурная организация некоторых плазменных белков системы гемостаза. Стрелками показаны места протеолитического гидролиза, в результате которого происходит переход неактивных проферментов в активные ферменты - сериновые протеазы каскада коагуляции. Двузубцем обозначены витамин-К-зависимые факторы, имеющие в своей структуре карбоксилированную глюта-миновую кислоту

Неферментные активаторы свертывания крови

К неферментным активаторам свертывания крови (коферментам) относятся факторы V и VIII. Оба - высокомолекулярные белки, имеющие сходную структуру. Они циркулируют в плазме в неактивной форме и активируются тромбином. ф.VIII в плазме связан с фактором Виллебранда (vWF), который защищает его от преждевременной инактивации. Диссоциация фVIII из комплекса с vWF происходит под воздействием тромбина (рис. 25).

 ф.Va и -Villa образуют на фосфолипидных мембранах комплексы с ф.Ха и -IХа соответственно. Специфическая активность ф.Ха и -IХа в комплексах с кофакторами в десятки тысяч раз больше, чем изолированных. Основным ингибитором ф.Va и -VIIIa является комплекс протеин С - протеин S.

Классический коагуляционный каскад активации тромбина

Изучение процесса свертывания крови до настоящего времени происходит в основном in vitro в смоделированных условиях. Исследование взаимодействия плазменных белков гемостаза в отрыве от других компонентов привело к созданию так называемой «классической» теории коагуля-ционного каскада активации тромбина. В насто-

 ящее время эта теория пересмотрена с учетом вновь полученной информации о взаимодействии различных компонентов гемостаза. Однако базовые принципы изложенной ниже классической каскадной теории считаются верными до настоящего времени. Кроме того, знание классического каскада свертывания крови необходимо для пра-

Плазменные белки гемостаза

вильнои интерпретации результатов коагулоло-гических тестов.

Активация протромбина - многостадийный процесс, который происходит по механизму про-ферментно-ферментного преобразования. С одной стороны, это обеспечивает нарастание сигнала: активация одной молекулы предшествующего уровня в системе свертывания приводит к активации от нескольких десятков до нескольких сотен тысяч последующих молекул (рис. 36). С другой стороны, многостадийность позволяет более гибко регулировать процесс.

В классическом каскаде свертывания крови выделяют 2 пути активации процесса:

Рис. 36. Каскадный принцип усиления сигнала. Каждый предыдущий компонент системы свертывания активирует много последующих

Активация тканевым фактором (ТФ). Так как
ТФ не относится к плазменным факторам и
контактирует с кровью только при повреж
дении сосуда, то активация с его участием
обозначается как
внешний путь свертывания.

Активация ф.ХII при контакте с отрицатель
но заряженной поверхностью твердого тела,
или контактная активация. Поскольку фак
тор
XII в норме присутствует в плазме, акти
вация с его участием обозначается как
внут-

 ренний путь свертывания (все факторы присутствуют в плазме в норме). Внешний и внутренний пути взаимодействуют между собой, а их разделение достаточно условно. Внешний и внутренний пути сходятся на факторе X. Последний со своим кофактором ф.Vа образует протромбиназу - ферментативный комплекс, который активирует протромбин с образованием тромбина. Образовавшийся тромбин поступает в ток крови и активирует фибриноген до фибрин-мономеров. Последние спонтанно соединяются, образуя полимеры фибрина. Условно свертывание плазмы (крови) делится на 2 основные фазы:

1) многоступенчатый этап, приводящий к акти
вации протромбина и превращению его в ак
тивный фермент - тромбин;

Рис. 37. Каскад активации плазменного гемостаза

2) конечный этап, в котором под влиянием тром
бина из фибриногена образуется фибрин.
Схема коагуляционного каскада плазменно
го гемостаза представлена на рис. 37.

Внешний путь образования протромбиназы

Внешний путь образования протромбиназы короткий, что ведет к быстрому образованию тромбина.

При контакте ТФ и ф.VIIа формируется комплекс, который активирует ф.Х. Фактор Ха при участии фактора Va, в присутствии ионов Са2+, на отрицательно заряженной фосфолипидной поверхно-

 сти формирует протромбиназу. В настоящее время полагают, что внешний путь - основной физиологический путь запуска процесса свертывания крови. Подробно его значение будет описано в разделе «Современная теория свертывания крови».

Активность внешнего пути поддерживается за счет механизма положительной обратной свя-


Плазменные белки гемостаза

зи (рис. 38). Положительная обратная связь включается на нескольких этапах каскада свертывания. Наиболее существенными являются активация тромбином факторов VII и V.

Рис. 38. Внешний каскад свертывания крови. Начинается с контакта крови с тканевым фактором (ТФ), который, взаимодействуя с ф.VIIа, образует комплекс, активирующий ф,Х, Усиление активности внешнего каскада свертывания крови обеспечивается 2 механизмами положительной обратной связи

 Внутренний путь образования протромбиназы. Факторы контактной активации

Внутренний путь активации свертывания начинается с активации контактных факторов коа-гуляционного каскада: ф.ХII, прекалликреина и высокомолекулярного кининогена.

Факторы контактной активации - ф.ХII, пре-калликреин, высокомолекулярный кининоген, С1-ингибитор - синтезируются в печени. In vitro эти белки участвуют в активации внутреннего каскада свертывания.

В лабораторных условиях активация происходит на некоторых небиологических отрицательно заряженных поверхностях, например на стекле, каолине, кремнии, сульфате декстрана, а также в присутствии эллаговой кислоты. Имеются данные, что важным механизмом активации контактных факторов является их взаимодействие с поверхностью, характеризующейся свойствами твердой фазы. В патологических условиях контактная активация, вероятно, происходит на мембранах клеток крови и эндотелия, а также при контакте с коллагеном субэндотелия.

Схематично взаимодействие белков при контактной активации показано на рис. 39. Видимо, в «подходящих условиях» происходит аутоактивация и взаимоактивация ф.ХII, ПК до активных ферментов. In vitro активация контактной системы приводит к активации ф.ХI, который в свою очередь активирует ф.IХ, образующий с ф.VIII теназный комплекс. Теназный комплекс (название комплекса происходит от английского слова ten - десять) активирует ф.Х, а далее процесс свертывания идет по уже описан-

 ному пути. Поскольку сборка теназного комплекса происходит на фосфолипидной поверхности, для нее необходимо присутствие ионов кальция. Контактная фаза активации поддерживается положительной обратной связью. Тромбин активирует ф.VIII и -XI.

Физиологическое значение контактной активации, роль факторов контактной активации в процессе свертывания крови, физиологические активаторы и условия активации этих факторов в организме требуют дальнейшего изучения.

Рис. 39. Контактная фаза активации плазменных факторов. Контакт с поверхностью твердого тела вызывает активацию фактора XII, который запускает каскад свертывания плазмы, каскад активации фибринолиза, активацию калликреин-кининовой системы (положительная обратная связь) и активацию системы комплемента (отрицательная обратная связь)


Плазменные белки гемостаза

Классическая теория свертывания крови оставляла слишком много вопросов и противоречила клиническим данным. Например, с одной стороны, было неясно, какая поверхность в физиологических условиях является активатором, с другой стороны, почему дефицит факторов внутреннего пути (ф.VIII, -IX, -XI) приводит к выраженной кровоточивости при нормальной активности факторов внешнего пути, а глубокий дефицит факторов контактной активации, как правило, не сопровождается геморрагическим синдромом. В современной каскадно-матричной теории гемостаза эти противоречия разрешены.

С современной точки зрения, контактная активация играет большую роль во взаимодействии системы свертывания крови с другими протеоли-тическими системами крови (фибринолитичес-кой, ангиотензин-рениновой, калликреин-кини-новой, системой комплемента и др.).

В настоящее время изучены следующие функции белков контактной активации:

1. Брадикинин стимулирует повышение внутри
клеточной концентрации цАМФ и приводит к:

Вазодилатации и снижению артериально
го давления.

Активации системы фибринолиза путем
стимуляции секреции тканевого актива
тора плазминогена.

Ингибированию активации тромбоцитов.

Стимуляции репарации и росту гладкомы-
шечной ткани в поврежденных сосудах.

  1.  Прямое ингибирование тромбин-индуциро-
    ванной активации тромбоцитов.
  2.  Активация фибринолиза.

Непосредственная активация плазмино
гена калликреином и ф.Х
IIа. Однако оба
этих белка значительно менее активны,
чем тканевой активатор и урокиназа.

Активация калликреином проурокиназы
до активной сериновой протеазы - двух-
цепочечной урокиназы.

  1.  Блокада клеточной адгезии.
  2.  Антиангиогенное действие.
  3.  По-видимому, контактная активация играет
    важную роль в активации свертывания кро
    ви при взаимодействии крови с нефизиоло
    гическими поверхностями, в частности при
    установке искусственных протезов или искус
    ственных клапанов сердца.

Внутренний путь образования протромбиназы (рис. 40) включает активирующее действие ф.ХПа на ф.Х1, который в свою очередь активирует ф.1Х. Поскольку значение контактной активации в процессе свертывания крови переосмыслено, физиологическая роль ф.Х1 изучается. Видимо, в физиологических условиях ф.Х1 в основном активируется тромбином. ф.Х1 довольно устойчив к инактивации ингибиторами и имеет длительный период полувыведения. Образовавшись в достаточном количестве, ф.Х1 увеличивает количество активного ф.1Х, за счет чего соответственно значительно возрастает концентрация тромбина, который в свою очередь активирует по механизму положительной обратной связи ф.1Х, -VIII и -V. В то же время избыток тромбина тормозит начало процесса фибри-

Рис. 40. Внутренний каскад активации плазменного гемостаза. Начинается с взаимной активации контактных факторов системы гемостаза, Фактор XIIа переводит фактор XI в ХIа. Фактор ХIа активирует фактор IX. Все последующие этапы активации свертывания по внутреннему пути требуют ионов Са2+ и зависят от присутствия фосфоли-пидов. Фактор IХа активирует фактор X, но эта реакция не очень эффективная. Однако появившийся тромбин активирует фактор VIII. Активный фактор Villa вместе с фактором IХа, ионами Са2+ и фосфолипидами очень эффективно активирует фактор Ха, Обратная связь поддерживает развитие процесса за счет активации тромбином ф.VIII, -IX и -V

 


Плазменные белки гемостаза

 нолиза за счет активируемого тромбином ингибитора фибринолиза (TAFI).

Ингибитор С1-компонента комплемента (С1-ингибитор) является элементом системы контактной активации. Помимо комплемента, он ингибирует ф.ХIIа (см. раздел «Ингибиторы системы свертывания крови»).

Другим ингибитором процесса контактной активации в физиологических условиях является апротинин.

Рис. 41. Теназный и протромбиназный комплексы. Образование этих комплексов сопровождается резким увеличением активации соответственно фактора X и протромбина (фактор II)

Конечный этап свертывания плазмы - образование фибринового сгустка

Конечная стадия каскада свертывания плазмы заключается в образовании из растворимого плазменного белка фибриногена нерастворимого фибрина под воздействием тромбина и ф.ХIII (рис. 42).

Рис. 42. Последовательные стадии образования нерастворимого фибрина из растворимого фибриногена

Тромбин

Тромбин - ключевой фермент гемостаза. Тромбин - витамин-К-зависимый белок - является сериновой протеазой. В печени происходит синтез неактивного предшественника протромбина, который в дальнейшем циркулирует в плазме. В комплексе ф.Ха-Va-II на фосфолипидной поверхности происходит ограниченный протео-лиз протромбина. Образуется несколько активных структур с уменьшающейся молекулярной массой - мезотромбин, α-тромбин, β-тромбин, γ-тромбин. Наиболее значимым продуктом является сериновая протеаза - α-тромбин. На мо-

 лекуле тромбина имеется, по крайней мере, 4 сайта связывания для субстратов, ингибиторов, кофакторов и иона кальция. Это, а также способность тромбина активно функционировать не только на твердой фазе, но и в токе крови позволяет ему выполнять многочисленные функции. Важнейшие функции тромбина в гемостазе:

Ограниченный протеолиз фибриногена до
фибрин-мономеров (происходит в жидкой
фазе - кровотоке).

Активация ф.V, -VIII, -VII, -XI.

Активация тромбоцитов.

В комплексе с тромбомодулином тромбин
активирует протеин С.

Активация ф.ХIII.

Ограниченный протеолиз плазматической
карбоксипептидазы В до активной формы -
активируемого тромбином ингибитора фиб
ринолиза (
TAFI).

• Стимуляция выброса из эндотелиоцитов тка
невого активатора плазминогена.
Однако роль тромбина в организме не огра
ничивается вышеперечисленными функциями.
Ключевая роль в процессе свертывания крови,
активация сосудистого эндотелия, клеточный
рост и процессы репарации, активация перифе
рических клеток крови, активация фибриноли
за - это наиболее изученные функции тромби
на. Видимо, со временем этот список значитель
но увеличится.


Плазменные белки гемостаза

Косвенным подтверждением важности тромбина для организма может служить тот факт, что известны лишь единичные описания пациентов с гомозиготным дефектом молекулы тромбина, а пациенты с гипопротромбинемией встречаются чрезвычайно редко.

Важнейшим ингибитором тромбина является антитромбин III. Несколько меньшую роль играет кофактор гепарина П.

Фактор XIII

Фактор XIII - трансглютаминаза. В плазме большая часть неактивного ф.ХIII связана с фибриногеном. Активация ф.ХIII происходит путем ограниченного протеолиза неактивного ф.ХIII тромбином одновременно с отщеплением пептида А от фибриногена. Как и большинство других ферментов, он выполняет несколько функций в гемостазе:

Стабилизирует фибриновый сгусток путем
образования ковалентных связей между у-це-
пями мономеров фибрина.

Участвует в связывании, α-ингибитора плаз-
мина с фибрином, что способствует предотв
ращению преждевременного лизиса фибрино-
вого сгустка.

Значительную роль ф.ХIII играет в процес
сах полимеризации актина, миозина и других
компонентов цитоскелета тромбоцитов, что
чрезвычайно важно для активации тромбо
цитов и ретракции образовавшегося фибри-
нового сгустка. Это объясняет наличие ф.Х
III
в цитоплазме тромбоцитов.

