72990

ОБЩИЙ РАСЧЕТ ГИДРАВЛИЧЕСКОГО ЭКСКАВАТОРА С РАБОЧИМ ОБОРУДОВАНИЕМ ОБРАТНАЯ ЛОПАТА

Лабораторная работа

Производство и промышленные технологии

Цель работы: изучить виды и методику определения производительности и основных параметров гидравлического экскаватора с рабочим оборудованием обратная лопата. Содержание работы Производительность экскаватора зависит от конструктивных качеств машины, уровня организации производства...

Русский

2014-12-02

54.46 KB

40 чел.

Лабораторная работа №4

ОБЩИЙ РАСЧЕТ ГИДРАВЛИЧЕСКОГО ЭКСКАВАТОРА

С РАБОЧИМ ОБОРУДОВАНИЕМ ОБРАТНАЯ ЛОПАТА

Цель работы: изучить виды и методику определения производительности и основных параметров гидравлического экскаватора с рабочим оборудованием обратная лопата.

Содержание работы

Производительность экскаватора зависит от конструктивных качеств машины, уровня организации производства земляных работ, состояния и качества грунта и забоя, квалификации машиниста, качества системы управления экскаватора и т.д.

Различают теоретическую, техническую и эксплуатационную производительность.

Теоретическая производительность является некоторым условным измерителем и служит для сравнения экскаваторов разных моделей. Ее определяют при следующих расчетных условиях: захват ковшом расчетного по крепости грунта (а не данного), объем которого в плотном теле равен вместимости ковша; работа с поворотом на угол 90º; выгрузка грунта в отвал, все вспомогательные перемещения совмещаются с основными.

Теоретическую производительность (м3/ч) определяют по формуле:

     (4.1)

где: q – вместимость ковша, м3;

   tц – продолжительность рабочего цикла, с.

В расчете общей продолжительности рабочего цикла учитывают совмещение операций везде, где это приводит к снижению этого параметра. С учетом этого положения продолжительность рабочего цикла определяется четырьмя интервалами: подъем ковша с поворотом рукояти для отделения от массива и захвата грунта (копания) – tкоп; поворот платформы при заполненном ковше и установка ее в направлении разгрузки ковша – tп.г.; удержание ковша над местом разгрузки – tраз.; возвратный поворот и установка платформы экскаватора в направлении последующего копания с одновременным опусканием ковша – tп.п..

Тогда продолжительность рабочего цикла определяется по формуле:

    (4.2)

Продолжительность рабочего цикла проверяют хронометрированием при проведении заводских и приемочных испытаний новых моделей экскаваторов. Фактическая продолжительность циклов экскаваторов строительной группы в зависимости от вместимости ковша, вида оборудования, категории грунта, условий работы колеблется от 13- 40 с.

Техническая производительность характеризует наибольшую работоспособность экскаватора в условиях данного грунта, забоя и способа его разработки.

Техническую производительность (м3/ч) определяют по формуле:

    (4.3)

где: – число рабочих циклов за 1 мин ();

КН – коэффициент наполнения ковша грунтом (КН = 0,6…1,2);

КР – коэффициент разрыхления грунта (КР = 1,1…1,3).

Эксплуатационной производительностью учитываются не только условия данного грунта, забоя и способа разработки, но и все условия производства земляных работ.

В реальных условиях производства земляных работ, кроме названных технологических операций, в отдельных случаях необходимо выполнять дополнительные операции. Например, при разработке липких грунтов необходимо встряхивать ковш для его опорожнения. Если высота забоя настолько мала, что за один проход ковш заполняется только частично, приходится производить повторное копание. При интенсивном глыбообразовании приходится убирать глыбы с подошвы забоя. Дополнительные операции увеличивают время рабочего цикла и снижают производительность экскаватора.

В процессе экскавации приходится выполнять операции, не входящие в технологический (рабочий) цикл, во время которых разработка грунта прекращается. К таким операциям относятся смена транспортных машин для погрузки грунта экскаватором, собственные передвижки экскаватора на новую стоянку по мере выработки забоя, сдача и прием экскаватора машинистом в начале и в конце смены.

С учетом затрат времени внецикловые операции эксплуатационная производительность (м3/ч) может быть определена по формуле:

     (4.4)

где: КИ – коэффициент использования экскаватора по времени (КИ = 0,8…0,85).

