72936

Біосфера. Роль В.І.Вернадського у вивченні біосфери. Ноосфера

Лекция

Экология и защита окружающей среды

Жива речовина. Що принципово відрізняє нашу планету від будь-якої іншої планети Сонячної системи? Наявність життя. «Якби на Землі не було життя, — писав академік В. І. Вернадський, — обличчя її було б так само незмінним і хімічно інертним, як нерухоме обличчя Місяця, як інертні уламки небесних світил».

Украинкский

2014-12-01

33.73 KB

0 чел.

                Біосфера.Роль В.І.Вернадського у вивченні біосфери.Ноосфера

                                                 План:

1)Жива речовина

2)Функції живої речовини

3)Біосфера та її межі

4)Кругообіг речовин у біосфері

5)Кругообіг кисню і водню

6)Кругообіг вуглецю

7)Кругообіг фосфору

8)Кругообіг сірки

9)Кругообіг калію, магнію та кальцію.

Жива речовина. Що принципово відрізняє нашу планету від будь-якої іншої планети Сонячної системи? Наявність життя. «Якби на Землі не було життя, — писав академік В. І. Вернадський, — обличчя її було б так само незмінним і хімічно інертним, як нерухоме обличчя Місяця, як інертні уламки небесних світил». Життя на Землі реалізується у формі живої речовини, яку часто називають також біотою. Поняття «жива речовина» ввів у науку В. І. Вернадський і розумів під ним сукупність усіх живих організмів планети. Образно кажучи, всі організми — від бактерій, що потрапили на цю сторінку, до останнього дерева й тварини, до автора й читача цих рядків — становлять живу речовину. Вона виконує надзвичайно важливу роль у процесах, що відбуваються в усіх сферах Землі.

Функції живої речовини. Жива речовина протидіє хаосові та ентропії. Використовуючи прямо й непрямо сонячну енергію, жива речовина створює з простих, бідних на енергію молекул, передусім води й вуглекислого газу, складніші й енергетично впорядкованіші сполуки — вуглеводи, білки, жири, нуклеїнові кислоти та інші — або переробляє їх. Жива речовина концентрує хімічні елементи, перерозподіляє їх у земній корі, руйнує й агрегує неживу матерію, окислює, відновлює й перерозподіляє хімічні сполуки. «Можна без перебільшення стверджувати, що хімічний стан зовнішньої кори нашої планети, біосфери, цілком перебуває під впливом життя, визначається живими організмами», — писав В. І. Вернадський. Наприклад, бактерії однієї з груп — залізобактерії — дістають необхідну для життя енергію за рахунок окиснення двовалентного заліза до тривалентного. При цьому в процесі утворення 1 г біомаси цих бактерій відбувається окиснення до 500 г солей двовалентного заліза. Кінцеві продукти — солі тривалентного заліза — відкладаються навколо бактеріальної клітини й утворюють так звану болотну руду.

Саме з болотної руди за часів Київської Русі виплавляли чавун. На прикладі залізобактерій ми простежуємо кілька функцій живої речовини:

  1.  окиснення;
  2.  концентрація;
  3.  перерозподіл хімічних елементів.

Кількість живої речовини. Суха маса живої речовини оцінюється в 2—3 трлн т — приблизно в мільярд разів менше за масу Землі. Проте жива речовина відрізняється від неживої надзвичайно високою активністю, зокрема дуже швидким кругообігом речовин. Уся жива маса біосфери оновлюється за 33 дні, а фітомаса, тобто маса рослин, — щодня.

Життєдіяльність тварин, рослин і мікроорганізмів супроводжується безперервним обміном речовин між біотою та зовнішнім середовищем, унаслідок чого всі атоми земної кори, атмосфери й гідросфери протягом історії Землі багаторазово входили до складу живих організмів. Образно кажучи, ми п'ємо воду, що колись входила до складу тканин юрських папоротей і кембрійських трилобітів, і дихаємо повітрям, яким дихали не лише наші далекі предки, а й динозаври.