Обнаружены перекрестные реакции ф.ХIII с
ф.
V, фон Виллебранд протеином.
Помимо непосредственно реакций гемостаза,

ф.ХIII участвует в процессах образования соединительной ткани, репаративных реакциях:

Участвует в связывании молекул фибронек-
тина между собой и с молекулами фибрина.
Вероятно, это важно для направленной миг
рации клеток и процессов репарации.

Играет роль в биосинтезе коллагена, катали
зируя образование связей между молекулами
коллагена типов
I, II, III и V.

крови и образовывать прочную объемную структуру, которая эффективно закрывает повреждение сосуда и предотвращает потерю крови. Концентрация фибриногена в крови здорового человека значительно выше, чем концентрация других белков гемостаза, что связано с его уникальной ролью.

Синтез фибриногена происходит в печени и не зависит от витамина К. Некоторое количество фибриногена синтезируется в мегакариоцитах и содержится в тромбоцитах. Этот фибриноген несколько отличается от фибриногена, синтезированного в печени.

Помимо гепатоцитов и мегакариоцитов, активность гена γ-цепей фибриногена обнаружена в некоторых других тканях - головном мозге, легких, костном мозге, где γ-цепи фибриногена, видимо, выступают в роли молекул адгезии.

Фибриноген - большой многокомпонентный белок, который состоит из трех пар полипептидных цепей - 2α, 2β, 2γ, связанных между собой дисульфидными мостиками и переплетенных друг относительно друга (рис. 43).

Пространственная структура молекулы фибриногена состоит из центрального Е-доме-на и 2 периферических D-доменов. α- и β-цепи формируют глобулярные структуры - фибрино-пептиды А и В (ФПА и ФПВ), которые закрывают комплементарные участки в фибриногене и не позволяют этой молекуле полимеризовать-ся. Процесс взаимодействия фибриногена и тромбина происходит в жидкой фазе - кровотоке. Тромбин соединяется с фибриногеном и отщепляет конечные последовательности от α- и β-це-пей - 2 ФПА и 2 ФПВ (рис. 44). Образуются ра-

 

Фибриноген.

Формирование гемостатического тромба

Фибриноген - уникальная молекула, обладающая свойством быстро полимеризоваться в токе

 Рис. 43. Фибриноген состоит из 3 парных белковых молекул α, β и γ, Фибринопептиды А и В (ФПА и ФПВ) отщепляются тромбином от фибриногена, инициируя тем самым процесс полимеризации и превращение фибриногена в фибрин


Плазменные белки гемостаза

 

Рис. 44. Формирование фибрин-мономеров из фибриногена. Тромбин отщепляет фибринопептиды ФПА и ФПВ от молекулы фибриногена, тем самым образуются растворимые мономеры фибрина, которые способны полимери-зоваться до линейного полимера, или «растворимого фибрина»

створимые мономеры фибрина. В дальнейшем происходит спонтанное соединение комплиментарных участков фибрин-мономеров. Сначала образуются димеры, далее олигомеры и в конечном итоге собираются мононити полимери-зованного фибрина. Таким образом, фибрино-вая цепь формируется спонтанной, конец в конец полимеризацией фибрин-мономеров, при которой концевая часть одного мономера взаимодействует с центральной частью другого мономера в месте отщепления ФПА. Результатом такой полимеризации является линейный полимер шириной в 2 молекулы (рис. 44). На этом этапе фибрин легко растворим в 5-молярной

 мочевине, поэтому он получил название растворимого фибрина.

Соединяясь с фибриногеном, тромбин не только отщепляет фибринопептиды. но и активирует связанный с ним фактор XIII. Фактор ХIIIа образует ковалентные связи между γ-цепями (D-доме-нами) нитей растворимого фибрина (рис. 45), которые соединяются за счет образования пептидных мостиков между боковыми радикалами лизина и глютамина. Сшитые между собой мононити фибрина образуют прочную сеть, менее подверженную фибринолизу и более устойчивую к механическим воздействиям. В такой форме фибрин не растворяется в 5-молярной мочевине и называется нерастворимым фибрином.

Рис. 46. Организованный тромб, в котором в фибрино-вую сеть включены клетки крови

Образовавшийся фибриновый сгусток - трехмерная молекулярная сеть, в которую включены тромбоциты, эритроциты и лейкоциты (рис. 46). Активированные тромбоциты, связанные с нитями фибрина через рецепторы GPIIb-IIIa, сокращают-

Рис. 45. Образование нерастворимого фибрина под влиянием фактора ХIIIа

Плазменные белки гемостаза

ся под действием тромбостенина (тромбоцитарно-го актомиозина) вследствие присущих им контрак-тильных свойств (см. главу «Тромбоциты»). Происходит ретракция сгустка крови. Сгусток уплотняется, из него выдавливается часть сыворотки. Формирование окончательного тромба наступает на 10-15-й минуте после полимеризации фибрина.

 Если тромбоциты отсутствуют или имеют дефект GPIIb-IIIa, то ретракции кровяного сгустка не происходит и он быстро лизируется в процессе фибринолиза. При отсутствии ретракции тромба в сосудистом русле возможен отрыв тром-ботических масс и эмболия удаленных сосудов (тромбоэмболия).

Роль кофакторов и микроокружения в процессе свертывания крови

Плазменные ферменты и ингибиторы системы гемостаза эффективно функционируют только в определенном микроокружении. Эффективность функционирования факторов IX, X, протеина С, антитромбина III в присутствии своих кофакторов (факторы VIII, V, протеин S, гепарансульфат соответственно) возрастает в десятки тысяч раз. Большинство реакций протеолитической активации предшественников ферментов эффективно протекают только на «твердой фазе», роль которой играют отрицательно заряженные фосфоли-пиды. Для всех реакций, протекающих на поверхностях, необходимы ионы кальция. На рис. 47 показана степень активации тромбина фактором Ха в различных условиях микроокружения. Комплекс фактора Ха, фактора Va, фосфолипидов и Са2+ (протромбиназный комплекс) значительно эффективнее активирует тромбин, нежели один фактор Ха, причем в комплексе с кофакторами фактор Ха защищен от деградации антитромбином.

 

Рис. 47. Влияние условий микроокружения на образование тромбина фактором Ха. Комплекс фактора Ха, фактора Va, фосфолипидов и Са2+ (протромбиназный комплекс) значительно эффективнее активирует тромбин, нежели фактор Ха один или в комбинации только с фосфо-липидами и/или Са2+

Роль кальция в гемостатических реакциях

Роль кальция в гемостазе огромна. Большинство белков гемостаза имеют сайты связывания кальция. При удалении кальция из плазмы (например, при смешивании крови с цитратом натрия) активировать гемостатические реакции практически невозможно. Наиболее важные из известных функций кальция в гемостазе:

Участие в образовании связей витамин-К-за-
висимых факторов (
II, VII, IX, X, протеин С,
протеин
S) с фосфолипидной поверхностью.

Участие в активации фактора XIII.

Участие в образовании связи ф.VII и ткане
вого фактора.

Ускорение процесса роста фибринового сгу
стка, участие в стабилизации фибринового
сгустка, ограничение протеолиза фибрина и
фибриногена плазмином, защита фибриноге-

на и фибрина от температурной и щелочной денатурации.

Стабилизация структуры многих белков ге
мостаза и опосредование взаимодействия
между ними.

Участие в процессах активации тромбоцитов
и других клеток.

Кальций необходим для формирования цитос-
келета и возбуждения клетки. Он участвует в
полимеризации актина и миозина и формиро
вании актин-миозиновых волокон. Без него
невозможны процессы изменения формы ак
тивированных клеток, их движение, секреция.

Кальций участвует в регуляции большинства
внутриклеточных процессов как внутрикле
точный мессенджер (посредник) перемещения
молекул.


Плазменные белки гемостаза

Ингибиторы системы свертывания плазмы крови

Ингибиторы системы свертывания крови представлены в табл. 7.

Ингибиторы системы свертывания плазмы крови

 Таблица 7

  






Ингибиторы системы свертывания крови условно можно разделить на три группы - ингибиторы ферментов, ингибиторы коферментов и ингибиторы активных комплексов.

Ингибиторы ферментов системы гемостаза

 Среди ингибиторов ферментов системы гемостаза, в свою очередь, можно условно выделить 2 группы - ингибиторы сериновых протеаз и неспецифические ингибиторы протеаз, к которым относится α2-макроглобулин.

Ингибиторы сериновых протеаз, или серпи-ны. Большинство ферментов каскада свертывания крови составляют сериновые протеазы. Се-риновыми протеазами также являются ферменты фибринолитической системы, некоторые ферменты системы комплемента, эластаза, трипсин, химотрипсин и многие другие. Все они имеют гомологичную структуру. Существует группа ингибиторов, специфичных для сериновых протеаз, - серпины. Механизм их ингиби-рующего действия изучен довольно хорошо. Серпины имеют строение, похожее на строение субстрата сериновых протеаз. Однако, охотно соединяясь с ферментами, серпины не подвергаются немедленному расщеплению. Это соеди-

 нение блокирует ферментативную активность сериновой протеазы (рис. 48). Различные серпины несколько отличаются по строению, могут быть более или менее специфично ингиби-ровать разные ферменты. Кроме того, на актив-

Рис. 48. Ингибирование активных сериновых протеаз серпинами за счет образования стабильного неактивного фермент-субстратного комплекса


Плазменные белки гемостаза

ность и специфичность серпинов может влиять микроокружение.

Антитромбин и гепарин

Антитромбин (синоним - антитромбин III, AT) - гликопротеин, состоит из 432 аминокислот и имеет 4 участка гликолизации с разным количеством сиаловых кислот. Этот ингибитор формирует стабильный 1:1 комплекс с сериновыми протеа-зами плазменного гемостаза. Кроме того, AT связывается со специфическими сульфатными группами на пентасахаридных структурах гепарина.

AT синтезируется в печени и является наиболее значимым ингибитором системы свертывания крови. Активности находящегося в крови здорового человека антитромбина достаточно, чтобы ингиби-ровать в три раза больше тромбина, чем может образоваться из циркулирующего протромбина. Несмотря на это, уже при снижении активности AT в плазме ниже 60% возрастает риск патологических тромбозов. При изолированном дефиците активности AT риск тромботических проявлений возрастает пропорционально степени снижения активности. Помимо тромбина, AT ингибирует фактор Ха, а также факторы IХа, ХIа, ХIIа и калликреин.

Антитромбин по структуре гомологичен α1 -антитрипсину. В его активном центре присутствует специфическая связь Arg-Ser, которая и взаимодействует с сериновыми протеазами.

Рис. 49. Влияние гепарина на активность фактора Ха в плазме. Гепарин существенно усиливает ингибирующий эффект антитромбина на фактор Ха

Активность AT в десятки тысяч раз усиливается в присутствии отрицательно заряженных гли-козаминогликанов, таких, как гепарансульфат, входящих в структуру гликокаликса на поверхности эндотелиальных клеток. Аналогичное потенциру-

 ющее действие на AT оказывает гепарин (рис. 49), вырабатываемый тучными клетками. Антикоагу-лянтное действие гепарина связано с его способностью вызывать конформационные изменения AT. Функция гепарина каталитическая. После образования эквимолярного 1:1 комплекса тромбин-антитромбин (ТАТ) гепарин может освобождаться для организации других комплексов.

Нефракционированный гепарин представляет собой смесь гепаринов различной молекулярной массы. До последнего времени он широко применялся в клинической практике как антикоагулянт. В настоящее время большее распространение получили препараты низкомолекулярного гепарина (НМГ, английская аббревиатура - LMWH), который получается из гепарина химической или энзиматической обработкой. Гепарин не только значительно усиливает активность AT, но и модулирует его ингиби-торную активность. Для стабилизации комплекса ТАТ гепарин должен быть представлен структурой, имеющей, по крайней мере, 18 моносахаридных оснований. Нефракционированный гепарин связывается одновременно как с ферментом, так и с AT, тогда как НМГ связывается только с молекулой AT (рис. 50). Нефракционированный гепарин усиливает активность AT в отношении всех сериновых про-теаз каскада свертывания крови, тогда как низкомолекулярный - в основном в отношении ф.Ха.

Наиболее эффективно AT «работает» в токе крови. В составе протромбиназного комплекса (рис. 41), содержащем также фосфолипиды, Са и ф.Vа, фактор Ха лучше защищен от ингибирова-ния комплексом АТ-гепарин.

Рис. 50. Эффект нефракционированного гепарина

(молекулярная масса до 30 кДа) по стабилизации комплекса тромбин-антитромбин и низкомолекулярного гепарина (молекулярная масса 3 кДа), предпочтительно влияющего в качестве кофактора на образование комплекса фактор Ха - антитромбин, ТАТ - тромбин-антитромбино-вый комплекс

 


Плазменные белки гемостаза

 Гепарин и НМГ широко используются для профилактики и лечения тромбозов.

Антикоагулянтное действие гепарина можно быстро и обратимо снять внутривенным введением протаминсульфата - основного белка, содержащегося в сперме рыб и ковалентно связывающегося с гепарином. Гепарин, помимо активации AT, обладает дополнительными антикоагулянтны-ми эффектами. Очень важной функцией является нейтрализация гепарином тромбоцитарного фактора 4, который освобождается из а-гранул, а также стимуляция гепарином освобождения из сосудистой стенки ингибитора внешнего пути (TFPI) и кофактора гепарина П.

Серьезным осложнением гепаринотерапии может быть развитие гепариновой тромбоцито-пении и рикошетных тромбозов (см. раздел «Тромбоцитопения, вызванная гепарином»).

Комплекс тромбин-антитромбин

Продукт взаимодействия тромбина и AT (ТАТ) - неактивный комплекс, в нем тромбин и AT быстро теряют свою активность. ТАТ удаляется из системы циркуляции печенью в течение нескольких минут. Увеличение ТАТ в системе циркуляции свидетельствует о развитии гиперкоагуляции с увеличением образования тромбина. В частности, ТАТ повышен у пациентов с гипергомоцис-теинемией, которая вызывает, по-видимому, воспалительную реакцию на уровне эндотелиальных клеток. У таких больных увеличен риск тромбо-эмболической болезни и окклюзии артериальных сосудов. После лечения фолиевой кислотой и витамином В6 ТАТ значительно снижается.

