72998

Сканирующая туннельная микроскопия. Исследование морфологии поверхности наноструктурированных материалов на СТМ «УМКА»

Лабораторная работа

География, геология и геодезия

Задачи лабораторной работы - изучение основ сканирующей туннельной микроскопии; получение топографии поверхности исследуемого образца в режиме постоянного туннельного тока. Высокие термостабильность и собственная резонансная частота конструкции оригинальная схема входного каскада...

Русский

2014-12-02

996.29 KB

35 чел.

1. Лабораторная работа
“Сканирующая туннельная микроскопия. Исследование морфологии поверхности наноструктурированных материалов на СТМ «УМКА»”

1.1. Задачи лабораторной работы

– изучение основ сканирующей туннельной микроскопии;

         – получение топографии поверхности исследуемого образца в режиме постоянного туннельного тока.

1.2. Назначение и область применения

Сканирующий туннельный микроскоп — нанотехнологический комплекс Умка (в дальнейшем НТК «УМКА») предназначен для ознакомления и обучения современным методам исследования поверхностей, проведения широкого класса лабораторных и исследовательских работ в области нанотехнологии, физики, химии, биологии, генетики и т.п.

Простота освоения, длительная работа без дополнительного квалифицированного обслуживания, наличие встроенной виброизоляции и специальная система сохранения зонда позволяют получать данные с высокой достоверностью и использовать комплекс в реальных условиях учебного процесса или в исследовательской лаборатории без применения

Рисунок 1. Общий вид НТК «УМКА»

специальных мер по виброизоляции и электромагнитной совместимости. Высокие термостабильность и собственная резонансная частота конструкции, оригинальная схема входного каскада усилителя туннельного тока, работающая с пикоамперными токами в полосе частот до 100 кГц, позволяет исследовать биологические и слабо проводящие обьекты без ополнительных технологических операций (запыление металлом и т.п.).

Открытая аппаратная и программная архитектура, основанная на системе плагинов — дополнительно подключаемых программных модулей, дает возможность пользователю подключать собственные программы и аппаратные средства.

1.3. Основной принцип действия

Принцип действия туннельного микроскопа основан на хорошо известном в квантовой механике принципе туннелирования электронов через диэлектрический барьер в системе металл — диэлектрик — металл (полупроводник), рис 2.

Рисунок 2.   Энергетические уровни в     системе металл-диэлектрик-металл в состоянии равновесия при отсутствии смещения

Если электроды находятся под одним потенциалом, то система пребывает в термодинамическом равновесии и уровни Ферми электродов совпадают

При подаче разности потенциалов, ток в такой системе может появиться либо в результате перекрытия электронных облаков ( при малых напряжениях и малых расстояниях, когда форма барьера практически не меняется), либо в результате автоэмиссии – вырыванием электронов из металла сильным полем, когда форма барьера принимает сильно нессиметричную (треугольную форму) и эффективная толщина его при этом уменьшается, рис. 3.

Рисунок 3. Энергетические уровни системы МДМ при: а) малом смещении; б) большом смещении

В качестве одного из электродов выступает исследуемый образец, который должен быть проводящим (металл, полупроводник, тонкая туннельно прозрачная пленка диэлектрика на поверхности проводника, материал с большой поверхностной проводимостью и т.п.) В качестве другого – игла туннельного микроскопа (зонд), заточенная в идеале до 1 атома на кончике, обычно из вольфрама, платины и ее сплавов и т.п. Туннельный микроскоп, работающий в области низких напряжений, оказывается очень чувствительным к расстоянию между поверхностью и кончиком иглы. Ток (It), протекающий в такой системе, определяется разницей работы выхода электронов материалов образца – зонда (Af) расстоянием между образцом (точнее между эквипотенциальной поверхностью над образцом) и зондом (h), разницей потенциалов поверхность – зонд (Ut).

где e = 1,6*10-19 К – заряд электрона; n≈ 1028 м3 – концентрация электронов проводимости; V =106 м/с – скорость электронов; F – площадь поперечного сечения пучка электронов; D – вероятность прохождения электронов через зазор L в режиме туннельного эффекта

а

где m – масса электрона, m = 9,1095кг; Ф – величина эффективного энергетического барьера системы зонд_объект; ћ — постоянная Планка, Дж·с.

