72998

Сканирующая туннельная микроскопия. Исследование морфологии поверхности наноструктурированных материалов на СТМ «УМКА»

Лабораторная работа

География, геология и геодезия

Задачи лабораторной работы -– изучение основ сканирующей туннельной микроскопии; получение топографии поверхности исследуемого образца в режиме постоянного туннельного тока. Высокие термостабильность и собственная резонансная частота конструкции оригинальная схема входного каскада...

Русский

2014-12-02

996.29 KB

14 чел.

1. Лабораторная работа
“Сканирующая туннельная микроскопия. Исследование морфологии поверхности наноструктурированных материалов на СТМ «УМКА»”

1.1. Задачи лабораторной работы

– изучение основ сканирующей туннельной микроскопии;

         – получение топографии поверхности исследуемого образца в режиме постоянного туннельного тока.

1.2. Назначение и область применения

Сканирующий туннельный микроскоп — нанотехнологический комплекс Умка (в дальнейшем НТК «УМКА») предназначен для ознакомления и обучения современным методам исследования поверхностей, проведения широкого класса лабораторных и исследовательских работ в области нанотехнологии, физики, химии, биологии, генетики и т.п.

Простота освоения, длительная работа без дополнительного квалифицированного обслуживания, наличие встроенной виброизоляции и специальная система сохранения зонда позволяют получать данные с высокой достоверностью и использовать комплекс в реальных условиях учебного процесса или в исследовательской лаборатории без применения

Рисунок 1. Общий вид НТК «УМКА»

специальных мер по виброизоляции и электромагнитной совместимости. Высокие термостабильность и собственная резонансная частота конструкции, оригинальная схема входного каскада усилителя туннельного тока, работающая с пикоамперными токами в полосе частот до 100 кГц, позволяет исследовать биологические и слабо проводящие обьекты без ополнительных технологических операций (запыление металлом и т.п.).

Открытая аппаратная и программная архитектура, основанная на системе плагинов — дополнительно подключаемых программных модулей, дает возможность пользователю подключать собственные программы и аппаратные средства.

1.3. Основной принцип действия

Принцип действия туннельного микроскопа основан на хорошо известном в квантовой механике принципе туннелирования электронов через диэлектрический барьер в системе металл — диэлектрик — металл (полупроводник), рис 2.

Рисунок 2.   Энергетические уровни в     системе металл-диэлектрик-металл в состоянии равновесия при отсутствии смещения

Если электроды находятся под одним потенциалом, то система пребывает в термодинамическом равновесии и уровни Ферми электродов совпадают

При подаче разности потенциалов, ток в такой системе может появиться либо в результате перекрытия электронных облаков ( при малых напряжениях и малых расстояниях, когда форма барьера практически не меняется), либо в результате автоэмиссии – вырыванием электронов из металла сильным полем, когда форма барьера принимает сильно нессиметричную (треугольную форму) и эффективная толщина его при этом уменьшается, рис. 3.

Рисунок 3. Энергетические уровни системы МДМ при: а) малом смещении; б) большом смещении

В качестве одного из электродов выступает исследуемый образец, который должен быть проводящим (металл, полупроводник, тонкая туннельно прозрачная пленка диэлектрика на поверхности проводника, материал с большой поверхностной проводимостью и т.п.) В качестве другого – игла туннельного микроскопа (зонд), заточенная в идеале до 1 атома на кончике, обычно из вольфрама, платины и ее сплавов и т.п. Туннельный микроскоп, работающий в области низких напряжений, оказывается очень чувствительным к расстоянию между поверхностью и кончиком иглы. Ток (It), протекающий в такой системе, определяется разницей работы выхода электронов материалов образца – зонда (Af) расстоянием между образцом (точнее между эквипотенциальной поверхностью над образцом) и зондом (h), разницей потенциалов поверхность – зонд (Ut).

где e = 1,6*10-19 К – заряд электрона; n≈ 1028 м3 – концентрация электронов проводимости; V =106 м/с – скорость электронов; F – площадь поперечного сечения пучка электронов; D – вероятность прохождения электронов через зазор L в режиме туннельного эффекта

а

где m – масса электрона, m = 9,1095кг; Ф – величина эффективного энергетического барьера системы зонд_объект; ћ — постоянная Планка, Дж·с.

Величина зазора входит в значение туннельного тока как показатель степени экспоненциальной зависимости вероятности туннелирования. Этим обуславливается крайне резкая зависимость туннельного тока от расстояния, что позволяет строить системы с высочайшим разрешением по высоте.

Упрощенная схема туннельного микроскопа представлена на Рис. 4.

Рисунок 4. Упрощенная схема туннельного микроскопа: УТТ – усилитель туннельного тока; УВВ – высоковольтный усилитель

Если управлять расстоянием зонд – образец путем механического перемещения зонда (по оси Z) и построить систему обратной связи таким образом, чтобы туннельный ток был постоянным и «развернуть» (просканировать) по осям X и Y– то мы имеем возможность (зная перемещение, которое системе пришлось применить схемой управления двигателем Z для поддержания постоянства тока) получить функцию, пропорциональную рельефу поверхности образца, рис. 5.

Рисунок 5. Сканирование в режиме постоянного тока (I_const)

Другой метод получения информации о топографии поверхности – зафиксировать начальную высоту зонда над поверхностью и отслеживать изменения тока при сканировании в плоскости образца. Этот метод (метод постоянной высоты) применим только к атомарно гладким поверхностям, когда высота рельефа меньше, чем величина туннельного зазора, рис. 6.

Рисунок 6. Сканирование в режиме постоянной высоты (h_const)

V-модуляция

 В методе V-модуляции, помимо постоянного напряжения смещения Vt, к туннельному контакту прикладывается малое переменное напряжение Vs.

При этом обратная связь держится на постоянном сигнале, а переменная составляющая туннельного тока используется для формирования спектроскопического изображения. Таким образом, одновременно с измерением топографии возможно топогра-фирование локальной плотности состояний.

Z-Модуляция.

Для этого расстояние игла — образец необходимо промодулировать на малую величину d и измерить переменную компоненту туннельного тока.

Таким образом, возможно измерять не только топографию, но и разделять области разного состава, различающиеся значениями работы выхода.

1.4. Задание

Получить СТМ-изображение DVD-диска.

Описание образца: DVD - диск – это легкодоступный материал с заранее известными характеристиками. Поэтому в микроскопии фрагменты DVD используют для калибровки микроскопа, для определения качества игл, предназначенных для сканирования, а так же возможно использование в качестве подложки.

Диски DVD хранят данные, за счет расположенных насечек вдоль спиральных треков на отражающей металлической поверхности, покрытой

пластиком. Расстояния между информационными дорожками на спирали дисков DVD - 0,74 мкм.

1.5. Порядок выполнения работы:

Приготовление образца: находящийся в наборе тестовых образцов фрагмент полностью готов к сканированию. Если в результате каких-либо ваших действий образец загрязнился, то необходимо его очистить. Кроме того, предоставляемый образец покрыт тонкой пленкой золота и поэтому с течением времени не окисляется. Но подобный образец можно приготовить и самому. Для этого необходимо отрезать от диска небольшой кусочек и отделить пластиковое покрытие от металлической поверхности. Полученная поверхность пригодна для сканирования около 40 минут, затем она окисляется.

Рекомендуемые ток и напряжение сканирования: I= 0,5 V, U= 0,5 nA. Поставьте следующие начальные значения: разрешение 128х128, R-канал рельефа и сканирование по постоянному току I const. Выделите максимальное поле сканирования, при этом начальные точки по X и Y будут в положении «0,0». Откройте Дополнительные настройки и поставьте следующие параметры: количество измерений в точке – 1 раз, скорость перемещения между точками ~ 150, время ожидания в точке ~ 25 х 100 мкс.

Результаты сканирования подобных образцов:

Рис. 1. СТМ-изображение DVD-диска 2,12х2,12 мкм

1.6. Контрольные вопросы

1.6.1. Назовите основные компоненты СТМ и их назначение. Объясните принцип работы СТМ на примере туннельного контакта двух проводников.

1.6.2. Что такое режим постоянного тока и постоянной высоты?

1.6.3. Что такое V- и Z-модуляция? Для чего они применяются?


 

А также другие работы, которые могут Вас заинтересовать

21487. Правовые и этические проблемы анестезиологии и реанимации 35 KB
  Для осущетсвления своевременной и полной коррекции метаболических сдвигов необходимы следующие мероприятия: общий анализ крови и мочи определение ЦВД исследование сыворотки крови на калий натрий хлориды осмотичность цельной крови на рО2 рСО2 рН азот мочевины гематокрит глюкозу. Из обычных лабораторных показателей наиболее показательны данные красной крови Эр Нв Нt и показатели общего белка. Если показатели красной крови свидетельствуют о явлениях гемоконцентрации необходимо стремиться к снижению этих показателей то уровень...
21488. ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРОВЕДЕНИЯ СЕАНСОВ ГБО ПРИ НЕКОТОРЫХ КРИТИЧЕСКИХ СОСТОЯНИЯХ 46.8 KB
  В процессе проведения компрессии обычно наблюдается увеличение сукровичного пятна на повязках связанное с усилением оттока раневого отделяемого. Для осущетсвления своевременной и полной коррекции метаболических сдвигов необходимы следующие мероприятия: общий анализ крови и мочи определение ЦВД исследование сыворотки крови на калий натрий хлориды осмотичность цельной крови на рО2 рСО2 рН азот мочевины гематокрит глюкозу. Из обычных лабораторных показателей наиболее показательны данные красной крови Эр Нв Нt и показатели...
21489. ПРОЕКТ ПРОТОКОЛА ЛЕЧЕНИЯ БОЛЬНЫХ С ЧЕРЕПНО-МОЗГОВОЙ ТРАВМОЙ 56.5 KB
  Основной Целью данного протокола является улучшение результатов лечения больных с ЧМТ за счет внедрения в практику наиболее эффективных методик лечения данной категории больных. Одним из основных критериев адекватности терапии является качество жизни (уровень социальной адаптации) пациента после выписки из стационара. Параллельно с основной цепью предполагается решение следующих задач...
21490. Побудова і технологічне планування приміщень магазинів 55.69 KB
  Торгові приміщення є основними в магазині. До таких приміщень відносяться: торгові зали магазинів; відділ замовлень; зал кафетерію; приміщення або площі додаткового обслуговування покупців (місця відпочинку покупців, приміщення для розкрою тканин і ін.).
21491. Реаниматологическая помощь при термической травме 21 KB
  При комбинированной травме показаниями к проведению ВЧВВ легких через микротрахеостому у таких пострадавших должны быть: 1) поражение дыхательных путей продуктами горения легкой степени + ожог верхних дыхательных путей
21492. СЕПСИС И СЕПТИЧЕСКИЙ ШОК 120 KB
  Кандидат медицинских наук старший преподаватель подполковник медицинской службы Журавлев В.:Медицина1991. 5 2Введение Сепсис остается сложной медицинской проблемой и на се годняшний день продолжает быть одной из ведущих причин ле тальности несмотря на современные открытия в патогенезе этого заболевания и принципах его лечения.
21493. СОДЕРЖАНИЕ ЭЛЕКТРОЛИТОВ И ОСМОТИЧЕСКАЯ КОНЦЕНТРАЦИЯ НЕКО 31.5 KB
  Например Американская коллегия врачей и общество критической медицины США придер живаются терминологии выработанной на совместной конферен ции по определению общих критериев при различных формах те чения сепсиса слайд N1: 1Определения сепсиса и связанных с ним нарушений ┌─────────────────┬───────────────────────────────────────────┐ │Термин │ Определение │ ├─────────────────┼───────────────────────────────────────────┤ │Септициемия...
21494. Организация анестезиологической и реаниматологической помощи на этапе квалифицированной медицинской помощи 175.5 KB
  Учреждения подразделения заготовки крови состав задачи VI. Из оснащения на ПМП имеются: инфузионные растворы полиглюкин физиологический раствор растворы глюкозы 5 одноразовые системы для переливания крови и кровезаменителей кровь универсальной группы ОIRh аппараты ИВЛ ДП9 и ДП10 кислородные ингаляторы КИ4 портативный аналгезер АП1 наборы для трахеотомии дренирования левралной полости а также лекарственные средства промедол морфин дипразин новоеаин трихлорэтилен и др. Сложнее восстановить проходимость...
21495. ВЕДЕНИЕ ЧЕРЕПНО-МОЗГОВОЙ ТРАВМЫ 54.5 KB
  Это потенциально опасно, т.к. вызывает избыточную вазоконстрикцию и приводит к ишемии. Агрессивная гипервентиляция может стать неэффективной спустя несколько часов и должна использоваться только на короткий срок в абсолютно неотложных ситуациях. В этих ситуациях с целью снижения ВЧД пациента часто используется отсоединение от респиратора и ручная вентиляция