Кофактор гепарина II

Другим серпином, инактивирующим тромбин, является кофактор гепарина П. Однако, в отличие от антитромбина, кофактор гепарина II более избирателен и не ингибирует активность других сериновых протеаз системы свертывания крови. Помимо тромбина, субстратом инактивации для кофактора гепарина II являются химо-трипсин и катепсин Н.

С1-ингибитор

С1-ингибитор (Cl-Ing) - наиболее важный ингибитор факторов контактной активации (см. раз-

 дел «Внутренний путь образования протромби-назы. Факторы контактной активации»). С1-ин-гибитор-высокогликозилированный серпин, ин-гибирующий факторы ХПа, ХIа, калликреин, плазмин и субкомпоненты Clr и Cls первого компонента системы комплемента.

Вклад С1-ингибитора в систему гемостаза, вероятно, не очень велик, так как его дефицит не проявляется ни кровоточивостью, ни тромбозами. Основное проявление дефицита С1-ингибитора -рецидивирующие ангионевротические отеки.

α2-макроглобулин

Рис. 51. Ингибирование активных протеаз за счет погружения фермента внутрь макромолекулы α2-макрогло-булина

α2-макроглобулин - гликопротеид, неспецифический ингибитор протеаз. Это крупный белок с молекулярной массой 725 000 Да. Механизм его действия отличается от такового у серпинов. Он действует по принципу мышеловки, у которой дверца захлопывается после попадания объекта внутрь (рис. 51). Образуя связи с внутренними пептидами α2-макроглобулина, протеазы не могут расщепить такой высокомолекулярный субстрат. α2-макроглобулин имеет большую емкость по связыванию протеиназ, но относительно низкое сродство. Он включается в физиологическую инактивацию протеиназ после истощения других ингибиторов, обладающих высоким сродством, но относительно низкой емкостью. Он инактивирует большинство протеаз, включая ферменты системы свертывания крови и фибринолиза. Потребление α2-макроглобулина обычно обнаруживают в состояниях повышенной протеолитической активности, в частности при панкреатитах. У новорожденных содержание α2-макроглобулина примерно в 2 раза выше, чем у взрослых.


Плазменные белки гемостаза

Ингибиторы коферментов

Наиболее значимым ингибитором в этой группе является система протеина С.

Система протеина С

Система протеина С включает непосредственно сам протеин С (ПС) и его кофактор протеин S (ITS). Другими компонентами системы являются мембранный белок тромбомодулин (ТМ), рецептор протеина С на эндотелиальных клетках (РПСЭК) и С4-связывающий протеин. Система протеина С вместе с антитромбином и ингибитором внешнего пути - наиболее важные и эффективные компоненты, очищающие плазму от активированных кофакторов плазменного гемостаза и ограничивающие процесс свертывания крови.

Протеин С

Протеин С (ПС) - витамин-К-зависимый белок плазмы, синтезируется в печени. Активированный протеин С (АПС) является специфической сериновой протеазой, сходной по структуре с другими витамин-К-зависимыми сериновыми протеазами. Основная функция его в гемостазе -инактивация факторов Va и VIIIa. Помимо это-

 го, он ингибирует PAI, что приводит к усилению фибринолиза.

Активация ПС происходит на поверхности эндотелиальных клеток. ПС связывается с РПСЭК на эндотелиальной мембране и контактирует с комплексом тромбин-тромбомодулин. Происходит ограниченный протеолиз неактивного ПС с образованием активной сериновой про-теазы.

АПС способен инактивировать факторы Va и Villa, расположенные на мембране активированных тромбоцитов или других клеток, в присутствии ионов Са2+. Протеин S является кофактором этой реакции (рис. 52). Механизм инактивации факторов Va и VIII протеином С заключается в их лизисе. Время полувыведения АПС из плазмы примерно 15 мин.

Фактор Виллебранда (vWF) защищает ф.VШ от протеолитического воздействия протеина С. При типе 2N болезни Виллебранда мутация затрагивает сайт vWF, связывающий ф.VIII. Последний лишается защиты и подвергается ускоренному разрушению АПС, что приводит к снижению его активности в крови. ф.VIII в комплексе с ф.IХ и ф.V в комплексе с ф.Х также относительно защищены от инактивации. Основным ин-

 

 

Рис. 52. Деградация активных факторов Va и Villa активированным протеином С (АПС), Транспортный С4-связыва-ющий протеин (С4-СП) доставляет протеин S (F1S), участвующий как кофактор в формировании комплексов на фосфоли-пидной мембране


Плазменные белки гемостаза

 гибитором АПС является PAI-3, который иногда обозначают как протеин С ингибитор (ПСИ, в английской аббревиатуре PCI), другим ингибитором АПС является α2-макроглобулин.

Значение протеина С в системе гемостаза чрезвычайно велико. Пациенты с дефицитом протеина С страдают венозными и артериальными тромбозами. Выраженность тромбофилии коррелирует с тяжестью дефицита этого белка. Пациенты с гомозиготным дефицитом протеина С не описаны, видимо, это состояние не совместимо с жизнью.

Протеин S

Протеин SS) - витамин-К-зависимый белок, синтезируемый в печени. Протеин S присутствует в плазме частично в свободном состоянии, частично в комплексе с С4-связывающим протеином (С4-СП), который доставляет протеин S на фосфолипидную мембрану. Это важно учитывать, так как комплекс протеин S - С4-СП не обладает кофакторной активностью по отношению к протеину С. Только свободный протеин S является кофактором АПС. Активность АПС в кооперации со свободным протеином S значительно выше, чем без него.

 Дефицит nS, так же как и дефицит ПС, приводит к развитию тромбозов. Тяжесть течения тромбофилии при дефиците nS также пропорциональна степени снижения его активности, а гомозиготные формы дефицита nS неизвестны.

На рис. 53 схематично представлена последовательность взаимодействий компонентов системы протеин С - протеин S при инактивации фактора Va.

С4-связывающий протеин

С4-связывающий протеин (С4-СП) - острофазный белок, синтезируется в печени. В плазме присутствует в виде молекулы, содержащей 7 идентичных ос-цепей и одну β-цепь (рис. 54). Сниженный уровень С4-СП имеет место у новорожденных и лиц, принимающих непрямые антикоагулянты. Повышение С4-СП наблюдается при воспалении, активации аутоиммунных реакций, при беременности, у женщин, принимающих стероидные контрацептивы; при этом происходит избыточное связывание протеина S. Дефицит свободной формы протеина S рассматривается как фактор риска тромбофилии. С4-СП способен также регулировать активность системы комплемента, образовывать Са-зависимые комплексы с амилоидным

Рис. 53. Система протеина С. Активированный протеин С (АПС), сопрягаясь с теназным комплексом на фосфолипид-ной поверхности (активированный тромбоцит), вызывает деградацию фактора V. ТМ - тромбомодулин, С4-СП - связывающий протеин, F1S - протеин S, ПС - протеин С, На, Va - активированные плазменные факторы, Vi - деградированный фактор V


Плазменные белки гемостаза

Рис. 54. Схематическое изображение α- и β-цепей С4-cвязывающего протеина и участок связывания протеина S

Р-белком сыворотки. Определение С4-СП возможно методом иммунотурбидиметрии или ELISA. Концентрация С4-СП в сыворотке составляет в норме около 200 мкг/мл.

Тромбомодулин был описан ранее в разделе, посвященном функции эндотелия.

Нарушения в системе протеина С (рис. 55), среди которых выделяют дефицит протеина С, дефицит тромбомодулина, дефицит протеина S и особенно резистентность к активированному протеину С (РАПС), - наиболее изученная па-тоология, значительно увеличивающая риск па-тоологического тромбообразования - тромбо-филии.

 

Рис. 55. Нарушения в системе протеина С, способствующие развитию тромбофилий: 1 -дефицит протеина С, 2 -дефицит тромбомодулина, 3 - дефицит протеина S, 4 - резистентность к активированному протеину С

Система протеина С активно реагирует на развитие воспаления в организме. Известно, что развитие воспаления, особенно в условиях грамнега-тивного сепсиса значительно воздействует на гемо-статический баланс, вызывая гиперкоагуляцию. Это связано с несколькими эффектами в системе протеина С. Во-первых, медиаторы воспаления подавляют синтез тромбомодулина, что ведет к уменьшению активации протеина С. Во-вторых, в крови повышается активность комплемента, следствием этого является относительное увеличение количества связанного и уменьшение активного несвязанного протеина S. В-третьих, фагоцитарные ферменты могут отщеплять тромбомодулин от эндо-телиальной поверхности. Он появляется в свободной циркуляции, но его активность в этих условиях значительно ниже, чем у фиксированного на мембране. В-четвертых, стимуляция синтеза и экспрессии тканевого фактора на мембране клеток в зоне воспаления ведет к усилению синтеза факторов IХа и Ха и нарастанию дисбаланса.

 

Ингибиторы активных комплексов

Ингибитор пути тканевого фактора, или ин-гибитор внешнего пути

Открытие в последнее десятилетие ингиби-тора пути тканевого фактора (ИПТФ, ИВП, TFPI) стало важным шагом в пересмотре классического каскада свертывания крови и создания современной каскадно-матричной теории гемостаза.

 ИВП ограничивает синтез тромбина комплексом ТФ-ф.VII-ф.Ха, блокируя его вскоре после образования. Один из ингибирующих доменов ИВП связывается с ф.Ха, после чего другой домен реагирует с активным центром ф.VII, когда последний связан с тканевым фактором. Аффинность ИВП к ф.VIIа значительно повышается в присутствии гепарина (рис. 56). Образуется пол-


Плазменные белки гемостаза

Рис. 56. Механизм действия ингибитора внешнего пути (ИВП) за счет образования комплекса с фактором Ха и формирования четырехкомпонентного комплекса - фактор Vila + тканевой фактор + ИВП + фактор Ха

 ностью неактивный тетрамолекулярный комплекс ТФ-ф.VII-ИВП ф.Х. Помимо ингибирова-ния, ИВП способствует поглощению и деградации этого комплекса. Таким образом, во внешнем каскаде плазменного гемостаза формируется отрицательная обратная связь.

ИВП, по-видимому, ответственен при лечении гепарином за удлинение ряда тестов коагу-лограммы, в частности АЧТВ. ИВП в плазме частично связан с липопротеидами низкой и очень низкой плотности (ЛПНП и ЛПОНП). В таком комплексе ИВП более устойчив к инактивации. Появились сообщения, что тромбин способен стимулировать освобождение ИВП из эндотелия и ЛПНП, тем самым формируется обратная от-

 рицательная связь для снижения образования тромбина.

Определение ИВП в плазме проводят методом ELISA или методом с образованием фактора Ха, который определяется в тесте с хромоген-ным субстратом. Определение ИВП в плазме выявляет не более 5-10% общего количества ИВП в сосудистой системе, так как основное его количество депонируется в сосудистой стенке. Повышение ИВП в плазме обнаружено после лечения нефракционированным или низкомолекулярным гепарином, при диабете и у больных с инфарктом миокарда. Есть сообщения о снижении ИВП при тромботической тромбопенической пурпуре и ишемическом инсульте.


Система фибринолиза

СИСТЕМА  ФИБРИНОЛИЗА

В процессе формирования гемостатической пробки активизируются механизмы, направленные на ограничение роста сгустка, постепенное растворение тромба и создание условий для нормального кровообращения. Осуществляется эта функция благодаря системе фибринолиза.

Система фибринолиза - протеолитическая система плазмы крови, ответственная за лизис фибринового сгустка, а также вовлеченная в деградацию коллагена, ангиогенез, апоптоз и связанная с другими протеолитическими системами. Центральным ферментом системы фибринолиза является плазмин, на регуляцию активации кото-

 рого направлены все реакции системы фибринолиза. В рамках настоящего изложения будет рассматриваться роль компонентов системы фибринолиза в гемостазе.

Фибринолиз локализует образование фибрина в месте повреждения, сдерживает избыточное фибринообразование, препятствуя окклюзии просвета сосуда. Баланс между фибринообразовани-ем и фибринолизом (рис. 31) способствует сохранению окончательного тромба на весь период восстановления целостности сосудистой стенки, после чего равновесие сдвигается в сторону фибринолиза и, став ненужным, тромб растворяется.

 

Компоненты фибринолиза

Система фибринолиза, так же как и система     активаторы, ингибиторы и конечный фермент свертывания крови, - многокомпонентная про-     (табл. 8). теолитическая система, в состав которой входят

Таблица 8

Основные компоненты системы фибринолиза

Фактор

Концентрация

(мг/л)

Период полувыведения

Функция

1

2

3

4

Плазминоген

200

2,2 дня

Профермент (предшественник плазмина)

Активатор плазминогена тканевого типа (t-PA)

0,005

4 мин

Протеаза, активирует плазминоген

Урокиназный активатор плазминогена (и-РА)

0,002

7 мин

Протеаза, активирует плазминоген

Ингибитор активатора плазминогена 1-го типа (PAI-1)

0,01

8 мин

Ингибитор t-PA и и-РА

Фактор XII

30

2-3 дня

Профермент. Участвует в реакции активации плазминогена

Прекалликреин

40

Профермент. Участвует в реакции активации плазминогена

Высокомолекулярный кининоген

70

5 дней

Кофактор. Участвует в реакции активации плазминогена

Витронектин

350

-

Кофактор PAI-1


Система фибринолиза

Окончание табл. 8

1

2

3

4

С1-ингибитор

180

70 ч

Ингибитор ф.ХПа. калликреина, плазмина

а2-антиплазмин

70

3 дня

Ингибитор плазмина

а2-макроглобулин

2500

Ингибитор плазмина. калликреина, урокиназы, t-PA и др.