Величина зазора входит в значение туннельного тока как показатель степени экспоненциальной зависимости вероятности туннелирования. Этим обуславливается крайне резкая зависимость туннельного тока от расстояния, что позволяет строить системы с высочайшим разрешением по высоте.

Упрощенная схема туннельного микроскопа представлена на Рис. 4.

Рисунок 4. Упрощенная схема туннельного микроскопа: УТТ – усилитель туннельного тока; УВВ – высоковольтный усилитель

Если управлять расстоянием зонд – образец путем механического перемещения зонда (по оси Z) и построить систему обратной связи таким образом, чтобы туннельный ток был постоянным и «развернуть» (просканировать) по осям X и Y– то мы имеем возможность (зная перемещение, которое системе пришлось применить схемой управления двигателем Z для поддержания постоянства тока) получить функцию, пропорциональную рельефу поверхности образца, рис. 5.

Рисунок 5. Сканирование в режиме постоянного тока (I_const)

Другой метод получения информации о топографии поверхности – зафиксировать начальную высоту зонда над поверхностью и отслеживать изменения тока при сканировании в плоскости образца. Этот метод (метод постоянной высоты) применим только к атомарно гладким поверхностям, когда высота рельефа меньше, чем величина туннельного зазора, рис. 6.

Рисунок 6. Сканирование в режиме постоянной высоты (h_const)

V-модуляция

 В методе V-модуляции, помимо постоянного напряжения смещения Vt, к туннельному контакту прикладывается малое переменное напряжение Vs.

При этом обратная связь держится на постоянном сигнале, а переменная составляющая туннельного тока используется для формирования спектроскопического изображения. Таким образом, одновременно с измерением топографии возможно топогра-фирование локальной плотности состояний.

Z-Модуляция.

Для этого расстояние игла — образец необходимо промодулировать на малую величину d и измерить переменную компоненту туннельного тока.

Таким образом, возможно измерять не только топографию, но и разделять области разного состава, различающиеся значениями работы выхода.

1.4. Задание

Получить СТМ-изображение DVD-диска.

Описание образца: DVD - диск – это легкодоступный материал с заранее известными характеристиками. Поэтому в микроскопии фрагменты DVD используют для калибровки микроскопа, для определения качества игл, предназначенных для сканирования, а так же возможно использование в качестве подложки.

Диски DVD хранят данные, за счет расположенных насечек вдоль спиральных треков на отражающей металлической поверхности, покрытой

пластиком. Расстояния между информационными дорожками на спирали дисков DVD - 0,74 мкм.

1.5. Порядок выполнения работы:

Приготовление образца: находящийся в наборе тестовых образцов фрагмент полностью готов к сканированию. Если в результате каких-либо ваших действий образец загрязнился, то необходимо его очистить. Кроме того, предоставляемый образец покрыт тонкой пленкой золота и поэтому с течением времени не окисляется. Но подобный образец можно приготовить и самому. Для этого необходимо отрезать от диска небольшой кусочек и отделить пластиковое покрытие от металлической поверхности. Полученная поверхность пригодна для сканирования около 40 минут, затем она окисляется.

Рекомендуемые ток и напряжение сканирования: I= 0,5 V, U= 0,5 nA. Поставьте следующие начальные значения: разрешение 128х128, R-канал рельефа и сканирование по постоянному току I const. Выделите максимальное поле сканирования, при этом начальные точки по X и Y будут в положении «0,0». Откройте Дополнительные настройки и поставьте следующие параметры: количество измерений в точке – 1 раз, скорость перемещения между точками ~ 150, время ожидания в точке ~ 25 х 100 мкс.

Результаты сканирования подобных образцов:

Рис. 1. СТМ-изображение DVD-диска 2,12х2,12 мкм

1.6. Контрольные вопросы

1.6.1. Назовите основные компоненты СТМ и их назначение. Объясните принцип работы СТМ на примере туннельного контакта двух проводников.

1.6.2. Что такое режим постоянного тока и постоянной высоты?

1.6.3. Что такое V- и Z-модуляция? Для чего они применяются?