Повышению производительности экскаватора способствует увеличение объема грунта, разрабатываемого за каждый цикл экскаватора, и уменьшение длительности этого цикла.

Для увеличения объема грунта, разрабатываемого за один рабочий цикл, следует добиваться возможно большего заполнения ковша. В случаях применения экскаваторов на разработке грунтов менее крепких (Ι и ΙΙ категорий) и в более благоприятных технологических условиях можно использовать сменные ковши большей вместимости и меньшей массы, увеличивая в некоторых случаях рабочие размеры экскаватора.

Улучшая конструкцию режущей части ковша, можно снизить энергоемкость резания грунта. Тот же результат достигается своевременной заменой износившегося и затупленного режущего инструмента на ковшах (зубьев, ножей, козырька). Совершенствование формы ковша способствует уменьшению сопротивления призмы волочения и увеличению объема грунта, захватываемого ковшом (особенно в драглайнах). Применение средств защиты от налипания грунта (цепные днища и стенки, обогрев, вибрация, специальные покрытия и др.) может в условиях разработки липких грунтов увеличить объем грунта, выдаваемого за один рабочий цикл, и сократить простои для очистки ковша.

Существенное значение для повышения производительности имеет определение оптимальных размеров и типов забоя, использование опыта передовых машинистов по установке в забое и перемещению экскаватора и транспортных машин, по последовательности разработки грунта в забое, по способу заполнения ковша и совмещению операций рабочего цикла.

Значительное сокращение затрат времени на внецикловые операции возможно путем установки под погрузку в забое сразу двух – автомобилей-самосвалов, сокращения числа перегонов экскаватора, выбора рационального пути его рабочих передвижек, сокращения времени на передачу–прием экскаватора в начале и конце смены, организации бесперебойного технического обслуживания машин.

Средством повышения производительности одноковшовых экскаваторов может быть автоматизация процесса управления или на основе использования микропроцессоров и лазерных информационно-измерительных систем. Применение средств автоматизации позволяет повысить точность и качество выполняемых работ, снизить трудозатраты и численность обслуживающего персонала.

Наибольшую эффективность использования экскаваторов с лазерными системами дает применение бортовых компьютеров. В этом случае в память компьютера вносятся все необходимые данные, такие как геометрические размеры котлована, углы откосов, вместимость ковша, угол поворота, высота подъема ковша, отклонение ковша от заданных отметок, угловое положение ковша относительно планируемой поверхности (при выполнении планировочных работ) и др. Тогда во время работы в компьютер автоматически поступают сигналы с фотоприемника, а затем на исполнительные устройства для «моментальной» корректировки выполняемого процесса по отрывке траншеи, котлована или планировке поверхности.

Определение основных параметров экскаватора

Максимальное усилие копания (кН) поворотом ковша определяется по формуле:

     (4.5)

где: Ауд – удельная энергоемкость процесса копания в расчетном грунте, кДж/м3 (Ауд = 180 кДж/м3 – для грунтов III категории, Ауд = 220 кДж/м3 – для грунтов IV категории);

R – радиус приложения сил на кромке ковша, м.

Радиус приложения сил (м) на кромке ковша определяем из соотношения, связывающего объем ковша и его ширину:

     (4.6)

где: b – ширина ковша, м.

     (4.7)

Расчетная толщина стружки (м) определяется по формуле:

     (4.8)

где: LК – путь наполнения ковша обратной лопаты, м.

Путь наполнения ковша (м) обратной лопаты определим по соотношению:

     (4.9)

где: mЭ – масса экскаватора, т.

Необходимое касательное усилие (кН) на режущей кромке ковша определим по формуле:

     (4.10)

где: К – удельное сопротивление грунта копанию, кПа (К = 250 кПа – для грунтов III категории, К = 300 кПа – для грунтов IV категории);

Для предварительного определения мощности насоса по удельной энергоемкости копания используют принцип равенства работы, отданной насосом и затраченной на копание, из которого следует, что:

    (4.11)

где: – продолжительность копания (= (0,25…0,35)·), с;

– полный КПД насосов и гидравлической системы (= 0,65…0,75);

– коэффициент использования мощности привода (= 0,8…0,9).

Ориентировочно мощность силовой установки (кВт), реализуемая на копание гусеничным экскаватором с гидроприводом:

      (4.12)

С целью обеспечения необходимой скорости передвижения мощность силовой установки для пневмоколесных экскаваторов принимают на 25…30% выше указанной в формуле (4.12).