Богатый гистидином гликопротеин

100

3 дня

Ингибитор плазмина

Аполипопротеин(а)

<70

-

Снижает фибринолиз

Активируемый тромбином ингибитор фибринолиза

5

10 мин

Предшественник ингибитора (зимоген)

Рецептор урокиназного активатора плазминогена (u-PAR)

Рецептор u-PAR, модулирующий его активность

Аннексии II

Рецептор t-PA, активирующий его функцию

Рецептор LRP/o^-макроглобулина

Рецептор t-PA, способствующий его элиминации

Рецептор маннозы

Рецептор t-PA, способствующий его элиминации

 Плазминоген

Плазминоген - одноцепочечный гликопротеин. Концентрация его составляет примерно 2 микромоля в литре плазмы. У женщин в последнем триместре беременности активность плазминогена повышается. Основное место синтеза плазминогена - печень, однако он обнаруживается и в эозинофилах, клетках почек, роговице. Возможно, в этих тканях он также синтезируется. В системе циркуляции плазминоген связан с богатым гистидином гликопротеином.

 Активация плазминогена осуществляется, в основном, 2 специфическими протеазами - активатором плазминогена тканевого типа и уроки-назой. Кроме того, плазминоген может связываться с фибрином и активироваться в комплексе с ним. Связанный с фибрином плазмин относительно защищен от инактивации. В токе же крови плазмин очень быстро (примерно за 0,1 с) инак-тивируется ингибиторами.

Активатор плазминогена тканевого типа

Активатор плазминогена тканевого типа (t-PA) является сериновой протеазой. Он высокоспецифичен; его единственным доказанным субстратом является плазминоген. Видимо, t-PA -основной физиологический активатор фибринолиза в просвете сосуда. Основным местом синтеза t-PA является эндотелий. Помимо эндотелия, t-PA синтезируется во многих других клетках: моноцитах, мегакариоцитах, мезотелиаль-ных клетках, мышечных клетках сосудов, фиб-робластах сердца и др. Большая часть плазменного t-PA связана с его основным ингибитором PAI-1. Как связанный, так и свободный активатор быстро удаляются из тока крови клетками печени.

 Помимо активации фибринолиза, t-PA участвует в противовоспалительных реакциях, стимуляции пролиферации эндотелия. Есть данные, что t-PA может активировать ф.VII.

Функция t-PA связана с наличием ряда рецепторов. Рецепторы t-PA делятся на 2 большие группы - активирующие и удаляющие.

Активирующие t-PA-рецепторы располагаются на клеточных поверхностях и усиливают активацию плазминогена t-PA. Наиболее изученным активирующим t-PA-рецептором является аннексин II. Избыточная экспрессия аннексина II у пациентов с промиелоцитарным лейкозом ведет к гиперфибринолизу с геморрагическими проявлениями.

Система фибринолиза

В группе рецепторов, способствующих элиминации t-PA, изучены маннозный рецептор и рецептор LRP/α2-макроглобулина. Первый располо-

Урокиназный активатор плазминогена

Урокиназный активатор плазминогена (уро-киназа, u-РА) найден в больших количествах в моче человека. Предшественником u-РА является белок проурокиназа, или scu-PA. Проуроки-наза синтезируется в различных клетках. Особенно активно scu-PA синтезируется эпителиальными клетками почечных протоков, а также обкла-дочными клетками практически всех протоков, включая протоки потовых, слезных и других желез. В протоках урокиназа необходима для деградации белковых компонентов секретов. Основную работу урокиназа выполняет в тканях, способствуя деградации внеклеточного матрикса, что облегчает процессы миграции клеток. Роль урокиназы значительна во многих физиологичес-

 

жен на мембране эндотелиоцитов печени и куп-феровских клеток, второй работает на мембране гепатоцитов.

ких и патологических процессах - заживлении ран, воспалении, эмбриогенезе, метастазирова-нии опухолевых клеток.

Известен еще ряд функций урокиназы помимо активации плазминогена. Наиболее важные из них - активация ростовых факторов, модуляция миграции и инвазии клеток, оказание митоген-ного эффекта на клетки меланомы.

Рецептор урокиназы (u-PAR) обнаружен на моноцитах. Он способствует активации плазминогена урокиназой, что необходимо для участия моноцитов в деградации фибринового тромба. Такой же рецептор найден на тромбоцитах. Описаны 2 рецептора, элиминирующие урокиназу и комплекс урокиназа-серпин из кровотока.

 

Другие активаторы плазминогена

Помимо указанных выше основных физиологических активаторов плазминогена, описаны другие физиологические и нефизиологические активаторы.

Есть данные, что ф.ХIIа может напрямую активировать плазминоген. Скорость активации плазминогена ф.ХIIа в сравнении с эквимоляр-ным количеством t-PA в 10 раз ниже, однако его

 молярная концентрация в циркулирующей крови в 5000 раз выше. Таким образом, роль прямой активации плазминогена ф.ХIIа может быть достаточно высока. Другими известными активаторами плазминогена являются стрептокиназа, ста-филокиназа, активатор плазминогена, выделенный из слюны летучих мышей-вампиров.

Механизм активации фибринолиза

В фибринолизе, так же как в системе коагуляции, имеется 2 пути: внешний и внутренний путь активации плазминогена (рис. 57). Внешний путь

 активации плазминогена обеспечивается в основном тканевым активатором, внутренний путь -урокиназой.

Рис. 57. Основные звенья фибринолиза. Образование основного фермента фибринолиза плазмина происходит под влиянием факторов внутреннего или внешнего пути активации фибринолиза, Внутренний путь начинается с активации проурокиназы. Внешний путь определяется влиянием тканевого активатора плазминогена (t-PA). Накопление свободного плазмина в системном кровотоке предотвращается группой острофазных белков, КК - калликреин, ВМК - высокомолекулярный кининоген, u-РА - урокиназа, Cl-Ing - ингибитор 1-го компонента комплемента, PAI-1 -ингибитор тканевого активатора плазминогена типа 1, ПДФ -продукты деградации фибрина


Система фибринолиза

Внутренний путь активации фибринолиза

Внутренний путь активации фибринолиза начинается в комплексе реакций контактной активации свертывания крови. Калликреин активирует проурокиназу с образованием активного фермента урокиназы. Кроме калликреина, активация проурокиназы до активной двухцепочеч-ной формы u-РА происходит под воздействием ф.ХIIа и -ХIа, плазмина (положительная обратная связь) и усиливается при связывании с уроки-назным рецептором. В связи с этим у пациентов с дефицитом прекалликреина, XII фактора (болезнь Хагемана) или высокомолекулярного кини-ногена (ВМК), у которых, казалось бы, из-за не-

 достатка плазменных факторов должна быть склонность к кровотечениям, наоборот, в результате неполноценной активации фибринолиза имеется тенденция к тромбозам.

Определение u-РА для диагностики нарушений гемостаза практически не проводится, так как диагностическое значение этого фермента пока недостаточно ясно. Однако u-РА является опухолевым маркером карциномы яичника и, вероятно, других опухолей, поэтому имеются коммерческие ELISA-наборы, которые используются для определения u-РА как опухолевого маркера.

 Внешний путь активации фибринолиза

Плазминоген имеет высокое сродство к выпавшему фибрину за счет присутствия на фибрине специфических лизин-связывающих участков (сайтов). Эндотелиальные клетки синтезируют и освобождают в систему циркуляции тканевой активатор плазминогена (t-PA). Изучение процесса высвобождения t-PA из клеток показало, что основным стимулятором этого является брадики-нин, который отщепляется от высокомолекулярного кининогена калликреином. Таким образом, процесс активации факторов контактной фазы является основным физиологическим пусковым механизмом фибринолиза. Этот процесс резко усиливается при остановке кровотока и образовании фибрина. t-PA обладает высоким сродством к фибрину. На фибрине формируется комплекс фибрин -тканевой активатор - плазминоген (рис. 58) - наиболее специфическое и эффективное действующее начало фибринолиза. Фибрин, особенно частично деградированный фибрин, служит кофактором t-PA-индуцированной протеолитической активации плазминогена. В результате образования это-

 го комплекса плазминоген переходит в активный плазмин, который разрушает пептидные связи в фибрине/фибриногене.

Рис. 58. Активация плазминогена при формировании комплекса фибрин - тканевой активатор - плазминоген на фибрине. Фибрин служит кофактором t-PA-индуцированной протеолитической активации плазминогена. На поверхности фибрина присутствует лизин-связывающий сайт, необходимый для активации плазминогена тканевым активатором


Система фибринолиза

Ингибиторы фибринолиза

Участки действия основных ингибиторов фибринолиза представлены на рис. 59.

Рис. 59. Ингибиторы фибринолиза, показаны участки основного ингибирующего эффекта, Практически все ингибиторы фибринолиза являются белками острой фазы. TAFI - тромбин-активируемый ингибитор фибринолиза, t-PA- тканевой активатор плазминогена, Cl-Ing -ингибитор 1-го компонента комплемента, AT - антитромбин III, PAI-1, PAI-2 - ингибиторы тканевого активатора плазминогена (тип 1 и 2), ПДФ - продукты деградации фибрина/фибриногена

αг-антиплазмин, αг-макрогло6улин, αгантитрипсин

αг-антиплазмин (αг-АП) в физиологических условиях быстро инактивирует плазмин, образуя неактивные комплексы. оц-АП имеет высокое сродство к плазмину, взаимодействует с ним, удаляя свободный плазмин из системы циркуляции. В результате время полужизни свободного плаз-мина составляет всего 0,1 секунды. Если же плазмин успевает соединиться с выпавшим фибрином, то взаимодействие плазмин-αг-АП резко снижается (примерно в 50 раз). Недостаточность αг-АП проявляется кровотечениями, так как накапливающийся активный плазмин ускоренно разрушает фибрин и фибриноген. αг-АП - белок острой фазы, однако при массивной активации фибринолиза, в частности при ДВС-синдроме, может наблюдаться истощение αг-АП. Приобретенная недостаточность αг-АП встречается значительно чаще, чем врожденная.

αг-макроглобулин. Этот ингибитор был описан в разделе «Ингибиторы системы свертывания крови». Это неспецифический ингибитор. При активации фибринолиза образующийся из плазминогена (концентрация в плазме свыше 1,5 мкмоль) плазмин в первую очередь связывается αг-антиплазми-ном (концентрация в плазме около 1 мкмоль). После полного насыщения αг-антиплазмина дальнейшая нейтрализация плазмина осуществляется за счет αг-макроглобулина. Кроме того, αг-макро-глобулин инактивирует другие ферменты систе-

 мы фибринолиза: урокиназу (u-РА), тканевой активатор плазминогена (t-PA), плазменный каллик-реин, компоненты комплемента, бактериальные и лейкоцитарные протеазы, такие, как эластаза и ка-тепсины.

α1-aHmumpuncuH. На его долю приходится более 80% антипротеазной активности крови. В сыворотке α1 -антитрипсин содержится в концентрации 1,4-3,2 г/л, или около 52 ммоль/л. Это основной ингибитор сериновых протеаз: трипсина, хи-мотрипсина. Помимо этого, он принимает участие в инактивации плазмина, калликреина, ренина, урокиназы. Благодаря небольшим размерам он может проникать и функционировать в тканях (легкие, бронхи). α1-антитрипсин - белок острой фазы, его выработка увеличивается при реакциях, запускаемых через фактор некроза опухолей, ин-терлейкин-1, интерлейкин-6, а также при высокой концентрации эстрогена в сыворотке в последнем триместре беременности, при приеме эстроген-со-держащих противозачаточных препаратов.

Все 3 описанных ингибитора совместно предупреждают появление плазмина в системе циркуляции в свободном виде, исключая его деградирующий эффект на фибриноген, а также на факторы свертывания VIII, V и другие плазменные белки. Деятельность этих ингибиторов является важным условием поддержания гемостати-ческого баланса.

 


Система фибринолиза

Ингибиторы тканевого активатора плазминогена (PAI)

 Ингибитор активатора плазминогена 1-го типа (PAI-1). Это специфический ингибитор тканевого активатора плазминогена (t-PA) и урокиназы (u-РА). Помимо этого он подавляет активацию фибринолиза стрептокиназой.

PAI-1 обнаружен в плазме и тромбоцитах. В плазме он связан с витронектином. PAI-1 синтезируется в эндотелиальных клетках. Синтез усиливается при их стимуляции липополисаха-ридами плазматических мембран бактерий (эндотоксином), провоспалительными цитокина-ми, такими, как ИЛ-1 или ФНО-α, а также тромбином. Наиболее значительная стимуляция происходит в условиях сепсиса и при обширных тромбозах.

 PAI-1 ингибируется протеином С. Таким образом, протеин С ингибирует не только активированные факторы Va и VIIIa, но и PAI-1, проявляя, следовательно, профибринолитическую активность.

Ингибитор тканевого активатора плазминогена 2-го типа (PAI-2) обнаружен в очень низких концентрациях в плазме, но может существенно повышаться при беременности. Он в большей степени ингибирует активность u-РА, чем t-PA.

Ингибитор тканевого активатора плазминогена 3-го типа (PAI-3). Это, по-видимому, относительно слабый ингибитор. Он подавляет активацию плазминогена протеином С. Диагностического значения определение PAI-2 и PAI-3 пока не имеют.

Активируемый тромбином ингибитор фибринолиза (TAFI)

TAFI (карбоксипептидаза Y, или плазменная карбоксипептидаза В) - один из наиболее важных ингибиторов фибринолиза. Его неактивная форма - прокарбоксипептидаза Y - активируется тромбином, связанным с тромбомодулином, и, вероятно, трипсином, калликреином, плазмином до активной карбоксипептидазы Y или TAFI.

Механизм ингибирования фибринолиза кар-боксипептидазой Y отличается от описанных выше. TAFI разрушает каталитическую поверхность фибрина (лизин-связывающий сайт), необходимую для активации плазминогена t-PA. Кроме того, в более высокой концентрации TAFI обладает прямой ингибирующей активностью по отношению к плазминогену.

 TAFI играет большую роль в формировании гемостатического тромба, предотвращая его преждевременный лизис. Однако для активизации достаточного количества ингибитора необходим значительный избыток тромбина, превышающий количество, необходимое для образования фиб-ринового сгустка. Видимо, этим объясняется повышение фибринолиза у лиц с гемофилией и дефицитом фактора XI.