 

А также другие работы, которые могут Вас заинтересовать

11661. ИССЛЕДОВАНИЕ LC-ГЕНЕРАТОРА 182 KB
  Лабораторная работа №8 ИССЛЕДОВАНИЕ LCГЕНЕРАТОРА Цель работы: изучить работу и провести исследование LCгенератора с трансформаторной связью. Приборы и принадлежности: 1. Генератор сигналов низкочастотный типа Г3112 Г333 Л30 или аналогичный. 2. Милливо...
11662. ГАРМОНИЧЕСКИЙ АНАЛИЗ ПЕРИОДИЧЕСКИХ ФУНКЦИЙ 225 KB
  Лабораторная работа № 9 ГАРМОНИЧЕСКИЙ АНАЛИЗ ПЕРИОДИЧЕСКИХ ФУНКЦИЙ Цель работы теоретический расчет и экспериментальное изучение спектров периодических сигналов. 9.1. Краткая теория Периодическим называется сигнал для которого где посто...
11663. ИССЛЕДОВАНИЕ АКТИВНОГО ЛИНЕЙНОГО ЧЕТЫРЕХПОЛЮСНИКА 314.5 KB
  Лабораторная работа № 10 ИССЛЕДОВАНИЕ АКТИВНОГО ЛИНЕЙНОГО ЧЕТЫРЕХПОЛЮСНИКА Цель работы: исследование основных параметров линейного активного четырехполюсника частотной амплитудной переходной импульсной характеристик Y и Zпараметров. Приборы: генерато
11664. Изучение основ работы с базовыми инструментами в системе программирования VB-Net 2008 425.5 KB
  Изучение основ работы с базовыми инструментами в системе программирования VBNet 2008. Цель работы: Изучение основ работы с основными инструментами VBNET: командной строкой полем метки текстовым полем познакомиться с вспомогательными элементами управления: радиокнопкой ф
11665. ОПРЕДЕЛЕНИЕ УСКОРЕНИЯ СВОБОДНОГО ПАДЕНИЯ ПРИ ПОМОЩИ МАТЕМАТИЧЕСКОГО МАЯТНИКА 120.13 KB
  МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНОЙ РАБОТЕ № 1.1 ОПРЕДЕЛЕНИЕ УСКОРЕНИЯ СВОБОДНОГО ПАДЕНИЯ ПРИ ПОМОЩИ МАТЕМАТИЧЕСКОГО МАЯТНИКА ЦЕЛЬ РАБОТЫ 1 Ознакомиться с теорией маятника. 2 Экспериментальное определить ускорение свободного падения в данном географическо...
11666. ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ ФИЗИЧЕСКОГО МАЯТНИКА 221.71 KB
  МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНОЙ РАБОТЕ № 1.2 ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ ФИЗИЧЕСКОГО МАЯТНИКА ЦЕЛЬ РАБОТЫ: определить момент инерции физического маятника и исследовать зависимость момента инерции от положения центра масс маятника относительно оси вращен
11667. ИССЛЕДОВАНИЕ СЛОЖЕНИЯ ВЗАИМНО ПЕРПЕНДИКУЛЯРНЫХ КОЛЕБАНИЙ РАЗЛИЧНЫХ ЧАСТОТ 232.61 KB
  МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНОЙ РАБОТЕ № 1.4 ИССЛЕДОВАНИЕ СЛОЖЕНИЯ ВЗАИМНО ПЕРПЕНДИКУЛЯРНЫХ КОЛЕБАНИЙ РАЗЛИЧНЫХ ЧАСТОТ Цель работы: исследование траектории движения точки участвующей в двух взаимно перпендикулярных колебаниях; проверка градуировки шк
11668. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА САМОИНДУКЦИИ МЕТОДОМ ЖУБЕРА 132.19 KB
  МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНОЙ РАБОТЕ №4.1 ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА САМОИНДУКЦИИ МЕТОДОМ ЖУБЕРА ЦЕЛЬ РАБОТЫ Исследовать зависимость коэффициента самоиндукции от положения подвижного сердечника. ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ Исследуемая катушка само...
11669. Ландшафтно-екологічна навчальна практика 8.88 MB
  Шацький національний природний парк розташований біля с.Світязь Шацького району у Волинській області. Парк є місцем, де відпочиваючі проводять свій вільний час. Територія відмінно вписана в навколишній пейзаж із однойменним озером на його території.