Таблица 4.1. Исходные данные

вар.

Модель    экскаватора

Вместимость ковша q, м3

Категория разрабатываемого грунта

Продолжительность рабочего цикла tц, с

Масса экскаватора mЭ, т

Тип ходового    оборудования

1

ЭО-2621В

0,25

I-III

18

5,7

на базе пневмоколесного трактора

2

ЭО-3122

0,4

I-IV

15,9

14,1

гусеничное

3

ЭО-3221

0,63

I-IV

16,7

13,8

гусеничное повыш. проходимости

4

ЭО-3323

0,63

I-IV

16,5

14

пневмоколесное

5

ЭО-4321А

0,63

I-IV

22

19,2

пневмоколесное

6

ЭО-4121Б

0,65

I-IV

19

23,5

гусеничное

7

ЭО-4124

1,0

I-IV

19

25,5

гусеничное

8

ЭО-5122А

1,25

I-IV

27

35,8

гусеничное

9

ЭО-5123

1,6

I-III

25

36,5

гусеничное

10

ЭО-6122А

1,6

I-IV

29

59,5

гусеничное


 

А также другие работы, которые могут Вас заинтересовать

81799. Проблемные ситуации в науке. Проблема включения новых теоритических представлений в науку 29.01 KB
  Если культура имеет жесткий механизм контроля над воспроизводством тогда она будет выталкивать из себя все чужеродное ей под культурой понимается не только духовная но и материальная ее часть. Если культура вовсе не будет иметь этого механизма то она в конце концов перестанет быть культурой сольется с окружающей ее средой. Очевидно что некоторые инновации культура будет отторгать как чужие. Так скажем традиционная культура может охотно позаимствовать телевидение или мобильную связь или какоенибудь иное техническое...
81801. Традиционность науки и виды научных традиций. Традиции и новации 29.55 KB
  Традиции и новации. Кун впервые рассмотрел традиции как основной конституирующий фактор развития науки. Он обосновал казалось бы противоречивый феномен: традиции являются условием возможности научного развития. традиции.
81802. Традиции и революции в науке. Научные революции как пререстройка оснований науки 30.76 KB
  Научные революции как пререстройка оснований науки. Этапы развития науки связанные с перестройкой исследовательских стратегий задаваемых основаниями науки см. Перестройка оснований науки сопровождающаяся научными революциями может явиться вопервых результатом внутридисциплинарного развития в ходе которого возникают проблемы неразрешимые в рамках данной научной дисциплины. В зависимости от того какой компонент основания науки перестраивается различают две разновидности научной революции: а идеалы и нормы научного исследования...
81803. Глобальные научные революции, их социокультурные предпосылки 33.12 KB
  Так создание механической картины мира сопровождалось борьбой двух научно-исследовательских программ – ньютоновской и картезианской. Сущностные основания регулярного воспроизводства такой фазы развития науки как революция следующие при этом каждое последующее основание вытекает из предыдущего..
81804. Первая научная революция и формирование научного типа рациональности 29.03 KB
  В ходе этой революции сформировался особый тип рациональности получивший название научного. Научный тип рациональности радикально отличаясь от античного тем не менее воспроизвел правда в измененном виде два главных основания античной рациональности: вопервых принцип тождества мышления и бытия вовторых идеальный план работы мысли. Тип рациональности сложившийся в науке невозможно реконструировать не учитывая тех изменений которые произошли в философском понимании тождества мышления и бытия.
81805. Смена типов научной рациональности 41.37 KB
  С научной картиной мира связывают широкую панораму знаний о природе включающую в себя наиболее важные теории гипотезы и факты. Структура научной картины мира предлагает центральное теоретическое ядро фундаментальные допущения и частные теоретические модели которые постоянно достраиваются. Когда речь идет о физической реальности то к сверхустойчивым элементам любой картины мира относят принципы сохранения энергии постоянного роста энтропии фундаментальные физические константы характеризующие основные свойства универсума: пространство...
81807. Главные характеристики современной, постнеклассической науки 33.24 KB
  В ходе развития науки в последней трети XX в. Ее фундамент составляют ставшие общенаучными принципы развития и системности. Такое понимание процессов развития исходит из синергетики. Вопервых принцип развития эволюции в современной науке получил статус фундаментальной мировоззренческой и методологической константы.