Определение TAFI проводится методом ELISA. Повышение TAFI зарегистрировано при тромбозах и при применении тромболитических препаратов. Обнаружена корреляция между концентрацией и активностью TAFI, с одной стороны, и временем, в течение которого лизируется сгусток крови.

Другие элементы системы фибринолиза

Аполипопротеин (а). Аполипопротеин (а) конкурирует с плазминогеном и t-PA за связь с фибрином, что приводит к снижению активности процесса фибринолиза. Кроме того, было показано, что в присутствии аполипопротеина (а) уменьшается активация плазминогена на поверхности фибрина.

 Витронектин. Витронектин стабилизирует PAI-1 в его активной конформации, являясь, по сути, его кофактором, и повышает период полураспада последнего. Кроме того, он способствует клиренсу PAI-1 липопротеинами низкой плотности.


Система фибринолиза

Лизис фибринового сгустка. Продукты деградации фибрина/фибриногена и D-димеры

Плазмин является очень активной и в то же время относительно неспецифичной сериновой протеазой, которая разрушает фибрин и фибриноген. Образующиеся вследствие этого молекулы, имеющие разную молекулярную массу, обозначаются как продукты деградации фибрина/ фибриногена (ПДФ).

Продуктами деградации фибрина в основном являются комплексы DDE и D-димеры (рис. 60).

 Помимо фибрина, плазмин способен активно деградировать фибриноген, особенно в тех случаях, когда вводятся активаторы фибринолиза (фибринолитики). В результате лизиса фибриногена образуются меньшие фрагменты X, Y, D и Е (рис. 61), а D-димеры не образуются.

Некоторые фрагменты ПДФ обладают выраженной физиологической активностью. Они снижают агрегацию тромбоцитов и нарушают поли-

Рис. 60. Образование фибрина из фибриногена и формирование D-димеров при деградации фибрина плазмином


Система фибринолиза

 Рис. 61. Образование ПДФ при деградации фибриногена плазмином. Свободный плазмин является неспецифической протеазой, он разрушает фибриноген до мелких продуктов деградации. При этом D-димеров не формируется. D-димеры образуются при разрушении плазмином фибрина. Определяя ПДФ, выявляем продукты деградации фибрина/фибриногена, которые могут формироваться как при фибринолизе тромба, так и после введения фибрино-литиков, Определяя D-димеры, определяем продукты разрушения фибринового тромба (если он имел место у пациента)

меризацию фибрин-мономеров, являясь, в сущности, антикоагулянтами.

ПДФ способны нарушать целостность или повышать проницаемость сосудистой стенки. Поэтому при некоторых клинических ситуациях

 кровотечения могут быть вызваны не уменьшением концентрации фибриногена, а присутствием большого количества ПДФ, формирующихся при активном фибринолизе.

Плазмин-независимый фибринолиз

В сгустке фибрин связан с активированными тромбоцитами. Те, в свою очередь, экспрессиру-ют на поверхности Р-селектин, CD154 и другие рецепторы для лейкоцитов. Лейкоциты могут освобождать несколько протеаз, которые способны деградировать фибрин: гранулоцитарную эласта-зу, катепсин G, моноцитарный катепсин D и др.

При протеолитическом расщеплении фибрина лейкоцитарными ферментами, так же как и при расщеплении плазмином, образуются D-димеры, которые идентифицируются коммерческими ди-агностикумами.

 Интересно, что эластаза может модифицировать плазминоген, делая его более восприимчивым к активации u-РА и t-PA и менее чувствительным к α2-антиплазмину.

Фибрин, который частично деградировал под влиянием эластазы, обладает меньшей ко-факторной активностью для t-PA, чем в случае деградации фибрина плазмином. Очевидно, что эластаза имеет достаточно большое значение в регуляции фибринолиза, особенно при воспалении.


Реологические аспекты гемостаза

РЕОЛОГИЧЕСКИЕ  АСПЕКТЫ   ГЕМОСТАЗА

Кровь - динамичная система. Силы, возникающие в результате взаимодействия текущей крови и сосудистой стенки, оказывают суще-ственное регуляторное влияние на систему гемостаза и на всю систему кровообращения. За-пуск процесса тромбообразования, скорость и характер образующегося тромба зависят от локальных гемодинамических условий. Взаимо-действие клеток, плазматических белков и ре-

 цепторов системы гемостаза, экспрессия генов и метаболизм клеток, участвующих в гемоста-тических реакциях, модулируются локальными реологическими условиями, а те, в свою очередь, изменяются при образовании тромба. Учет гемодинамических особенностей, возникающих в месте потенциального тромбообразования, позволяет лучше оценить наблюдаемые гемоста-тические феномены.

Особенности реологии крови

 

В норме в сосудах кровь течет ламинарным током, скорость потока неоднородна и нарастает по направлению от стенок сосудов к центру. Трение одного слоя жидкости относительно другого называется вязкостью. Вязкость кро-зи зависит от скорости тока: чем выше скорость, тем меньше вязкость. Влияние одного слоя на другой в потоке жидкости определяется силой сдвига. В стоячей жидкости сила сдвига равна нулю, чем выше скорость движения жидкости, тем сильнее силы бокового сдвига. Для ламинарного тока (рис. 62, А) силы бокового сдвига уменьшаются в направлении к стенке сосуда.

В области атеросклеротических бляшек (рис. 62, Б), разветвлений сосудов (рис. 62, В), в подклапанном пространстве (рис. 62, Г) или при компрессии сосуда извне ламинарное движение крови нарушается, возникает турбулентность (завихрения). В местах сужения скорость потока возрастает. В областях, находящихся дистальнее, появляются турбулентные потоки и разнонаправленное изменение скорости потока. При изменении направления тока крови и возникновении турбулентных потоков появляются силы бокового сдвига, которые ударяют по поверхности сосудистой стенки. Поэтому турбулентные потоки

 являются причиной повреждения слоя гликока-ликса и эндотелиальных клеток. Это приводит к повреждению сосудистой стенки, что влечет за собой изменения реактивности со стороны элементов системы гемостаза (рис. 150).

Рис. 62. Характер потока крови в различных условиях сосудистого русла: А - характер потока крови в неизмененном сосуде - ламинарный ток, Б - характер потока крови в сосуде, имеющем сужение, в том числе при развитии атеросклеротических бляшек или при формировании пристеночного тромба, В - характер потока крови в области бифуркации крупных сосудов, Г - характер потока крови в области клапанов сердца и сосудов


Реологические аспекты гемостаза

Функция тромбоцитов в различных гемодинамических условиях

 В норме в кровотоке большинство тромбоцитов находятся в неактивной форме на всех участках кровеносного русла. Однако, в условиях воздействия сил сдвига, превышающих нормальные, тромбоциты могут спонтанно активироваться без контакта с субэндотелием. Предположительный механизм этого процесса связан с особенностями функционирования фактора Вил-лебранда (vWF). В условиях нормального кровотока vWF мало связывается со своими рецепторами на интактных тромбоцитах. Однако, когда воздействие сил тока крови превышает обычное, например в области атеросклеротического сужения артерии, аффинность vWF к рецепторам повышается. Он связывается с GPIb и GPIIb-IIIa одновременно. Следствием этого становится активация тромбоцитов с образованием мобильных тромбоцитарных агрегатов. АДФ и эпинеф-рин (адреналин) - агонисты этого процесса, они увеличивают процесс тромбообразования. Механизм этого действия неясен. Исследования показали, что ингибирование циклооксигеназы аспирином оказывает небольшое влияние на агрегацию тромбоцитов под воздействием напряжения сдвига, а агенты, повышающие уровень внутриклеточной цАМФ, такие, как простацик-лин (ПГ1), ингибируют механически индуциро-

 ванную агрегацию. Природа чувствительных к механическому воздействию компонентов этой системы неизвестна.

Интенсивность воздействия потока крови на тромбоциты влияет на адгезию к субэндотели-альным структурам и агрегацию. В условиях слабого воздействия тока крови адгезия тромбоцитов происходит за счет прямой фиксации к коллагену через рецептор GPIa-IIa и посредством молекулы адгезии фибронектина, а агрегация происходит за счет фибриновых мостиков. В условиях интенсивного кровотока для надежной фиксации тромбоцитов к субэндотелию и прочной агрегации необходим vWF. У пациентов с количественным и качественным дефектом vWF нарушение адгезии и агрегации тромбоцитов приводит к геморрагическим проявлениям различной тяжести.

В медленно текущей и сгущенной крови наступает агрегация клеток крови (рис. 63). Эритроциты собираются в монетные столбики, образуются агрегаты тромбоцитов, в легких формируются агрегаты нейтрофилов. Повышается вязкость крови.

Проводились экспериментальные исследования роста тромба в зависимости от интенсивности кровотока. Процесс тромбообразования

Рис. 63. Кровоток в венулах в норме характеризуется центральным расположением эритроцитов и краевым движением лейкоцитов. При низкой скорости эритроциты собираются в монетные столбики и придавливают лейкоциты к стенке, способствуя их выходу в ткань


Реологические аспекты гемостаза

проходил на компонентах, выделенных из эндотелия. Установлено, что повышение скорости тока, а следовательно, увеличение напряжения сдвига, увеличивало отложение тромбоцитов. Однако в этих условиях снижался рост тромба. Возможные объяснения этому: 1) связи тромбоцитов с компонентами эндотелия недостаточно сильны, чтобы удержать их на поверхности по

 мере нарастания воздействия сил сдвига; 2) при уменьшении времени контакта тромбоцитов с поверхностью прочные связи не успевают образовываться; 3) при увеличении скорости тока крови происходит интенсивное вымывание активированных компонентов гемостаза из зоны реакции.

Влияние сил потока крови на процесс коагуляции

Процесс свертывания крови связан с фиксацией комплекса плазменных белков на поверхностях в области повреждения сосуда. Интенсивность этого процесса зависит от доставки белков плазмы к месту реакции. В условиях ламинарного течения крови белки поступают к месту повреждения в основном путем радиальной диффузии. Повышение скорости тока крови, возникновение турбулентных потоков увеличивают доставку протеаз к месту реакции. Экспериментальные исследования показали, что в условиях стандартной ограниченной концентрации ф.Va, фиксированного на поверхности, и циркулирующего в жидкой фазе ф.Х ста-

 бильный уровень продукции тромбина ограничен количеством фиксированного ф.Vа. В условиях лимитированного количества ф.Vа увеличение циркулирующего ф.Ха или скорости циркуляции не меняет конечный уровень продукции тромбина, однако ускоряет этот процесс. Таким образом, увеличение интенсивности тока крови сокращает время тромбообразования.

Однако, индуцированный механическим воздействием выброс из эндотелия тканевого активатора плазминогена приводит к сокращению отложения фибрина и ограничению роста сгустка за пределы повреждения.

 

Гемодинамическое воздействие на функцию сосудистой стенки

Ток крови оказывает на сосудистую стенку механическое воздействие, растягивая ее, оказывая давление с внутренней стороны и воздействуя силами напряжения сдвига. Эндотелиоциты реагируют на условия тока крови:

изменяется активность синтеза различных
белков;

изменяется концентрация циклических нукле-
отидов в цитоплазме;

происходят количественные и качественные
изменения рецепторов и фосфолипидов мем
браны. Эти процессы в том числе влияют на
активность эндотелиоцитов в гемостазе. Име
ется два типа реакции эндотелиоцитов на ме
ханические воздействия тока крови -
быст
рые и медленные реакции.

Быстрые реакции (в течение секунды) являются следствием прямого воздействия сил тока крови на текучую мембрану клеток. Медленные реакции опосредованы рецепторами. Ионные каналы,

 тромбиновые рецепторы с G-протеинами, рецепторы тирозинкиназы и интегрины реагируют на механическое воздействие. Время реакции эндоте-лиоцита при механическом воздействии на рецепторы составляет от 10 с до нескольких минут.

Различные механические воздействия вызывают разные реакции со стороны эндотелия. На растяжение эндотелиоциты реагируют деполяризацией мембраны и активацией, а на сдвиговое воздействие - гиперполяризацией. В табл. 9 приведены эффекты различных видов механического воздействия на эндотелиоциты.

Гладкие мышечные клетки сосудов, так же как и эндотелиоциты, отвечают на механические воздействия. Например, длительное воздействие растяжения вызывает снижение их пролиферативной активности. Воздействие повышенного напряжения сдвига приводит к усилению секреции тканевого активатора плазминогена, оксида азота, про-стациклина, ПГI2, некоторых ростовых факторов.


Реологические аспекты гемостаза

Таблица 9

Физиологические и патологические эффекты механического воздействия на эндотелиоциты


Современная теория свертывания крови

СОВРЕМЕННАЯ  ТЕОРИЯ  СВЕРТЫВАНИЯ  КРОВИ

Разработанная и дополненная в начале - середине XX века теория гемостаза базировалась на исследованиях, выполненных in vitro, и не учитывала реальные условия в системе кровообращения. В последнее десятилетие под давлением накопившихся фактов взгляд на механизмы гемостатических реакций изменился. Наиболее значимым шагом явилась разработка каскадно-матрич-ной теории свертывания крови, в которой учтены не только реакции взаимодействия белков плазмы и тромбоцитов, но влияние компонентов сосудистой стенки и других клеток крови. Реакции гемостаза привязали к конкретным структурам на мембранах клеток и субэндотелия. Были учтены особенности мембранных рецепторов клеточных компонентов гемостаза и микроокружения, в котором происходят реакции.

На рис. 64 представлена последовательность гемостатических реакций. Однако эта схема отражает проблему на феноменологическом уровне. Видимо, в организме запуск всех процессов происходит в течение нескольких секунд после возникновения травмы, но каждый процесс име-

 ет различную скорость развития. При этом различные внешние воздействия и особенности организма могут менять соотношение скоростей разных гемостатических реакций.

Сложно подробно описать весь комплекс реакций гемостаза, привязываясь к динамике процесса, поэтому мы опишем лишь важнейшие моменты. Более подробная информация была дана ранее в разделах, посвященных конкретным системам. Тем не менее целостное представление необходимо для правильной клинической интерпретации лабораторных тестов.