Основні властивості живої речовини:

  1.  високоорганізована внутрішня структура;
  2.  здатність уловлювати із зовнішнього середовища й трансформувати речовини та енергію, забезпечуючи ними процеси своєї життєдіяльності;
  3.  здатність підтримувати сталість власного внутрішнього середовища, незважаючи на коливання умов середовища зовнішнього, якщо ці коливання сумісні з життям;
  4.  здатність до самовідтворення шляхом розмноження. Жива речовина існує у формі конкретних живих одиниць — організмів (індивідів), які, своєю чергою, групуються в більш або менш дискретні одиниці існування матерії — види.

Біосфера та її межі

Простір нашої планети, в якому існує й «працює» жива речовина, називають біосферою (від грец. біос — життя та сфера — куля). Перші уявлення про біосферу як «зону життя» дав відомий французький природознавець Ж.-Б. Ламарк, а термін «біосфера» ввів у науку австрійський геолог Е. Зюсс (1875 р.). Проте цілісне вчення про біосферу створив наш видатний співвітчизник, засновник і перший президент Академії наук України В. І. Вернадський.

Біосфера охоплює три геологічні сфери — частини атмосфери й літосфери та всю гідросферу. Межі біосфери визначаються межами поширення й активної роботи живої речовини. Верхня межа біосфери в атмосфері, на думку одних учених, проходить на висоті вершин Гімалаїв (10 км над рівнем моря), на думку інших, — досягає нижніх шарів стратосфери (30 км), де ще трапляються в досить великій кількості спори й навіть клітини бактерій, грибів і деяких водоростей, що активно вегетують. Іноді верхньою межею біосфери вважають озоновий шар (25—30 км над поверхнею планети), вище від якого живе зазвичай гине під дією космічних випромінювань.

Межа біосфери в літосфері також чітко не окреслена. Починаючи з глибин 0,5—2 м від земної поверхні кількість живої речовини зменшується в логарифмічній послідовності. На глибинах понад 10 м породи, як правило, вже стерильні. Та навіть у товщі стерильної породи іноді трапляються острівці життя. Найбільші глибини, де знайдено живу речовину, — 2—3 км. У нафтових родовищах на цих глибинах виявлено свою, «нафтову», мікрофлору. Нафта залягає також і на значно більших глибинах — до 5—7 км. Припускають, що й у таких глибинних родовищах можна знайти «нафтові» бактерії. Деякі дослідники нижньою межею біосфери вважають глибини, на яких температура літосфери починає перевищувати 100 °С: близько 10 км на рівнинах і 7—8 км у горах.

Межі біосфери в гідросфері окреслені чітко: біосфера охоплює всю гідросферу, в тому числі найбільші океанічні западини до 11 км, де існує значна кількість глибоководних видів. У цілому екологічний діапазон поширення живої речовини досить великий. У 1977 р. в океані на глибині кількох кілометрів було знайдено гарячі вулканічні зони, в яких за температури 350 °С існують численні термофільні бактерії (вода там не кипить через високий тиск і велику концентрацію солей). В експериментах американського дослідника Р. Камерона синьозелені водорості протягом кількох місяців не втрачали життєздатності в умовах, що відповідали марсіанським. Жива речовина не гине в рідкому азоті (на цій властивості ґрунтуються методи кріоконсервації всіляких живих організмів). Деякі види, наприклад ті ж таки синьозелені водорості, не гинуть під дією потужного іонізуючого випромінювання й оселяються в епіцентрі ядерного вибуху вже через кілька днів після його здійснення.

Жива речовина здатна зберігатися навіть в умовах відкритого Космосу. Так, третя експедиція американських астронавтів забула на Місяці телекамеру. Коли через півроку її повернули на Землю, на внутрішньому боці кришки було виявлено земні бактерії, котрі без будь-яких шкідливих наслідків пережили тривале перебування за межами рідної планети. Проте слід пам'ятати, що, незважаючи на свої великі потенційні можливості, «працює» жива речовина лише в межах біосфери.

Кругообіг речовин у біосфері. Існування життя на Землі залежить не лише від потоку енергії, а й від кругообігу речовин у біосфері. Будь-які живі організми дістають із довкілля хімічні елементи, котрі потім використовують на побудову чи підтримання своїх тіл і на забезпечення процесів розмноження. Всього відомо близько 80 елементів, необхідних біоті. З продуктами життєдіяльності або після смерті ці елементи знову потрапляють у довкілля — атмосферу, гідросферу чи літосферу, й у подальшому використовуються іншими організмами. Отже, в біосфері постійно відбувається кругообіг речовин. Прямо чи опосередковано цей кругообіг здійснюється за рахунок сонячної енергії та сил гравітації.

