73004

Определение фракционного состава нефтяных топлив (на примере дизельного топлива)

Лабораторная работа

Физика

Установить зависимость эксплуатационных характеристик от фракционного состава топлив. Знать: Сущность простой перегонки. Технику безопасности при работе с ЛВЖ,ГЖС электроприборами. Произвести определение фракционного состава нефтяного топлива на примере дизельного топлива.

Русский

2014-12-03

36.82 KB

4 чел.

ЛАБОРАТОРНАЯ РАБОТА

Определение фракционного состава нефтяных топлив.

( на примере диз.топлива.)

ЦЕЛЬ: Установить зависимость эксплуатационных характеристик от  фракционного состава топлив.

Знать :1Сущность простой перегонки.

            2.Технику безопасности при работе с ЛВЖ,ГЖС электроприборами.

Уметь: Произвести определение фракционного состава нефтяного топлива на примере дизельного топлива.

 ТЕОРЕТИЧЕСКОЕ ПОЯСНЕНИЕ Фракционный состав топлив оценивается выходом 10% об. фракций в зависимости от температуры при разгонке в стандартных условиях. Обычно нормируются температуры начала кипения, отгона 10%, 50%, 90% и 97,5% об. от загрузки и конца кипения.

Температуры начала кипения и выкипания 10% об. характеризуют пусковые свойства топлив. С понижением этих температур облегчается запуск холодного двигателя при низких температурах окружающей среды. Однако чрезмерное уменьшение температуры начала кипения нежелательно в связи с возможным образованием паровых пробок в системе питания.

Температура 50% об. выкипания оказывает влияние на быстроту прогрева холодного двигателя, расход топлива для этой цели и приемистость двигателя. Понижение этой температуры способствует быстрому прогреву двигателя при меньшем расходе топлива и значительному улучшению приемистости.

Температуры 90, 97,5% об. и конца кипения характеризуют полноту испарения топлива. При повышении этих температур полнота испарения топлива уменьшается, нарушается распределение его по цилиндрам двигателя, увеличивается расход топлива, разжижается смазка и ускоряется износ двигателя.

ОБОРУДОВАНИЕ И РЕАКТИВЫ:

1.Аппарат АРНС-Э

2.Дизельное топливо.

ПОРЯДОК РАБОТЫ

Фракционный состав нефтяных топлив определяется на стандартном аппарате, схема которого представлена на рис. б.

Проведение испытания. В чистую сухую колбу 1 с помощью мерного цилиндра 7 заливают 100 мл испытуемого нефтепродукта. Мерный цилиндр, не высушивая, ставят под нижний конец трубки холодильника 3 так, чтобы трубка холодильника входила в цилиндр не менее чем на 25 мм, но не ниже метки 100 мл. Отверстие цилиндра прикрывают ватой.

В горло колбы вставляют на хорошо пригнанной корковой пробке термометр 2 с градуировкой от 0 до 360°С. При этом верх ртутного резервуара термометра должен находиться на уровне нижнего края отводной трубки в месте ее припая. Колбу устанавливают на асбестовую сетку 8. Протирают трубку холодильника и соединяют с ней отводную трубку колбы при помощи пробки. Отводная трубка колбы должна входить в трубку холодильника на 25-40 мм и не касаться ее стенок.

При разгонке бензинов ванну холодильника 5 заполняют льдом и заливают водой, поддерживая температуру от 0 до 5°С. При разгонке нефтепродуктов с более высокими температурами кипения охлаждение проводят проточной водой, подавая её через нижний патрубок 6 и отводя через верхний 4. Температура отходящей воды не должна превышать 30°С.

Закрывают колбу кожухом 9, подводят под асбестовую сетку горелку и начинают нагревание. Скорость нагрева устанавливают таким образом, чтобы от начала обогрева до падения первой капли дистиллята в приемник прошло не менее 5 и не более 10 мин (для керосинов и легких дизельных топлив 10-15 мин). Температуру, при которой в мерный цилиндр падает первая капля, отмечают как температуру начала кипения. Дальнейшая интенсивность нагрева должна обеспечивать равномерную скорость перегонки с отбором 4-5 мл дистиллята в 1 мин, что примерно соответствует 20-25 каплям в 10 с.