В первый момент после повреждения сосуда развиваются следующие реакции:

Вазоконстрикция (в сосудах, имеющих мы
шечный слой). Она механически ограничива
ет кровопотерю, создает условия для более
эффективного тромбоцитарного гемостаза и
позволяет теснее сопрягать гемостатические
реакции в зоне повреждения.

Активация эндотелиоцитов с последующим
экзоцитозом под воздействием стимуляторов:
тромбина, гистамина, фибрина, компонентов

 

Рис. 64. Последовательность развития гемостатических реакций в системе кровотока после повреждения сосудистой стенки


Современная теория свертывания крови

комплемента, гипоксии. Экзоцитоз содержимого пулов хранения эндотелиоцитов приводит к локальному повышению концентрации про-коагулянтов, в первую очередь фактора Вил-лебранда. Видимо, на поверхности активированных эндотелиоцитов появляется тканевой фактор. Таким образом, антикоагулянтные свойства эндотелия сменяются на прокоагулянт-

 ные в зоне повреждения. Однако прокоагулянт-ный потенциал уменьшается по мере удаления от области повреждения и меняется на анти-коагулянтный в области интактного эндотелия. Немедленно после повреждения происходит контакт крови с субэндотелиальными структурами и развиваются события, которые описывает каскадно-матричная теория свертывания крови.

Каскадно-матричная теория свертывания крови

 В настоящее время имеются доказательства того, что в условиях in vivo внутренний и внешний пути активации протромбиназы взаимосвязаны. Комплекс ТФ-ф.VIIа активирует фактор IX, а факторы ХIIа и Ха могут активировать фактор VII. Кроме того, оказалось, что, несмотря на сходную структуру мембранных липидов, клетки, несущие тканевой фактор, и активированные тромбоциты экспрессируют рецепторы, которые локализуют на их поверхности различные компоненты свертывающей системы крови.

Условно процесс свертывания крови можно разделить на три перекрывающих друг друга фазы.

1-я фаза - инициация процесса свертывания крови. Сразу же после повреждения эндотелия кровь контактирует с матриксом субэндотелия и клетками субэндотелия (фибробластами, макрофагами, гладкими мышечными клетками). ТФ, фиксированный на мембране этих клеток, образует комплекс с плазменным ф.VII. Поскольку около 1% ф.VII присутствует в кровотоке в активной форме, сразу после повреждения эндотелия образуется некоторое количество активных комплексов ТФ-ф.VIIа, которые активируют ф.Х до ф.Ха. ф.Ха на поверхности субэндотелия образует комплекс со своим кофактором ф.Vа. При этом превращение фактора V в активную форму осуществляется фактором Ха на поверхности клеток, несущих ТФ. Сформировавшийся протром-биназный комплекс приводит к образованию незначительного стартового количества тромбина.

Одновременно с ф.Ха комплекс ТФ-ф.VIIа активирует ф.IХ.

Большинство ТФ образует комплекс с неактивным ф.VII и не способно активировать ф.Х. Однако этот процесс имеет положительную обратную связь за счет следующих механизмов: 1) акти-

 вации фактора VII в комплексе с ТФ образовавшимся фактором Ха; 2) активации ф.VII тромбином. Активированного на этом этапе тромбина недостаточно для образования фибринового сгустка, поскольку активация протромбина на мембранах субэндотелиальных клеток ограничивается целым рядом механизмов:

Комплекс ТФ-ф.VIIа-ф.Ха быстро подавля
ется ингибитором пути тканевого фактора
(ИВП).

ф.Ха, поступающий в плазму с поверхности
мембраны, также очень быстро ингибирует-
ся антитромбином
III.

Неактивированный фактор VII, который кон
курирует с фактором
VIIa за места связыва
ния на ТФ, также вносит вклад в ограниче
ние процесса образования тромбина. Его
ингибиторный эффект наиболее значителен
при минимальной концентрации
ТФ.

2-я фаза - усиление процесса свертывания крови. Образовавшееся в первой фазе небольшое количество тромбина не приводит к интенсивному образованию фибрина, однако это количество важно для активизации других компонентов системы гемостаза. Тромбин более устойчив к инактивации, чем фактор Ха. Он сохраняет свою активность в токе крови и играет ключевую роль в усилении процесса свертывания крови.

ф.IХ, активизированный на клетках субэндотелия в 1-й фазе процесса свертывания крови, так же как и тромбин, имеет относительно высокую устойчивость к ингибированию AT. Он преодолевает расстояние между мембраной клеток субэндотелия и мембраной активированного и адге-зированного тромбоцита. Там он фиксируется на тромбоцитарном ф.З и образует с ф.VIIIа теназ-ный комплекс.

 


Современная теория свертывания крови

Адгезированные к субэндотелию в области повреждения сосуда тромбоциты активируются за счет сигнала с рецепторов адгезии. Однако наиболее сильным стимулом является тромбин. Неактивированные и активированные тромбоциты имеют несколько рецепторов для тромбина: рецептор, активируемый протеазой (PAR1), глико-протеин Ib-V-IX (GPIb-V-IX) и, возможно, другие. Активированные тромбоциты экспонируют на своей поверхности тромбоцитарный фактор 3, или тромбоцитарный тромбопластин, и специфические рецепторы к различным факторам свертывания крови. Помимо изменений клеточной поверхности, тромбоциты секретируют содержимое пулов хранения, увеличивая локальную концентрацию прокоагулянтов.

GPIb-V-IX является рецептором не только тромбина, но и фактора Виллебранда, оба этих белка реагируют с различными частями рецептора, поэтому они могут связываться с одним рецептором одновременно. Тромбин, связанный с рецептором GPIb-V-IX, вычленяет ф.VIII из комплекса с фактором Виллебранда и активирует его. ф.VIIIa остается на тромбоцитарной поверхности, формируя теназный комплекс. Тромбин активирует фактор V, который выделяется в процессе секреции из альфа-гранул тромбоцитов; ф. Va также остается на поверхности активированных тромбоцитов, формируя протромбиназный комплекс.

Еще одним фактором свертывания, активируемым тромбином, образовавшимся под воздействием комплекса ТФ-ф.VIIа, является ф.ХIа, который связывается с поверхностью активированных тромбоцитов через цепь GPlba комплекса GPlb-V-IX.

Таким образом, небольшие количества тромбина, образовавшиеся в ходе первой фазы, обеспечивают в течение второй фазы свертывания крови распространение процесса активации свертывания крови на активированную тромбо-цитарную поверхность с одновременной трансформацией в активную форму факторов XI, IX, VIII и V.

3-я фаза - распространение процесса свертывания крови. Активированные тромбоциты имеют на своей поверхности рецепторы для факторов XI, ХIа, IX, IХа, X, VIII, VIIIa, V, Va, Xa, протромбина и тромбина. В 3-й фазе на их по-

 верхности происходит формирование теназного и протромбиназного комплексов.

ф.VIIIa/IХа начинают ограниченный проте-олиз ф.Х до ф.Ха, последний с ф.Va образует протромбиназный комплекс и наращивает количество тромбина в зоне повреждения. Однако активированного на этом этапе тромбина еще недостаточно для образования полноценного фиб-ринового сгустка. Критическое количество активного фактора IХа, которое необходимо для остановки кровотечения, образуется под влиянием фактора ХIа. Показано, что ф.ХI связывается с GPIba тромбоцитов и активируется образовавшимся тромбином. Эта положительная обратная связь усиливает коагуляционный потенциал в 5000-10 000 раз.

Образование теназного комплекса, состоящего из энзима IХа и кофактора VIII, на поверхности тромбоцитов приводит к активации фактора X со скоростью, превышающей в 50-100 раз активацию фактора X под влиянием комплекса ТФ-ф.VIIа. Кроме того, факторы в этом комплексе относительно защищены от инактивации. Вследствие этого процесса образуется значительное количество тромбина, которого достаточно для формирования гемостатического тромба.

Одновременно с фибриногеном тромбин активирует фактор XIII (фибрин-стабилизирующий фактор). Параллельно тромбин активирует тром-бин-активируемый ингибитор фибринолиза (TAFI), который тормозит развитие фибринолиза и позволяет сформироваться плотному гемо-статическому тромбу, достаточному для надежной остановки кровотечения и развития репара-тивных реакций сосудистой стенки. Таким образом, в зоне повреждения возникают условия для формирования и стабилизации адекватного гемостатического тромба.

В нормальных условиях процесс развития тромба ограничивается несколькими механизмами:

Тромбин в токе крови ингибируется анти
тромбином
III.

На интактных эндотелиальных клетках тром
бин связывается с тромбомодулином (ТМ), при
этом тромбин теряет свои коагуляционные
свойства и одновременно приобретает способ
ность активировать антикоагулянт протеин С.

Эндотелиальные клетки усиливают инакти
вацию коагуляционных факторов антитром-

 


Современная теория свертывания крови

бином и TFPI, преимущественно за счет наличия на своей поверхности гепариноподоб-ных гликозаминогликанов.

• По мере удаления от места повреждения снижается прокоагулянтный стимул и возрастает антикоагулянтный. В зоне неповрежденного эндотелия он преобладает и ограничивает рост сгустка.

Параллельно с развитием реакций коагуляции адгезированные активированные тромбоциты выбрасывают содержимое своих гранул. Следствием этого является местное нарастание концентрации прокоагулянтов, в первую очередь факторов V, XIII, vWF, фибриногена. Тромбоцитар-ный фактор 4 (ТФ4) локально ингибирует гепарин и гепарансульфаты, усиливая процесс свертывания крови. Поступающие в кровь стимуляторы агрегации тромбоцитов активируют и рекрутируют из тока крови новые тромбоциты.

Полноценный гемостатический тромб формируется через 10-15 минут после начала полимеризации фибрина за счет стабилизации фибри-нового скелета ф.ХIII и ретракции.

 Активация фибринолиза, видимо, происходит в первые секунды повреждения сосуда. Однако нарастание процесса фибринолиза в области формирования сгустка происходит медленнее, чем реакции свертывания, вследствие «работы» ингибиторов фибринолиза. Это необходимо для эффективной остановки кровотечения и репарации поврежденных тканей. Однако на периферии, в области неповрежденного эндотелия, фибрино-лиз значительно более выражен и ограничивает распространение сгустка. Постепенно, по мере репарации сосудистой стенки, интенсивность воздействия прокоагулянтных стимулов снижается и нарастает активность фибринолитических реакций, что приводит в конечном итоге к лизису сгустка и восстановлению кровотока в сосуде.

В процессе развития ответной реакции на повреждение сосудистой стенки эндотелий и тромбоциты выбрасывают не только вещества, обладающие гемостатической активностью, но и стимуляторы репарации, хемотаксические вещества для фагоцитов, иммуномодуляторы, что обеспечивает комплексный ответ на повреждение.


Особенности физиологии и исследования гемостаза у плодов и детей

ОСОБЕННОСТИ ФИЗИОЛОГИИ И ИССЛЕДОВАНИЯ ГЕМОСТАЗА У ПЛОДОВ, НОВОРОЖДЕННЫХ И ДЕТЕЙ РАННЕГО ВОЗРАСТА

Система гемостаза, как и все остальные системы организма, претерпевает изменения в процессе роста и развития человека. К сожалению, наши знания об особенностях гемостаза плода и новорожденного малы по сравнению с информацией о гемостазе детей после года и взрослых. Для этого есть несколько причин: во-первых, оценка гемостаза с использованием возрастных референтных интервалов в раннем возрасте затруднена, поскольку он претерпевает быстрые количественные и качественные изменения; во-вторых, имеются значительные технические трудности сбора образцов крови; в-третьих, возможно взятие лишь небольшого количества крови, следовательно, необходимо использование микрометодов; в-четвертых, значительная вариабельность концентрации различных плазматических компонентов требует набора больших референтных групп пациентов одного возраста, что усугубляется быстрыми (в течение нескольких часов и дней) количественными изменениями концентрации и активности компонентов гемостаза в этом возрасте.

 Гемостаз плода адаптирован к условиям внутриутробного статуса и родовому стрессу. В течение первого полугодия жизни состояние гемостаза изменяется соответственно изменившимся условиям существования и к 6 месяцам соответствует статусу зрелого организма. Поскольку гемостаз детей раннего возраста отличается от такового у взрослых, нарушения гемостаза в этом возрасте также имеют свои особенности. Кроме того, коррекция нарушений гемостаза у плодов и детей до 6 месяцев часто требует отличного подхода.

Важнейшей клинической особенностью состояния гемостаза плодов, новорожденных и детей первых месяцев жизни является тенденция к более легкому возникновению разнонаправленных нарушений по сравнению с детьми старшего возраста и взрослыми. Чем младше ребенок, чем более незрелым он родился, тем выше у него риск развития тромботических и геморрагических осложнений.

 

Тромбоциты

Размер, количество и время жизни тромбоцитов в крови у плодов старше 30 недель гестации и новорожденных достоверно не отличаются от норм взрослых людей. Количество тромбоцитов у плодов от 18-й до 30-й недели гестации относительно ниже, чем у взрослых. Структура тромбоцитов из пуповинной крови под электронным микроскопом не отличается от структуры тромбоцитов взрослых людей. Однако концентрация серотонина и АДФ в плотных гранулах составляет менее 50% от взрослой нормы. Также на мембранах тромбоцитов из пуповинной крови концентрация GPIIb-IIIa существенно ниже в отличие от GPIb и Р-селектина, которые представлены «нормальным» количеством.

Концентрация и относительное содержание активных высокомолекулярных мультимеров

 фактора Виллебранда (vWF) в пуповинной крови выше, чем в крови детей старшего возраста и взрослых, а активность металлопротеаз, редуцирующих высокомолекулярный vWF, ниже. Состав vWF в пуповинной крови сходен с составом vWF в пуле хранения эндотелия. Эта особенность, видимо, является причиной положительного теста агрегации тромбоцитов из пуповинной крови с малыми дозами ристоцетина и вносит вклад в укороченное время кровотечения у новорожденных.

