73150

Дослідження розподілу випадкових величин. Визначення прискорення вільного падіння (за допомогою математичного маятника)

Лабораторная работа

Астрономия и авиация

Мета роботи: ознайомитися з методом визначення прискорення вільного падіння за допомогою математичного маятника та дослідити особливості розподілу випадкових величин. За допомогою математичного маятника експериментально визначити прискорення вільного падіння біля поверхні Землі.

Украинкский

2014-12-04

115.9 KB

20 чел.

    

Міністерство освіти і науки України

Національний авіаційний університет

Кафедра авіоніки

Лабораторна робота № 2

Тема: Дослідження розподілу випадкових величин. Визначення прискорення вільного падіння. ( за допомогою математичного маятника)

Виконав:Безверхий Валентин

Студент групи: АВ-112

Мета роботи: ознайомитися з методом визначення прискорення вільного падіння за допомогою математичного маятника та дослідити особливості розподілу випадкових величин.

Завдання:

  1.  Побудувати гістограму виміряних значень періоду коливань.
    1.  За допомогою математичного маятника експериментально визначити прискорення вільного падіння біля поверхні Землі.

Прилади: математичний маятник, секундомір, рулетка.

Теоретичні відомості

Чи існують закономірності в появі таких похибок під час повторних вимірювань? Теорія випадкових похибок грунтується на теорії ймовірностей, яка розглядає випадкові події. Імовірність появи деякої події дорівнює відношенню кількості випадків , за яких подія настає, до загальної кількості спостережень п. Вважатимемо, що маємо справу лише з випадковими похибками. Тобто при повторних вимірюваннях деякої величини х ми одержали низку значень цієї величини x, ми одержали низку значень цієї величини та похибок.

Якщо відхилення невеликі за значеннями, то вони здебільшого підлягають закону нормального розподілу. Цей закон діє за таких умов:

  1.  випадкові похибки набирають низку неперервних значень;
    1.  за великої кількості вимірювань однаково часто трапляються додатні і від'ємні похибки однакової величини;
      1.  малі похибки трапляються частіше, ніж великі.

Аналітичний вираз для нормального розподілу вперше був одержаний німецьким математиком Гаусом, і має назву розподіл Гауса. Формула розподілу Гауса (розподілу ймовірностей) має вигляд:

,

де  – дисперсія (розсіяння) вимірюваної величини. Здобувши корінь квадратний з дисперсії, дістаємо середньоарифметичне відхилення  окремого вимірювання, що дорівнює середньоквадратичній похибці окремого вимірювання:

.

Функція  називається щільністю імовірності – імовірністю потрапляння величини  у деякий одиничний інтервал  на осі  (рис. 1). Якщо ж інтервал і, відповідно, добуток функції розподілу ймовірностей  на цей інтервал  можна подати як

Рис. 1

,

де  – кількість вимірювань в інтервалі від  до ;  – загальна кількість вимірювань.

Функцію розподілу ймовірностей (закон нормального розподілу) графічно можна зобразити кривою Гауса. Імовірність появи малих похибок більша, ніж великих. Ця імовірність також збільшується з покращенням якості вимірювання, що визначається дисперсією. Чим менша дисперсія , тим менший розкид похибок, і тим більша точність вимірювання.

Математичний маятник

Математичний маятник — ідеальна модель маятника (матеріальна точка, підвішена на невагомій і нерозтяжній нитці). На практиці це металева куля масою т, підвішена на міцній нитці довжиною l, при цьому довжина нитки набагато більша за діаметр кулі. Такий маятник, відхиленний від положення рівноваги на кут  і залишений без дії зовнішніх сил, буде виконувати коливання, які можна вважати незгасаючими. Зворотна сила  напрямлена по дотичній до траєкторії в бік рівноваги, вона є рівнодійною сили натягу нитки  та сили тяжіння mg. Якщо кут альфа достатньо малий ( 3…6), то в радіанній мірі , де  а – зміщення маятника від положення рівноваги. З рис. 2 видно, що

.