Хімічні елементи, які використовуються живою речовиною у великих кількостях і зазвичай становлять не менш як 0,1 % загальної маси організму, називають макроелементами. До макроелементів належать вуглець, кисень, водень, азот, фосфор, сірка, калій, магній і кальцій. Усі ці елементи, за винятком кисню й водню, називають також біогенними елементами, оскільки жива речовина вибірково й у значній кількості поглинає їх із неживого середовища й концентрує в клітинах. Елементи, необхідні організмам у менших кількостях (до 0,1 %), належать до мікроелементів. Це мідь, цинк, молібден, бор, йод, силіцій та ін. Макро- й мікроелементи використовуються живими істотами в складі певних молекул. Елемент, що входить до складу молекули, з якої він може бути засвоєний організмом, називають доступним, або елементом у доступній формі. Часто для різних груп організмів доступні форми одного й того самого елемента різні.

Кругообіги кисню й водню.

Кисень і водень входять до складу всіх органічних сполук. Вони поглинаються продуцентами в складі води й вуглекислого газу в процесі фотосинтезу, всіма іншими організмами — з органічною речовиною, створеною продуцентами, під час дихання (з атмосфери чи з водного розчину) й уживання питної води. Як кінцеві продукти біологічного кругообігу, водень і частина кисню повертаються в неживе середовище також у вигляді води, а кисень, окрім того, виділяється в молекулярній формі в атмосферу рослинами-продуцентами як один із кінцевих продуктів фотосинтезу.

Кругообіг вуглецю.

Вуглець — це основа органічних речовин. Він входить до складу білків, жирів, вуглеводів, нуклеїнових кислот та інших речовин, необхідних для існування живої речовини. До первинних джерел вуглецю в біосфері належать атмосферний вуглекислий газ, що становить 0,036 % загального об'єму тропосфери, й вуглекислий газ, розчинений у воді Світового океану, де його кількість у 50 разів вища, ніж в атмосфері.

Неорганічний вуглець доступний лише для продуцентів — рослин і невеликої групи хемотрофних бактерій. Унаслідок процесів фото- й хемосинтезу вуглець зв'язується в молекули цукрів, які потому використовуються для створення інших органічних сполук. У такому вигляді вуглець стає доступним для консументів і редуцентів. У результаті процесів дихання й бродіння органічні речовини в клітинах окиснюються з виділенням енергії й вуглекислого газу, який знову або потрапляє в атмосферу, або розчиняється у воді, а також утворює йони карбонатів. Органічна речовина загиблих особин також розпадається з утворенням вуглекислого газу. Цей процес здійснюється редуцентами. Якщо з якихось причин відмерлі рештки не були використані редуцентами, вони нагромаджуються в літосфері і з часом трансформуються у вуглецевмісні копалини — торф, вугілля, нафту.

Кругообіг азоту. Атмосферний азот, що перебуває в молекулярній формі, доступний тільки для нечисленної групи азотфіксувальних бактерій і синьозелених водоростей. Азотфіксатори, засвоюючи молекулярний азот, залучають його до складу органічної речовини свого тіла, тобто переводять в органічну форму. Після відмирання органічний азот трансформується в мінеральну форму (амоній, нітрати або нітрити) амоніфікуючими й нітрифікуючими бактеріями. Мінеральний азот доступний лише для рослин, які засвоюють його й переводять в органічну форму (зокрема в білки й нуклеїнові кислоти), і в такому вигляді азот стає доступним для консументів — тварин і грибів. Після їх відмирання азот знову використовується бактеріями амоніфікаторами й нітрифікаторами. Мінеральний азот використовують також бактерії денітрифікатори, які, врешті-решт, переводять його в молекулярну форму й повертають в атмосферу. Цикл замикається.

Кругообіг фосфору.