Важнейший для агрегации тромбоцитов рецептор GPIIb-IIIa появляется на мембране на ранних сроках гестации. Фибриноген присутствует в достаточной концентрации во все сроки гестации. Однако адреналин-индуцированная агрега-


Особенности физиологии и исследования гемостаза у плодов и детей

ция в целом снижена относительно взрослых норм из-за меньшей доступности α-адренергических рецепторов. Агрегация тромбоцитов пуповинной крови, индуцированная АДФ, коллагеном, тромбином и арахидоновой кислотой, варьирует, но в то же время имеется тенденция к более низким показателям относительно норм взрослых людей. К концу 2-х суток жизни у здоровых новорожденных агрегация тромбоцитов с АДФ уже не отличается от таковой у взрослых. Исследования функции тромбоцитов новорожденных в цельной крови методом проточной цитометрии показали сниженную реакцию на тромбин, комбинацию АДФ и эпинефрина и аналог тромбоксана А,.

Наконец, ретракция кровяного сгустка у плодов и новорожденных такая же, как у взрослых.

Время кровотечения, возможно, лучший в настоящее время тест, отражающий взаимодействие тромбоцитов и сосудистой стенки in vivo. Исследование этого теста у новорожденных показало в целом более короткое время.

Исследование активности тромбоцитов с использованием динамического агрегометра PFA-100, требующего очень маленькое количество крови,

 идеально для новорожденных и грудных детей. Результаты этого исследования у здоровых новорожденных не отличаются от таковых у взрослых людей.

При исследовании состояния тромбоцитарно-го звена в процессе родов были получены убедительные доказательства его активации. Уровень тромбоксана А2, β-тромбоглобулина и тромбоцитарно-го фактора 4 был повышен, содержание гранул снижено, а доступность рецепторов эпинефрина уменьшена из-за их загруженности агонистами. Видимо, в родах имеется многофакторный механизм активации тромбоцитов, включающий температурные колебания, гипоксию, ацидоз, адренергическую стимуляцию, тромбогенный эффект амниотической жидкости. Активация коагуляционной системы приводит к парадоксальным изменениям в тестах: с одной стороны, выявляется удлинение времени свертывания в одностадийном исследовании, с другой стороны, время свертывания цельной крови, исследованное различными методами, укорочено по сравнению с нормой взрослых людей. Все эти данные свидетельствуют, что активация гемостаза в родах носит ограниченный и строго регулируемый характер.

Антикоагулянтные свойства сосудистой стенки

 Исследование обмена полиненасыщенных жирных кислот выявило избыток синтеза простацикли-на сосудами пуповины относительно сосудов взрослых. Оксид азота, вырабатываемый сосудистой стенкой, играет большую роль в формировании нормального сосудистого тонуса в легких плода и новорожденного, он модулирует физиологические изменения сосудистой резистентности в процессе родов.

 Исследования показали, что пуповинная кровь генерирует меньше тромбина в присутствии эндотелиоцитов пуповины. Вероятно, это свидетельствует об активации ингибиторов свертывания крови, в первую очередь АТШ, клетками эндотелия пуповины.

Коагуляционное звено гемостаза

Белки системы гемостаза не проникают через плацентарный барьер, они синтезируются организмом плода de novo. Концентрация большинства плазменных белков гемостаза становится измеряемой после 10 недель гестации и постепенно повышается по мере созревания плода. В приложении, в табл. 1-8 приведены результаты исследования активности белков гемостаза и тестов, полученных у плодов раз-

 ного возраста в зависимости от сроков гестации, недоношенных и доношенных новорожденных, младенцев и детей разного возраста. Эти результаты с осторожностью можно использовать при оценке гемостаза недоношенных новорожденных. Корректные показатели гемостаза недоношенных новорожденных малодоступны, поскольку почти все недоношенные имеют различную патологию.


Особенности физиологии и исследования гемостаза у плодов и детей

Коагуляционные белки. Активность витамин-К-зависимых факторов, фактора XI и факторов контактной системы у плодов и новорожденных детей более низкая, чем у взрослых и постепенно повышается, доходя до взрослой нормы к 6 месяцам. Следствием этого является более длинное AЧТВ. Плазменный уровень vWF и ф.ХIII у новорожденных аналогичен взрослым нормам. У плода активность ф.Vи ф.VIII снижена на ранних сроках гестации и повышается до нормы взрослого человека ко времени рождения.

Феталъная форма белков коагуляции. Некоторые коагуляционные белки (ф.ХII, ф.VII, прекал-ликреин, фибриноген) имеют фетальную форму. Особенностью фетального фибриногена является повышенное относительно зрелой формы содержание сиаловой кислоты. Концентрация фибриногена у плодов значительно ниже, чем у взрослых и постепенно повышается. Рождаются здоровые дети с уровнем фибриногена, близким к взрослым нормам, однако он может повышаться в течение первой недели жизни.

Генерация тромбина у плодов и новорожденных замедлена и снижена, что напрямую связано с концентрацией протромбина и других прокоа-гулянтов.

Прямые ингибиторы тромбина. Из трех важнейших ингибиторов тромбина - АТIII, кофактора гепарина II, α2-макроглобулина - последний играет большую роль у новорожденных, чем у взрослых, так как концентрация других ингибиторов относительно снижена.

Помимо этого, в пуповинной крови находят циркулирующий антикоагулянт, аналогичный гликозаминогликанам дерматансульфата, - фе-талъный антикоагулянт. Его концентрация в плазме составляет около 0,29 мкг/мл, молекулярная масса - 150 кДа. Есть мнение, что фетальный антикоагулянт потенцирует активность кофактора гепарина П. Видимо, он поступает в кровь плода из крови матери и (или) синтезируется в плаценте. Длительность циркуляции фетального антикоагулянта в крови новорожденного неизвестна, однако он в течение недели обнаруживается в крови недоношенных детей, больных респираторным дистресс-синдромом (у которых часто причиной патологии является недоразвитие сурфак-танта). За исключением этих особенностей, активность ингибирования тромбина остается более

 низкой у новорожденных детей по сравнению со взрослыми.

Система протеинов С и S. При рождении плазменная концентрация протеина С значительно ниже, чем у взрослых, и остается сниженной в течение первого полугодия жизни. Концентрация общего протеина S тоже снижена, однако функционально это практически несущественно, потому что большая часть протеина S находится в свободной форме. С4-связывающий протеин у новорожденных низкий. Плазменная концентрация тромбомодулина повышена в раннем детстве и постепенно снижается до взрослой нормы после десяти лет. Однако разницы в экспрессии тромбомодулина на эндотелии в зависимости от возраста выявлено не было.

Физиологические механизмы, потенциально объясняющие разницу плазменных концентраций различных белков гемостаза у плодов и новорожденных, включают сниженную продукцию и ускорение клиренса. Исследования показали ускоренный клиренс фибриногена у новорожденных по сравнению со взрослыми. Период полувыведения антитромбина у здоровых новорожденных меньше. Видимо, ускоренный в целом метаболизм новорожденных и детей раннего возраста вносит вклад в относительно быстрое выведение коагу-ляционных белков.

Активация системы коагуляции в момент рождения не влечет за собой значимого потребления факторов свертывания крови и не является причиной низкой активности ряда компонентов гемостаза, а представляет собой жестко контролируемый, ограниченный процесс.

Система фибринолиза. У новорожденных концентрация плазминогена и α2-антиплазмина достоверно ниже, чем у взрослых, а α2-макроглобу-лина - выше. Концентрация тканевого активатора плазминогена (t-PA) и ингибитора активатора плазминогена 1-го типа (PAI-1) у плодов снижена, но после рождения ребенка происходит значительное нарастание их активности в крови; начиная с 1-х суток жизни их концентрация достоверно превышает норму взрослых людей.

Плазминоген, как и фибриноген, имеет фетальную форму, точнее 2 гликоформы, содержащие большее количество маннозы и сиаловой кислоты. Энзиматическая активность фетального плазминогена и его способность связываться

 


Особенности физиологии и исследования гемостаза у плодов и детей

с фибрином/фибриногеном ниже, чем у зрелой формы.

В целом активность фибринолитической системы у новорожденных имеет разнонаправленные тенденции. Укороченное время лизиса эуглобули-нового сгустка и повышение уровня продуктов

 фибринолиза в плазме новорожденных доказывает, что эта система активируется в родах. В то же время способность плазмы генерировать плазмин в ответ на воздействие различных активаторов фибринолиза снижена, что является следствием относительно низкого уровня плазминогена.


Особенности физиологии и исследования гемостаза у женщин

ОСОБЕННОСТИ ФИЗИОЛОГИИ И ИССЛЕДОВАНИЯ ГЕМОСТАЗА У ЖЕНЩИН ПРИ МЕНСТРУАЦИИ И БЕРЕМЕННОСТИ

Менструальные кровотечения

Менструация - физиологическое периодическое кровотечение из матки. Кровотечению предшествуют изменения сосудов матки, которые сначала сокращаются, а затем расслабляются и тем самым обеспечивают менструальное кровотечение. Оба эти процесса контролируются простагландинами, ко-торые образуются в слизистой и мускулатуре матки. По крайней мере, 2 механизма участвуют в обеспечении менструальных кровотечений:

  1.  Ингибирование агрегации тромбоцитов, ко
    торое обеспечивается теми же простагланди
    нами, которые определяют дилатацию сосу
    дов матки.
  2.  Усиление фибринолиза. Менструальное
    кровотечение поддерживается образованием в
    эндотелиальных клетках большого количества
    тканевого активатора плазминогена (
    t-PA), что
    сопровождается примерно 5-кратным увели-

 чением его содержания в менструальной крови по сравнению с венозной кровью. Кроме того, в менструальной крови содержание про-урокиназы (scu-PA) может быть повышено до 50 раз по сравнению с венозной кровью. Большое количество проурокиназы поддерживается фактором некроза опухоли-α (ФНО-α), вырабатываемым эндометриальными клетками. ФНО-а стимулирует образование scu-PA эндотелиальными клетками сосудов матки.

Тканевой активатор и урокиназа стимулируют переход плазминогена в плазмин, который эффективно разрушает образующийся в менструальной крови фибрин, поэтому фибриновый сгусток не формируется. Усиление фибринолиза при менструации - всегда локальный процесс, ограниченный пределами матки.

Изменения гемостаза при беременности

 

Изменения показателей системы гемостаза начинают регистрировать не раньше, чем со 2-го месяца беременности, затем изменения прогрессивно увеличиваются вплоть до родов. Скрининговые тесты ПТ, АЧТВ и показатели фибринолиза указывают на развитие гиперкоагуляции и гипофибри-нолиза. Отдельные факторы гемостаза чаще всего меняются следующим образом:

Концентрация фибриногена и содержание
ф.
VII и ф.VIII увеличиваются. Причем для
ф.УП имеет место пропорциональное повы
шение как активности, так и содержания
(
VII:C и VII:Ag), тогда как ф.VIII непропор
ционально повышается по отношению к ком
плексу ф.
VII- vWF.

Имеет место некоторое повышение факторов
IX, X и протромбина.

 

Содержание ф.ХШ имеет тенденцию к сни
жению.

Обнаруживают уменьшение свободного про
теина
S, что связывается с увеличением С4-
связывающего белка.

Высокочувствительными методами регистри
руется повышение активационных маркеров
протромбина -
F1+2.

Обнаруживается повышение агрегации тром
боцитов.

Наиболее значительным является угнетение фибринолиза во 2-м и особенно в 3-м триместре беременности. Причем количество плазминогена, эндогенных и экзогенных активаторов фибринолиза имеет тенденцию к повышению (t-PA, u-PA, ф.ХII, прекалликреин и высокомолекулярный кининоген). Угнетение же фибринолиза связано


Особенности физиологии и исследования гемостаза у женщин

с существенным увеличением ингибиторов: ингибитора активатора плазминогена 1-го типа (PAI-1), который освобождается из эндотелиальных клеток, и особенно ингибитора активатора плазминогена 2-го типа (PAI-2), который нарабатывается плацентой. Ингибирование фибринолиза при беременности - основная причина сдвига гемо-статического баланса к гиперкоагуляции и формированию предтромботического состояния.

Клинический пример 1

Пациентка 20 лет. Беременность 32 недели. Без осложнений.

Коагулологическое обследование: АЧТВ 31 с (норма для взрослых, принятая для общей популяции в данной лаборатории, - 35-45 с), ПТ 100%, ТВ 26 с (норма 28-30 с), фибриноген 4,8 г/л (нор-

 После родов все показатели гемостаза возвращаются к норме примерно за 6 недель.

Гиперкоагуляция при беременности - физиологическое состояние, которое обеспечивает эффективную имплантацию яйцеклетки, адекватное соединение плаценты с маткой и остановку кровотечения во время родов. Однако необходимо учитывать, что при беременности повышен риск венозных тромбозов и эмболии легочных артерий.

ма 2-4 г/л), РКФМ 7,5 мг/дл (норма до 4 мг/дл), лизис эуглобулиновой фракции 220 мин (норма 140-240 мин). Агрегация тромбоцитов с АДФ (2,5 мкмоль/л): степень 72%, скорость 40%>/мин, время 7'25", однофазная, необратимая.

Заключение: коагулограмма соответствует сроку беременности.


Обеспечение диагностики нарушений гемостаза в КДЛ

ОБЕСПЕЧЕНИЕ ДИАГНОСТИКИ  НАРУШЕНИИ  ГЕМОСТАЗА В

Общие подходы

Исследование нарушений гемостаза проводится в несколько этапов.

Перед проведением лабораторного исследования собирается анамнез. Во-первых, необходимо выяснить наличие клинических признаков геморрагического или тромботического заболевания у пациента. Во-вторых, требуется определить наличие таких признаков у членов семьи. Расспрос о семейных заболеваниях - очень важный этап, так как многие нарушения гемостаза наследуются. При сборе анамнеза необходимо обращать внимание на то, имеются ли признаки врожденного нарушения гемостаза или это приобретенное состояние. При наличии признаков приобретенного нарушения гемостаза необходимо учитывать сопутствующие заболевания и симптомы, а также применяемые пациентом медикаментозные препараты, которые могли повлиять на гемостаз.

