73045

Особенности конденсационных электростанций

Доклад

Энергетика

В отечественной энергетике на долю КЭС приходится до 60 выработки электроэнергии. Основными особенностями КЭС являются: удаленность от потребителей электроэнергии что определяет в основном выдачу мощности на высоких и сверхвысоких напряжениях и блочный принцип построения электростанции.

Русский

2014-12-03

185.27 KB

8 чел.

На тепловых электростанциях химическая энергия сжигаемого топлива преобразуется в котле в энергию водяного пара, приводящего во вращение турбоагрегат (паровую турбину, соединенную с генератором). Механическая энергия вращения преобразуется генератором в электрическую. Топливом для электростанций служат уголь, торф, горючие сланцы, а также газ и мазут. В отечественной энергетике на долю КЭС приходится до 60% выработки электроэнергии.

Основными особенностями КЭС являются: удаленность от потребителей электроэнергии, что определяет в основном выдачу мощности на высоких и сверхвысоких напряжениях, и блочный принцип построения электростанции. Мощность современных КЭС обычно такова, что каждая из них может обеспечить электроэнергией крупный район страны. Отсюда еще одно название электростанций этого типа — государственная районная электрическая станция (ГРЭС).

На рисунке показана упрощенная принципиальная технологическая схема энергоблока КЭС. Энергоблок представляет собой как бы отдельную электростанцию со своим основным и вспомогательным оборудованием и центром управления — блочным щитом. Связей между соседними энергоблоками по технологическим линиям обычно не предусматривается.

Принципиальная технологическая схема КЭС:

1 — склад топлива и система топливоподачи; 2 — система топливоприготовления; 3 — котел; 4 — турбина; 5 - конденсатор; 6 - циркуляционный насос; 7 - конденсатный насос; 8 - питательный насос; 9 - горелки котла; 10 - вентилятор; 11 - дымосос; 12 - воздухоподогреватель; 13 — водяной экономайзер; 14 - подогреватель низкого давления;

15 — деаэратор; 16 — подогреватель высокого давления

Построение КЭС по блочному принципу дает определенные технико-экономические преимущества, которые заключаются в следующем:

1) облегчается применение пара высоких и сверхвысоких параметров вследствие более простой системы паропроводов, что особенно важно для освоения агрегатов большой мощности;

2) упрощается и становится более четкой технологическая схема электростанции, вследствие чего увеличивается надежность работы и облегчается эксплуатация;

3) уменьшается, а в отдельных случаях может вообще отсутствовать, резервное тепломеханическое оборудование;

4) сокращается объем строительных и монтажных работ;

5) уменьшаются капитальные затраты на сооружение электростанции;

6) обеспечивается удобное расширение электростанции, причем новые энергоблоки при необходимости могут отличаться от предыдущих по своим параметрам.

Технологическая схема КЭС состоит из нескольких систем: топливоподачи; топливоприготовления; основного пароводяного контура вместе с парогенератором и турбиной; циркуляционного водоснабжения; водоподготовки; золоулавливания и золоудаления и, наконец, электрической части станции.

Механизмы и установки, обеспечивающие нормальное функционирование всех этих элементов, входят в так называемую систему собственных нужд станции (энергоблока).

Наибольшие энергетические потери на КЭС имеют место в основном пароводяном контуре, а именно в конденсаторе, где отработавший пар, содержащий еще большое количество тепла, затраченного при парообразовании, отдает его циркуляционной воде. Тепло с циркуляционной водой уносится в водоемы, т. е. теряется. Эти потери в основном определяют КПД электростанции, составляющий для самых современных КЭС не более 40-42%.

Электроэнергия, вырабатываемая электростанцией, выдается на напряжении 110 - 750 кВ и лишь часть ее отбирается на собственные нужды через трансформатор собственных нужд, подключенный к выводам генератора.

Генераторы и повышающие трансформаторы соединяют в энергоблоки и подключают к распределительному устройству высокого напряжения, которое обычно выполняется открытым (ОРУ). Варианты расположения основных сооружений могут быть различными, что иллюстрируется рисунке.

Рис. 1.3. Варианты расположения основных сооружений КЭС:

1 - главный корпус; 2 - склад топлива; 3 - дымовые трубы; 4 - трансформаторы блоков;

5, 6 — распределительные устройства; 7 - насосные станции;

8 - промежуточные опоры электрических линий

Современные КЭС оснащаются в основном энергоблоками 200 - 800 МВт. Применение крупных агрегатов позволяет обеспечить быстрое наращивание мощностей электростанций, приемлемые себестоимость электроэнергии и стоимость установленного киловатта мощности станции.

Наиболее крупные КЭС имеют мощность 4 - 6,4 млн. кВт с энергоблоками 500 и 800 МВт. Предельная мощность КЭС определяется условиями водоснабжения и влиянием выбросов станции на окружающую среду.

Современные КЭС весьма активно воздействуют на окружающую среду: на атмосферу, гидросферу и литосферу. Их влияние на атмосферу выражается в большом потреблении кислорода воздуха для горения топлива и в выбросе значительного количества продуктов сгорания. Это в первую очередь газообразные окислы углерода, серы, азота, ряд которых имеет высокую химическую активность. Летучая зола, прошедшая через золоуловители, загрязняет воздух. Наименьшее загрязнение атмосферы (для станций одинаковой мощности) отмечается при сжигании газа и наибольшее - при сжигании твердого топлива с низкой теплотворной способностью и высокой зольностью. Необходимо учесть также большие уносы тепла в атмосферу, а также электромагнитные поля, создаваемые электрическими установками высокого и сверхвысокого напряжения.

КЭС загрязняет гидросферу большими массами теплой воды, сбрасываемыми из конденсаторов турбин, а также промышленными стоками, хотя они проходят тщательную очистку.

Для литосферы влияние КЭС сказывается не только в том, что для работы станции извлекаются большие массы топлива, отчуждаются и застраиваются земельные угодья, но и в том, что требуется много места для захоронения больших масс золы и шлаков (при сжигании твердого топлива).

Влияние КЭС на окружающую среду чрезвычайно велико. Например, о масштабах теплового загрязнения воды и воздуха можно судить по тому, что около 60 % тепла, которое получается в котле при сгорании всей массы топлива, теряется за пределами станции. Учитывая размеры производства электроэнергии на КЭС, объемы сжигаемого топлива, можно предположить, что они в состоянии влиять на климат больших районов страны. В то же время решается задача утилизации части тепловых выбросов путем отопления теплиц, создания подогревных прудовых рыбохозяйств. Золу и шлаки используют в производстве строительных материалов и т. д.

Тепловая схема конденсационной электрической станции


 

А также другие работы, которые могут Вас заинтересовать

68798. Технология изготовления металлических деталей светильника и его сборка 204.5 KB
  Для изготовления настольной лампы необходимы листы трубки и провода. Холодная штамповка нашла широкое применение на светотехнических заводах и различают следующие ее виды: 1 вырубку когда из листовой заготовки вырезается деталь заданного контура; 2 пробивку когда в заготовке детали производится...
68800. Маркетинговое исследование рынка сахара в городе Омске 189.26 KB
  Целью данного маркетингового исследования является изучение рынка сахара в городе Омске, ассортимента и предпочтений потребителей. Для достижения этой цели, необходимо решить следующие задачи: Изучить сущность маркетинговых исследований; Разработать опросный лист и провести опрос...
68801. Расчет передающего устройства магистральной радиосвязи 6.62 MB
  Мощность сигнала в нагрузке – 18 кВт Диапазон рабочих частот – 3 – 9 МГц Нагрузка – несимметричная, широкополосная сопротивлением 50 Ом Модуляция – А3J – однополосная телефония с подавленной несущей. Передача одноканальная. В возбудителе содержится синтезатор с шагом рабочих частот – 60 Гц.
68802. Устройства генерирования и формирования сигналов 4.71 MB
  Мощность которую должен обеспечивать один модуль выходного каскада можно оценить по формуле: ; Вт где КПД выходной колебательной системы и КПД систем сложения мощностей; M число модулей в выходном каскаде. Каждый двухтактный ГВВ модуля выходного каскада должен выделять мощность 1235 4 = 30875 Вт.
68803. Механизация погрузо-разгрузочных работ 1.62 MB
  Время очистки полувагона от остатков сыпучего груза с помощью накладного вибратора ВРШ2 tоч=6мин. м; αn−коэффициент амортизации эстакады αn=003; γ коэффициент учитывающий эффективность капиталовложений γ=01; tм− время выполнения маневров tм=03 ч.− подготовительно-заключительное время tп.=015 часа...
68805. Синтез цифрового БИХ-фильтра 2.52 MB
  Используя метод Эйлера, метод билинейного преобразования и метод инвариантной импульсной характеристики, при выбранном интервале дискретизации рассчитать передаточную функцию цифровой цепи (цифровой фильтр (ЦФ) с бесконечной импульсной характеристикой (БИХ-фильтр)), получить разностное уравнение...
68806. ОРГАНИЗАЦИЯ И ИНВЕНТАРИЗАЦИЯ КОРМОВ, СЕМЯН И ПОСАДОЧНОГО МАТЕРИАЛА В СПК «УКРАИНСКИЙ» ИСИЛЬКУЛЬСКОГО РАЙОНА ОМСКОЙ ОБЛАСТИ 335 KB
  Актуальность выбранной темы заключается в том, что благодаря инвентаризации материальных запасов предприятия формируется полная и достоверная информация о деятельности организации и ее имущественном положении, необходимой внутренним пользователям бухгалтерской отчетности – руководителям...