На відміну від азоту, джерелом фосфору є не атмосфера, а земна кора. В процесі вивітрювання гірських порід фосфор переходить у ґрунтовий розчин і стає доступним для рослин. Він входить передусім до складу нуклеїнових кислот, аденозинтрифосфорної кислоти (АТФ), фосфоліпідів. Із цими органічними речовинами фосфор передається ланцюгами живлення від продуцентів до консументів і повертається в ґрунт у вигляді органічних решток і продуктів життєдіяльності. В результаті процесів мінералізації, які здійснюються бактеріями-редуцентами, фосфор знову переходить у неорганічні форми й стає доступним для рослин.

Проте в природі найчастіше саме нестача фосфору стримує розвиток біоти. З одного боку, фосфорні сполуки швидко вимиваються в Світовий океан. Цьому сприяють процеси ерозії ґрунту. Багато фосфору виноситься в океан і з неочищеними стічними водами. В океані цей фосфор частково використовується мікро- й макроскопічними водоростями, а потім споживається морськими консументами та редуцентами. Деяка частина фосфору може перевідкладатися на суші. Наприклад, послід морських рибоїдних птахів, який містить багато фосфору, нагромаджується в пташиних колоніях і на пташиних базарах, утворюючи так зване гуано — корисну копалину, що інтенсивно добувається в деяких країнах і використовується для виробництва фосфатних мінеральних добрив (наприклад, у Чилі). Але більша частина фосфору нагромаджується на дні з відмерлими рештками морської біоти. Цей фосфор може знову стати доступним для біоти тільки з часом у геологічному вимірі, наприклад після підняття певних ділянок морського дна (щоправда, сьогодні людина вже почала розробляти й морські родовища фосфоритів). З іншого боку, на суші значна частина мінерального фосфору утворює нерозчинні комплекси з ґрунтовими частинками й стає недоступною для продуцентів, отже, й для інших ланок трофічних ланцюгів. Лише деякі ґрунтові гриби здатні вилучати фосфорні сполуки з цих комплексів.

Кругообіг сірки.

Сірка — це необхідний компонент багатьох органічних речовин, серед яких передусім слід зазначити амінокислоту цистеїн.

Головним джерелом сірки є розчинені у воді продукти вивітрювання гірських порід (найчастіше сульфіди заліза — основний компонент колчеданів) або сірководень і сірчистий газ, які виділяються в атмосферу вулканами, гейзерами, гарячими джерелами. Сірководень, окиснений атмосферним киснем до сірчистого газу, розчиняється у водяній парі атмосфери й випадає з дощем на поверхню планети. До складу живої речовини сірка потрапляє шляхом поглинання розчинених у воді йонів сульфатів рослинами-продуцентами. Потім сірка в складі рослинних білків ланцюгами живлення потрапляє до консументів і редуцентів. У анаеробних умовах (наприклад, у болотах) редуценти розкладають білки з виділенням сірки у вигляді сірководню, який може бути окиснений до молекулярної сірки або до розчинних сульфатів і сульфідів. У такій формі сірка знову стає доступною для продуцентів.

Сьогодні кругообіг сірки під впливом людини зазнає суттєвих змін: майже третина сірки, що циркулює в біосфері, потрапляє в атмосферу з димогазовими викидами заводів, фабрик і теплових електростанцій. Ця «зайва» сірка, розчиняючись в атмосфері з утворенням сірчаної й сірчистої кислот, випадає у вигляді кислотних дощів, які призводять до швидкої деградації багатьох екосистем.

Кругообіги калію, магнію та кальцію.

Ці елементи у вигляді йонів потрапляють у живу речовину в процесі поглинання води рослинами, а також під час уживання питної води. Вони виконують різноманітні функції. Наприклад, калій необхідний для роботи калій-натрієвого насоса клітин, магній — обов'язкова складова хлорофілу, кальцій потрібний для підтримання постійного рН цитоплазми, є головним компонентом панцирів, будиночків, скелетів багатьох тварин. Подібно до азоту, фосфору й сірки, ці елементи мігрують трофічними ланцюгами від продуцентів через консументи до редуцентів. Після загибелі організму вони швидко переходять у водні розчини й знову стають придатними для подальшого використання.