Однако данные анамнеза являются субъективной информацией и не всегда помогают в установке правильного диагноза. Клиническое обследование пациента выявляет ряд признаков нарушения гемостаза - петехии, синячки на коже, кровоизлияния в слизистые оболочки, признаки венозного застоя или артериальной недостаточности и др. Необходимость сбора анамнеза и осмотра перед началом лабораторного обследования важна еще и потому, что проведение всех возможных тестов оценки состояния системы гемостаза - чрезвычайно дорогостоящее занятие. Кроме того, в настоящее время нет лабораторных тестов, позволяющих досконально охарактеризовать все звенья системы гемостаза. Поэтому на предварительном этапе необходимо выбрать рациональную палитру тестов, наиболее соответствующую клинической картине нарушений у данного пациента.

 На следующем этапе рекомендуется провести некоторое количество скрининговых тестов, которые позволят определить направленность нарушения. И лишь на следующем этапе рационально выполнить соответствующие данным клинической картины и скрининговых тестов анализы, способные выявить конкретные нарушения гемостаза у пациента.

Важно понимать, что применяемые тесты должны быть информативными, то есть обладать высокой чувствительностью по выявлению патологии и достаточной специфичностью. В любом случае лучше использовать несколько тестов, чем искать один даже самый специфичный тест, так как сама комбинация дает дополнительную и зачастую решающую информацию. Это объясняется тем, что практически все элементы системы гемостаза в той или иной степени связаны, изменение в одном элементе затрагивает и другие его звенья. Поэтому во всех случаях при назначении и проведении расширенной коагу-лограммы необходим тесный контакт с лечащим врачом и, может быть, совместное с ним назначение перечня дорогих и редких, но обоснованных исследований.

Так как лабораторное исследование гемостаза может быть достаточно дорогим, следует доказывать администрации, что лечение больных с тромбозами и патологическими кровотечениями значительно дороже, чем любые лабораторные исследования. А затраты на приобретение качественных реактивов и оборудования окупаются исключением повторных исследований и проведением адекватной, эффективной и контролируемой терапии.

Помимо коагулологических тестов, при исследовании нарушений гемостаза большую помощь оказывают лабораторные тесты общего


Обеспечение диагностики нарушений гемостаза в КДЛ

назначения. Они могут указать на заболевания печени или почек, которые имеют значение для синтеза и катаболизма факторов гемостаза. Опухоль с метастазами способна стать причиной тромбоза. Лекарственные препараты могут вызывать кровотечения, а в некоторых случаях передозировка прямых и непрямых антикоагулянтов, наоборот, приводит к тромбофилии.

 Важную информацию о причинах развивающихся тромбозов и кровотечений могут дать такие лабораторные исследования, как общий анализ крови, определение гомоцистеина, витаминов, гормонов, наличие аутоантител. Для пациентов, леченных препаратами крови, необходимо проводить тесты на вирусоносительство.

Преаналитический этап

 Взятие крови

Существенное значение имеет, на какой крови выполняется тот или иной тест: на цельной, стабилизированной капиллярной или на плазме венозной крови.

Капиллярная кровь

Капиллярная кровь как диагностический материал имеет ограниченное значение. Тем не менее у больных, принимающих непрямые антикоагулянты, использование капиллярной крови из пальца позволяет избежать повторного травмирования и тромбирования вен, затрат времени на центрифугирование крови и отделение плазмы. При этом использование капиллярной крови увеличивает вероятность преаналитической ошибки; становится сложнее стандартизовать исследование, требуются специальные реактивы и оборудование. Стоимость реактивов для исследования про-тромбинового времени в капиллярной крови выше, их стабильность ниже, чем обычного тром-бопластина, используемого для анализа плазмы венозной крови. Для избежания неверных результатов капиллярная кровь может использоваться только для некоторых специально адаптированных методов: подсчет тромбоцитов, определение времени кровотечения, определение протромбино-вого (ПВ) и активированного частичного тром-бопластинового времени (АЧТВ). Определение АЧТВ в капиллярной крови используется исключительно для мониторинга гепаринотерапии.

Определение ПВ в капиллярной крови используется в основном для контроля за приемом непрямых антикоагулянтов в амбулаторных и домашних условиях, а также для экспресс-диагностики у детей первых месяцев жизни.

 Фирма «Roche Diagnostics» выпускает комбинированный тромбопластиновый реагент «Hepato Quick», который специально предназначен для работы с капиллярной кровью. В состав реактива входят тромбопластин, фактор V и фибриноген, для определения используется 20 мкл цельной крови. Реактив прокалиброван. Для проведения работ по контролю качества используются специально подготовленные лиофилизированные плазмы. При использовании реактива предусмотрена возможность коррекции влияния гематокрита на результат теста. Все эти условия позволяют проводить контроль за антикоагулянтами непрямого действия по протромбиновому тесту, выполняемому на полученной из пальца капиллярной крови. Этот метод оценивает международное нормализованное отношение (MHO) в микрообъемах цельной или стабилизированной цитратом капиллярной крови. Существенным ограничением метода является то, что используемый в нем реагент сложен, дорог и малодоступен многим практическим лабораториям. Одновременно фирма «Roche» предлагает портативный прибор «CoaguCheck Plus» для определения ПВ и АЧТВ, в котором в качестве биологического материала используется капля капиллярной крови. Прибор может применяться в амбулаторных условиях или самостоятельно пациентами для контроля терапии непрямыми антикоагулянтами (рис. 65).

Основные проблемы и рекомендации при работе с капиллярной кровью:

При прохождении крови через поврежденную
ткань активируется свертывание, длитель
ность взятия крови является критическим по
казателем.

Немецкий стандарт DIN 58910-D: кровь, вы
текающая
самотеком, должна быть забрана


Обеспечение диагностики нарушений гемостаза в КДЛ

Рис. 65. Портативный прибор «CoaguCheck Plus» (фирма «Roche») для определения ПВ и АЧТВ:

А - общий вид и картридж для программирования прибора, Б - тест-полоска вводится в прибор, В -капля капиллярной крови наносится непосредственно на тест-полоску, помещенную в прибор, Г - результат готов через несколько минут, причем данные по протромбиновому времени (ПВ) представляются сразу в единицах международного нормализованного отношения (MHO)

 в стерильный капилляр и перенесена в нитратный буфер в течение 10 с. Чистое и сухое место кончика пальца или ушной мочки пунктируется стерильным скарификатором. Прокол должен быть достаточно глубоким, чтобы кровь текла самотеком. Не допускается давление или сжатие. Для исследования используются первые капли крови, берется 10-50 мкл в стерильный капилляр, который держится горизонтально, один конец касается места прокола. В капилляре кровь с цитратом не перемешивается, предварительный забор антикоагулянта только усложняет процедуру. Капиллярная кровь при взятии в пробирку с цитратом должна быть перемешана во время или сразу после взятия. Не допускается, чтобы кровь стекала на дно по стенке пробирки, она должна прямо скапывать в цитрат, перемешиваясь с ним (рис. 66).

Венозная кровь

До настоящего времени венозная кровь - основной источник материала для анализа состояния гемостаза. Взятие венозной крови - критическая процедура для тестов на коагулограмму. Взятие крови должно быть приурочено ко времени исследования, чтобы свести до минимума время хранения проб. В то же время, учитывая суточные биоритмы, рекомендуется брать кровь на

 исследование утром от 7 до 9 часов. Необязательно брать кровь строго натощак, можно рекомендовать пациенту легкий завтрак, но без жировой

Рис. 66. При взятии крови в антикоагулянт не допускается стекание крови по коже пальца, по стенке пробирки и любой другой поверхности, так как мгновенно происходит контактная активация процесса свертывания. Кровь самотеком из прокола должна попадать прямо в антикоагулянт, перемешиваясь с ним

 


Обеспечение диагностики нарушений гемостаза в КДЛ

 пищи. Исследование рекомендуется проводить у пациентов, отдохнувших не менее 15 мин после незначительной физической нагрузки.

Важным моментом является длительность наложения манжеты. Во время венопункции длительность венозного стаза рекомендуется не более 1 мин, а сила сжатия - ниже на 10 мм Hg диа-столического давления крови. Стаз крови при длительном наложении манжеты вызывает активацию фибринолиза, повышение концентрации факторов гемостаза из-за освобождения белков из сосудистой стенки (в том числе t-PA и vWF) и активацию тромбоцитов. Так, после 3 мин стаза крови происходит укорочение ПВ, АЧТВ и тром-бинового времени, примерно на 10% повышается количество антитромбина, фибриногена и других факторов свертывания, ф.VIII в отдельных случаях повышается более чем на 20%.

Кровь берут из локтевой вены утром натощак силиконированной иглой с широким просветом (внутренний диаметр 1,0 - 0,8 - 0,6 мм) без шприца (самотеком). Использование шприца нежелательно. Если кровь брать слишком быстро, то из-за турбулентного движения крови в шприце и смешивании ее с воздухом (вспенивание) происходит активация тромбоцитов (сопровождается изменением формы тромбоцитов и освобождением из них тромбоцитарных факторов) и факторов свертывания крови. Если кровь брать медленно, то в шприце может начаться необратимое свертывание, опять же с активацией факторов гемостаза.

В современной лабораторной практике все чаще используются системы вакуумного забора крови (вакутейнеры и вакуэты). Активация гемостаза в них предотвращается за счет моментального смешивания поступающей крови с раствором цитрата натрия. Если в силу технических об-

 стоятельств забор крови проводится пластиковым (не стеклянным) шприцем, необходимо выполнять эту манипуляцию как можно аккуратнее, избегая вспенивания и резкого поступления крови в шприц. После этого кровь необходимо также аккуратно в минимальные сроки перенести в пластиковую или стеклянную силиконированную пробирку с раствором цитрата натрия.

При прокалывании иглой сосуда тканевый тромбопластин попадает с током крови в пробирку, поэтому первые капли крови не годятся для проведения коагулологических тестов. Кровь на гемостаз желательно брать во вторую пробирку. Кровь из первой пробирки рекомендуется использовать для подсчета форменных элементов. Так, например, АЧТВ, определяемое в первой пробирке, может быть на 20% короче, чем во второй.

Кровь рекомендуется брать:

«бабочкообразной» иглой в градуированную
силиконированную стеклянную или пласти
ковую пробирку, содержащую антикоагу
лянт;

в градуированный пластиковый шприц, со
держащий антикоагулянт;

в моноветт - коммерческая аспирационная
система (градуированный шприц), содержа
щая антикоагулянт;

в вакутейнер - коммерческая система (про
бирка с определенным отрицательным давле
нием для взятия точного объема крови), со
держащая антикоагулянт (рис. 67);

в специальные пробирки для транспортиров
ки крови для исследования гемостаза. Напри
мер, пробирка СТАД (рис. 68) содержит цит
рат натрия (0,105 М), теофиллин, аденозин и
дипиридамол. Три последних вещества пред
отвращают активацию тромбоцитов. СТАД

Рис. 67. Вакутейнер - система для взятия венозной крови, состоит из аспирационной иглы, переходника и пробирки с отрицательным давлением для набора крови, После введения иглы в вену пробирки могут меняться, при этом в каждую берется дозированная порция крови

 Рис. 68. Пробирка СТАД специально создана для транспортировки крови на исследование гемостаза, содержит цитрат натрия (0,105 М), теофиллин, аденозин и дипиридамол


Обеспечение диагностики нарушений гемостаза в КДЛ

существуют и в виде вакутейнеров. Скринин-говые тесты и исследования отдельных факторов свертывания могут выполняться из СТАД так же, как из цитратной плазмы. В некоторых клинических ситуациях (например, при шоке) извлечение крови из локтевой вены затруднительно из-за низкого давления. Попытки набирать кровь с помощью шприца часто заканчиваются неудачей: кровь сворачивается. В неотложных ситуациях, когда невозможно взятие крови из периферической вены, можно использовать кровь, полученную из центрального (подключичного) катетера. При этом желательно удалить до 10 мл крови (использовать ее на проведение гематологических или биохимических исследований), а затем забрать кровь на коагулологические исследования. Такой способ взятия крови применим только в тех случаях, когда в катетер не вводился гепарин. Если же через этот катетер гепарин вводился, то удаляют до 20 мл крови, а затем берут кровь на исследование гемостаза. Тем не менее даже в этом случае приоритет должны получать гепарин-независимые тесты (ПВ, рептилаз-ное время, фибриноген, фибрин-мономеры, антитромбин), так как сохраняется высокая вероятность влияния следов гепарина на такие тесты, как АЧТВ, тромбиновое время.

Положение тела

Положение тела влияет на состав крови, число клеток, состав белков и белково-связываю-щих макромолекул, особенно выраженные изменения наблюдаются у пациентов с отеками. Уровень этих показателей всегда выше в положении стоя, так как при этом часть жидкости из сосудистого ложа переходит в окружающие ткани. При переходе из стоячего положения в сидячее, а особенно в положение лежа, жидкость быстро возвращается в сосуды («разведение крови»), этот эффект в большей степени выражен у пациентов с отеками. У здоровых людей через 8 ч лежания в постели концентрация фибриногена и активность антитромбина в крови примерно на 20% ниже, чем после 1 ч в положении стоя. У больных с отеками эта разница будет еще больше. Поэтому при мониторинге за состоянием пациента кровь всегда нужно брать из одного и того же положения пациента.

 Влияние физической нагрузки и эмоционального стресса

Физическая нагрузка и эмоциональные переживания сопровождаются изменениями плазменного гемостаза, фибринолиза и функции тромбоцитов. После серии приседаний содержание в плазме фактора Виллебранда (vWF:Ag) увеличивается до 50%о, у спортсменов после бега на 10 км содержание ф.VIII повышается на 60%, vWF -примерно в 3 раза, что приводит к укорочению АЧТВ. Активация фибринолиза после физической нагрузки связана с повышением в плазме тканевого активатора плазминогена (t-PA). Аналогичные изменения наблюдаются у пациентов, перенесших эмоциональный стресс.

Влияние факторов преаналитического этапа на показатели плазменного гемостаза представлено в табл. 10.

Влияние пищи на показатели гемостаза

Практика показывает, что исследование гемостаза необязательно проводить натощак. Легкий завтрак без жира даже показан перед взятием крови на исследование гемостаза.

Характер пищи после длительного периода голодания оказывает влияние на показатели плазменного гемостаза и фибринолиза.

Жирн