Знак «мінус» свідчить, що сила і зміщення напрямлені в протилежні боки. За другим законом Ньютона ; позначимо , тоді

.

Ми дістали диференціальне рівняння коливання маятника (головне рівняння гармонічних коливань). Його розв’язок відносно осі  має вигляд:

,

де  – амплітуда коливань,  – циклічна частота;  – початкова фаза коливань.

Період (час одного коливання) , або

, звідки .

З цієї формули випливає, що, знаючи довжину маятника і період його коливання, можна обчислити прискорення вільного падіння в тій точці Землі, де міститься маятник.

Ми дістали диференціальне рівняння коливань маятника (головне рівняння гармонічних коливань). Його розв'язок відносно х має вигляд:

X=Asin(0t+),

Де А – амплітуда коливань, 0 – циклична частота,  – початкова фаза коливань.

Прискоренням вільного падіння називається прискорення, з яким рухається тіло під дією єдиної сили – сили тяжіння. Тому, використвоючи закон всесвітнього тяжіння, можна теоретично встановити, від чого залежить величина прискорення вільного падіння

Висновок: величина прискорення вільного падіння залежить тільки від величини, якими визначається сила всесвітнього тяжіння, і не залежить від параметрів конкретного математичного маятника.

Порядок виконання роботи

  1.  Виміряти рулеткою довжину маятника, тобто відстань від точки підвісу нитки до центра кульки. Отриманий результат записати в протокол.
  2.  Відхилити кульку маятника на кут  від положення рівноваги і відпустити її.
  3.  Почекати, поки кулька зробить 5-7 повних коливань. Цей час потрібен для того, щоб згасли другорядні коливання, які з’явилися при виведенні маятника з положення рівноваги.
  4.  Увімкнути секундомір, коли кулька проходить положення рівноваги, і вимкнути, коли маятник зробить три-п’ять коливань. Одержаний результат записати в табл. 1.
  5.  Не зупиняючи маятника, повторити пункт 4 п’ятдесят разів. Якщо за час проведення вимірювань амплітуда коливань суттєво зменшиться і проводити випробування буде незручно, треба повторити пункти 2 і 3, потім продовжити вимірювання за пунктом 4. Результати вимірювань занести до табл. 1.

Таблиця 1.

Номер вимірювання

Поточні виміряні значення часу

, с

Виміряні значення в порядку зростання

, с

Номер інтервалу і його межі

, с

Кількість вимірювань, що входять в інтервал

Відносна кількість вимірювань в інтервалі

1

9.97

9.02

№1 (9.02;9.24)

№1

2

4

2

10.22

9.03

3

10.12

9.34

4

10.56

9.37

№2
(9.24
;9.46)

№2

2

4

5

9.93

9.47

6

10.33

9.65

7

9.02

9.66

8

9.82

9.78

№3

(9.46;9.68)

№3

3

6

9

10.39

9.82

10

9.93

9.82

11

9.03

9.93

№4

(9.68;9.9)

№4

3

6

12

9.99

9.93

13

10.14

9.96

14

10.12

9.96

№5

(9.9;10.12)

№4

20

40

15

9.82

9.97

16

10.11

9.97

17

9.97

9.99

№6

(10.12;10.34)

№6

14

28

18

10.20

9.99

19

10.00

10

20

10.52

10

21

10.00

10.04

22

10.51

10.04

№7

(10.34-10.56)

23

10.15

10.08

№7

6

24

9.78

10.09

12

25

10.04

10.1

26

10.41

10.11

27

9.34

10.12

28

10.12

10.12

29

10.10

10.12

30

10.17

10.12

31

9.96

10.13

32

9.65

10.14

33

9.37

10.15

34

10.13

10.15

35

10.26

10.17

36

10.12

10.17

37

9.99

10.18

38

10.04

10.2

39

9.47

10.21

40

10.17

10.22

41

10.09

10.22

42

9.96

10.23

43

10.18

10.26

44

10.21

10.33

45

10.23

10.39

46

10.08

10.41

47

10.45

10.45

48

9.66

10.51

49

10.22

10.52

50

10.15

10.56

Обробка результатів вимірювань

  1.  Побудова гістограми.
  2.  Розмістити здобуті результати вимірювань у порядку збільшення значень часу від найменшого значення  до найбільшого  і занести їх у табл. 1.
  3.  Знайти діапазон , в якому містяться значення часу:

.=1.54

  1.  Поділити здобутий діапазон  на 5-8 однакових інтервалів, наприклад, у разі п’яти інтервалів .=0.22
  2.  Визначити межі часу кожного з інтервалів: 1-й інтервал від  до ; 2-й інтервал від  до ; 3-й інтервал від  до  і так далі до .
  3.  Обчислити кількість вимірювань , що входять до кожного з інтервалів. Результати занести в табл. 1.

  1.  Обчислити відносну кількість вимірювань , що входять у кожен з інтервалів; вона пропорційна ймовірності знаходження істинного значення  у даному інтервалі. Результати занести в табл.1.
  2.  Побудувати гістограму виміряних значень, тобто графік залежності частоти (імовірність) появи того чи іншого значення міститься. Загальний вигляд гістограми подано на рис. 3. Порівняти форму отриманої експериментальної гістограми з кривою Гауса та зробити висновки про те, чи відповідає одержана гістограма нормальному розподілу випадкових величин.
  3.  Обчислення прискорення вільного падіння і похибки вимірювань.
  4.  Виділити на гістограмі інтервал, в якому частота появи виміряних значень найбільша.
  5.  Обчислити середньоарифметичне значення часу  серед вимірювань, що входять у цей інтервал.

              

                                                        

Обчислити значення прискорення вільного падіння за формулою

.

  1.  Обчислити абсолютну похибку вимірювання часу коливань за даними, що входять до інтервалу, в якому частота появи виміряних значень найбільша:

,

Δt==0.93

де  – випадкова складова похибки, обрахована для довірчої ймовірності  за використанням коефіцієнта Стьюдента;   –  систематична похибка, що дорівнює інструментальній похибці секундоміра.

Зазначимо, що для вимірюваних величин, які підкоряються нормальному закону розподілу (розподілу Гауса), в довірчий інтервал  потрапляє 95% значень усіх окремих вимірів. Отже, випадкову похибку окремого вимірювання  , що відповідає довірчій імовірності , можна дістати за даними табл. 1 (використовуючи п’ятдесят значень ) за формулою

.=

Відомо, що середньоквадратичне відхилення середнього арифметичного  в  ( – кількість окремих випадків) разів менше за середньоквадратичне відхилення окремого вимірювання. Тому випадкова похибка середньоквадратичного  буде в  разів менша за :

 =0.95/7.07=0.13

  1.  Обчислити відносну похибку вимірювання прискорення вільного падіння за формулою

=

де  – абсолютна похибка вимірювання довжини нитки маятника; її можна взяти такою, що дорівнює ціні поділка рулетки, якою вимірюють довжину нитки.

  1.  Обчислити абсолютну похибку
  2.  =0.131*9.811=128.5см=1.2м
  3.  Остаточний результат знаходження прискорення вільного падіння записати у вигляді:

 м/с2; 1.3%

          

Висновок

Я ознайомився з методом визначення прискорення вільного падіння за допомогою математичного маятника і дослідив розподіл випадкових величин. Побудував гістограму виміряних значень періоду коливань.  Експерементально визначив прискорення вільного падіння біля поверхні землі за допомогою математичного маятника .


 

А также другие работы, которые могут Вас заинтересовать

38760. Социальная психология и психотерапия 456.5 KB
  психика это системное качво мозга которое реализуется чз функциональные сисмы мозга кторые формируются у Ч в прцессе жизни и овладения им истор сложившихся форм Дти и опыта человва чз собственную активную Дть. Фрейд определял генезис психического как одну из важных детерминант полноценного функционирования взрослого человека Принцип субъекта предполагает рассматривать человека как автономную инициативную личность способную в определенных пределах изменять себя и окружающий мир. Формы взаимодействия чел в миром. Выполняя...
38761. Ответы по географии для 9 класса 251 KB
  Географические различия в хозяйственной деятельности населения России привести конкретные примеры. Культурноисторические особенности народов России. Особенности природы населения и хозяйства отдельных территорий России привести примеры. Часовые пояса на территории России.
38763. Коммуникативная концепция права: Проблемы генезиса и теоретико-правового обоснования 294 KB
  Задачей диссертационного исследования является исследование и обоснование узловых аспектов коммуникативной теории права как одного из возможных вариантов интегрального правопонимания. Согласно такому целостному подходу право, как интерсубъективная правовая реальность, рассматривается в коммуникативно-деятельном, ценностном, семиотическом и психологическом аспектах и соответственно онтологически интерпретируется и феноменологически....
38764. Изучение городского пространства Исследование Витебского вокзала по заданному алгоритму 6.42 MB
  Список группы: Белова Елена Витальевна Веснина Мария Воробьёва Марина Евгеньевна Гайдукова Екатерина Владимировна Гусейнова Дина Денисова Ирина Михайловна Иванова Людмила Валентиновна Иванова Светлана Ильинична Киселёва Татьяна Станиславовна Группа за работой в музее Задание №1 Изучение городского пространства Исследование Витебского вокзала по заданному алгоритму. Задание №2 Исследование картин. Кроме работы на курсах было дано задание провести фасилитированное обсуждение...
38765. Юриспруденция. Методические указания 919 KB
  Изложенные материалы предназначены для оказания практической помощи студентам специальности 021100 030501 – Юриспруденция при выборе темы дипломной работы ее написания оформления и защиты. Иркутский государственный технический университет Кафедра государственноправовых дисциплин ИрГТУ ОГЛАВЛЕНИЕ [1] ОГЛАВЛЕНИЕ [2] ВВЕДЕНИЕ [3] ВЫБОР И УТВЕРЖДЕНИЕ ТЕМЫ ДИПЛОМНОГО СОЧИНЕНИЯ [4] ВЫДАЧА ЗАДАНИЯ СОСТАВЛЕНИЕ КАЛЕНДАРНОГО ГРАФИКА РАБОТЫ И ПЛАНА ДИПЛОМНОГО СОЧИНЕНИЯ [5] ТРЕБОВАНИЯ К ОГЛАВЛЕНИЮ ДИПЛОМНОЙ РАБОТЫ [6] СБОР АНАЛИЗ И...
38766. Рынок чистой монополии 146.5 KB
  Для формирующегося рынка России характерна высокомонополизированная структура поддерживаемая созданием в последние годы различного рода концернов ассоциаций и других объединений одной из целей которых является поддержание высоких цен и обеспечение себе спокойного существования . Например для открытия коммерческого банка в России помимо установленного минимального размера уставного фонда требуется специальное разрешение Центрального банка РФ получить которое достаточно сложно. Развитие системы государственного регулирования естественных...
38767. Обследование хирургического больного 1.74 MB
  Следует также выяснить функцию различных систем организма в течение заболевания: сердечнососудистой боли в области сердца одышка сердцебиение отеки дыхательной кашель мокротаколичество запах цвет примеськрови пищеварительной тошнота отрыжка рвота стул нервной сон раздражительность головные боли мочевыделительной частота боль при мочеиспускании примесь крови. Усиленный рост волос на теле гипертрихоз наблюдается при расстройстве функций некоторых желез внутренней секреции в частности надпочечников а также...
38768. ТРАДИЦИОННЫЕ МУЗЫКАЛЬНЫЕ ИНСТРУМЕНТЫ В ИСТОРИКО-КУЛЬТУРНОМ И СИМВОЛИЧЕСКОМ КОНТЕКСТАХ (на примере русских гуслей) 190 KB
  К процессу развития гуслей и гусельного искусства в контексте отечественной культуры вполне приложимо понятие kehre предложенное М. Однако указанные выше характеристики не исчерпывают социальнокультурные смыслы и культурный потенциал гуслей. Предмет исследования – особенности бытования гуслей и гусельного искусства в отечественном историкокультурном социальнокультурном культурносимволическом пространствах.