У морях кальцій і магній частково вилучаються з біологічного кругообігу й консервуються в осадових породах. Наприклад, мікроскопічні морські водорості кокколітофориди перевідкладають кальцій у вигляді карбонатів на поверхні клітин, утворюючи так звані кокколіти. Після відмирання клітин кокколіти не встигають цілком розчинитись у воді й осідають на дно, формуючи крейдяні осадові породи. Лише в геологічному вимірі часу, після підняття певних ділянок дна, кальцій, нагромаджений у крейді, вивільнюється в процесі вивітрювання й знову стає доступним для біоти.

Великий кругообіг речовин і вплив на нього антропогенного фактора. Енергія Сонця й сили гравітації рухають два кругообіги речовин: біологічний та геологічний. Біологічний кругообіг швидкий і розімкнений: початкова й кінцева ланки замикаються через доступні неорганічні речовини. Геологічний кругообіг повільний і замкнений. Частина речовин із біологічного кругообігу надходить у геологічний у вигляді відмерлих решток, утворюючи осадові породи, які з часом під впливом тиску, температури та інших факторів трансформуються в граніти. Тектонічні підняття спричинюють винесення частини гранітних порід на поверхню. Граніти вивітрюються, й, як наслідок, утворюється фонд доступних речовин, що в подальшому знову залучаються до біологічного кругообігу.

Процеси кругообігу речовин у біосфері здійснюються збалансовано. Переважна більшість речовин, залучених до біологічного кругообігу, повертається в мінеральний стан і стає доступною для повторного використання живою речовиною. Лише невелика частина відкладається в осадових породах, але ці втрати компенсуються речовинами, які вивільнюються з гірських порід у результаті процесів вивітрювання.

Баланс та узгодженість біологічного й геологічного циклів досягаються завдяки живій речовині: за рахунок тривалих процесів видоутворення в разі появи нових ресурсів чи нових умов середовища й за рахунок формування численних прямих, зворотних і непрямих зв'язків між різними організмами та факторами середовища. Зазвичай прискорення вивітрювання гірських порід спричиняє зростання кількості біогенних речовин, що, своєю чергою, стимулює збільшення кількості живої речовини й урешті-решт підвищує інтенсивність процесів винесення речовин у Світовий океан. Це призводить до інтенсивнішого нагромадження донних осадів. Кількість доступних речовин у біосфері починає швидко зменшуватися. Біосфера переходить на «голодний» режим, що супроводжується масовими вимираннями видів, посиленням конкурентної боротьби за ресурси й прискоренням процесів утворення нових, більш конкурентоспроможних та «економних» видів. Проте вимирання відбувається набагато швидше, ніж видоутворення. За приклад можуть правити кам'яновугільний і крейдовий періоди, коли надзвичайно швидко нагромаджувались осадові породи внаслідок катастрофічного вимирання багатьох видів палеозойської та ранньомезозойської флори й фауни. Вимирання завершувалося появою на планеті нових класів і типів (відділів) тварин і рослин. Іще тривають дискусії про причини порушення балансу між біологічним і геологічним крутообігами, однак катастрофічні наслідки цього й повільні темпи їх усунення очевидні.

Сьогодні ситуація аналогічна, але, на відміну від попередніх епох, причина її відома: це діяльність людини — так званий антропогенний фактор

Розглянемо головні причини порушення кругообігу речовин у біосфері.

По-перше, це досить сильне штучне прискорення процесів вивітрювання осадових і гранітних порід, пов'язане з видобуванням і переробкою корисних копалин, спалюванням вугілля, нафти, торфу, природного газу. В результаті в атмосфері збільшується вміст вуглекислого газу, оксидів сірки, через кислотні дощі зменшується рН ґрунту, що призводить до переходу багатьох елементів у розчинений стан. Деякі з них у великих концентраціях токсичні й небезпечні для живого (наприклад, важкі метали — мідь, цинк, свинець). Процеси кругообігу речовин у біологічному циклі вповільнюються — адже гинуть носії живої речовини. Та чим більше елементів переходить у розчин, тим більше їх вимивається у Світовий океан. Прискорені темпи загибелі біоти, вповільнені темпи повторного використання доступних мінеральних речовин, зростання швидкості їх вимивання спричиняють перезбагачення Світового океану біогенними елементами. Внаслідок цього частішають спалахи «цвітіння» океану мікроскопічними водоростями, які нерідко бувають токсичними й пригнічують розвиток консументів, котрі їх споживають. Так, порівняно з минулими століттями частота спалахів «цвітіння» в Світовому океані зросла в 50—130 разів! Усе це прискорює процеси вилучення з біосфери доступних біогенних речовин їх консервації в донних відкладах.

По-друге, людина в процесі своєї господарської діяльності створює численні речовини (наприклад, пластмаси), які надалі не можуть бути ні використані продуцентами, ні розкладені до доступних мінеральних речовин редуцентами. Вони утворюють особливу групу антропогенних «осадових» порід — відходи нашої цивілізації, які археологи чомусь назвали «культурним шаром». Ці відходи зрештою будуть трансформовані в літосфері в граніти й потім у процесі вивітрювання знову стануть доступними для живої речовини, але відбудеться це в геологічних вимірах часу — через мільйони років. Тому є реальна загроза того, що доступні ресурси біосфери можуть бути перероблені на відходи швидше, ніж завершиться цикл геологічного кругообігу. Що в цьому разі станеться з біосферою (в тому числі й з людиною), передбачити нескладно.


 

А также другие работы, которые могут Вас заинтересовать

43811. Принцип работы сцепления ВАЗ-2110 787.61 KB
  Назначение устройство и принцип работы сцепления ВАЗ2110. Устройство привода выключения сцепления ВАЗ2110. Возможные неисправности сцепления. Порядок разборки ремонта и сборки сцепления.
43812. Ефективність застосування низьковитратних заходів поверхневого поліпшення природних кормових угідь в умовах СТОВ “Зоря” романівського району житомирської області 238.5 KB
  Экстракция фтороводородной кислоты Экстракция хлороводородной кислоты Экстракция хлорной кислоты Экстракция щавелевой кислоты
43813. Дивидендная политика российских корпораций 301.5 KB
  Дивидендная политика, как и управление структурой капитала, оказывает существенное влияние на положение компании на рынке капитала, в частности на динамику цены его акций. Упрощенную схему распределения прибыли отчетного периода можно представить следующим образом
43814. Стали и их свариваемость 41.16 KB
  Свариваемостью называется способность металла или сочетания металлов образовывать при установленной технологии сварки соединения отвечающие требования Обусловленным конструкцией и эксплуатацией изделия. Удовлетворительно сваривающееся те для получения качественных сварных соединений деталей их этих сталей необходимо строгое соблюдения режимов сварки определенные материалы определённая температурные условия а в некоторых случаях – подогрев термообработка; 3. при разметке заготовок учитывается укорачивание их в процессе сварки...
43815. Деловая коммуникация как феномен культуры на примере института «Российская академия народного хозяйства и государственной службы при президенте РФ» 607 KB
  Коммуникация в процессе общения предусматривает, что студент в ходе совместной деятельности обмениваются различными представлениями, идеями, чувствами, настроениями и пр., т.е. информация не просто передается, а формируется, уточняется, развивается.
43816. Разработка рыночной стратегии ООО «Империя» на мебельном рынке г. Барнаула 620.59 KB
  Стратегическое планирование – это система «разумной бюрократии», позволяющая определить и связать воедино ключевые направления деятельности предприятия, разбить их на отдельные задачи, распределить ответственность и контролировать выполнение.
43817. Современные молодежные субкультуры деструктивного характера как объект миссионерско-реабилитационной деятельности Русской Православной Церкви 4.14 MB
  Сравнительные социально-психологические характеристики тоталитарных секты и молодежных деструктивных групп на примере субкультур готики и эмо. Процесс образования малых групп включает в себя психологические механизмы которые делают группу группой а именно групповое давление на индивида используется в сектах групповая сплоченность характерно для готов и эмо и разного толка движений лидерство развито в сектах и готической субкультуре принятие групповых решений присуще эмо субкультуре. Для координации деятельности в группе в...
43818. Создание 3D модели технологической оснастки в программ Solid Works 9.32 MB
  Так же существуют несколько САПР систем, используемых на производстве. Наш выбор пал на Систему автоматизированного проектирования- CATIA, французской фирмы Dassault Systèmes. Данная программа является лидером на рынке в сегменте САПР систем, и используется во многих крупных компаниях, таких как: Boeing, Airbus, BMW, Mercedes, Renault