В дальнейшем последовательно фиксируют температуры, соответствующие выкипанию каждых 10% об. испытуемого нефтепродукта, определяемых по уровню жидкости в приемном цилиндре.

После отгона 90% об. нефтепродукта нагрев регулируют так, чтобы до конца перегонки, т. е. до выключения нагрева, прошло от 3 до 5 мин. Обогрев выключают в тот момент, когда в мерном цилиндре объем жидкости станет равным высшему нормируемому количеству отгона (97,5, 98% и др.) для данного нефтепродукта. Если же нормируетсятемпература конца кипения, то нагрев ведут до тех пор, пока ртутный столбик термометра не остановится на некоторой высоте, а после этого начнет опускаться. Максимальное показание термометра соответствует температуре конца кипения.

Последний объем дистиллята в мерном цилиндре отмечают через 5 мин после прекращения нагрева, чтобы дистиллят стек из холодильника. Для определения объема остатка прибор разбирают. Охлажденный до 20±3°С остаток выливают в цилиндр вместимостью 10 мл и отмечают его объем. Все отсчеты при перегонке ведут с точностью до 0,5 мл и до 1°С. Разность между 100 мл и суммой объемов дистиллята и остатка записывают как потери при перегонке. По данным разгонки (по специальному заданию преподавателя) строится линия разгонки в координатах: температура выкипания (°С) по оси ординат и отгон фракций (% об.) по оси абсцисс.

По окончании работы проверяют соответствие результатов определения фракционного состава техническим условиям на данный нефтепродукт.

Расчет результатов записывают в лабораторный журнал.


 

А также другие работы, которые могут Вас заинтересовать

41354. Разработка комплексной программы развития города на 3 года 540 KB
  Городское хозяйство — комплекс расположенных на территории города (либо другого населенного пункта) предприятий, организаций, учреждений, обслуживающих материальные, культурные и бытовые потребности населения, проживающего в городе (населенном пункте).
41357. Изучение зеркального гальванометра 208.5 KB
  Изучение зеркального гальванометра Изучение внутреннего сопротивления. r – внутреннее сопротивление гальванометра. Если при изменении положения ключа l показания гальванометра не меняются значит через отрезок B ток не течёт  потенциалы в точках А и В равны этого можно достичь меняя сопротивление R  R = r. Определение средней чувствительности гальванометра.
41358. Измерение сопротивления гальванометра 188 KB
  Цель работы: Определение внутреннего сопротивления гальванометра. Определение средней чувствительности и градуирование гальванометра. Измерение сопротивления гальванометра. =1ом ом ом 10000 500 10600 450 11200 400 11800 350 12600 300 I – сила тока в цепи гальванометра эдс источника питания 2В r сопротивление гальванометра.
41359. Исследование магнитооптического зеркального гальванометра 500.5 KB
  Лабораторная работа №138 Исследование магнитооптического зеркального гальванометра . Измерение сопротивления гальванометра. На схеме: При R=R получаем RG=R если при замыкании и размыкании ключа показания гальванометра не меняются. Определение средней чувствительности и градуировка гальванометра.
41361. Работа ионизационного манометра 266 KB
  Цель работы: Изучить работу ионизационного манометра зависимость ионного тока от изменения различных параметров ток накала напряжение на сетке между катодом и анодом. Таблица зависимости ионного тока от тока накала. мА 300В 50В 260В 50В 300В 33В 29 665 650 651 28 655 642 649 20 631 635 632 18 628 630 628 14 620 622 622 9 609 615 609 5 590 596 589 0 540 540 522 Таблица зависимости ионного тока от напряжения между катодом и анодом . 13 33В 12 50В 13 50В 75 30 5 70 30 65 29 45 28 60 28 ...
41362. Изучение работы форвакуумного насоса 99.5 KB
  Цель работы: определить предельный вакуум и скорость откачки ротационного насоса. Форвакуумная установка: где Б1 – баллон; Б2 – калибровочный баллон (Vк = 2,4 л.); К1 – К7 – краны; РМ – разница давлений (мм.масл.ст.). Для нахождения объема установки используем следующую формулу: