73180

Оптимізація на мережах

Лабораторная работа

Информатика, кибернетика и программирование

Потоком у мережі S називається пара (f, w), де w - деяка орієнтація всіх неорієнтованих ребер мережі, а f(u) - задана на множині всіх ребер функція з невід’ємними значеннями, що не перевершують пропускних спроможностей, і така, що в кожній внутрішній вершині виконується закон Кірхгофа...

Украинкский

2014-12-05

454.8 KB

0 чел.

МІНІСТЕРСТВО ОСВІТИ І НАУКИ, МОЛОДІ
ТА СПОРТУ УКРАЇНИ

ДЕРЖАВНИЙ ВЫЩИЙ НАВЧАЛЬНИЙ ЗАКЛАД
“НАЦІОНАЛЬНИЙ ГІРНИЧИЙ УНІВЕРСИТЕТ”


Кафедра: програмного забезпечення

комп’ютерних систем


Лабораторна робота №4

        по курсу дискретної математики
на тему: “Оптимізація на мережах


Виконав: студент 1-шого

курсу факультету ФІТ

групи КНіт-14-2
Задорожній О.А.

Перевірив: Мінеев О. С.




Дніпропетровськ

2014 р.

Варіант 6

Мета роботи: ознайомлення з методами оптимізації мереж.

1. Короткі теоретичні відомості.

1.  Короткі  теоретичні відомості

Пошук максимального потоку.

Нехай S є довільна, частково орієнтована мережа, кожному ребру u якої приписане невід'ємне число c(u) - пропускна спроможність. Потоком у мережі S  називається пара (f, w), де w - деяка орієнтація всіх неорієнтованих ребер мережі, а f(u) - задана на множині всіх ребер функція з невід'ємними значеннями, що не перевершують пропускних спроможностей, і така, що в кожній внутрішній вершині  виконується закон Кірхгофа, відповідно до якого сума значень потоку по ребрах, що входить у вершину, дорівнює сумі потоків по ребрах, що виходить із вершини. Іншими словами, для  f(u) виконуються умови:

0   f(u)  c(u) для усіх вершин мережі;

R() = 0 для усіх внутрішніх вершин, де

а () (відповідно '()) - множина всіх ребер, що виходять із   (відповідно вхідних у ) при орієнтації w.

Оскільки сума значень R() по усіх вершинах мережі, включаючи полюси, дорівнює нулю (кожне ребро є вихідним для однієї вершини і вхідним для іншої), то R(s)  = - R(s). Значення R = R(s) називається величиною потоку.  

 Розглянемо задачу визначення максимального значення Rmax потоку через мережу S при  заданих значеннях пропускних спроможностей. Відповідь може бути отримана у термінах перетинів мережі.

 Перетином мережі називається множина ребер, при видаленні яких мережа стає незв'язною, причому полюса потрапляють у різні компоненти зв'язності. У мережі на рис. 1 прикладами перетинів є {d, e, f}, {b, c, e, g, h},      {d, g, h, i}.  

Перетин називається простим, якщо при видаленні будь-якого його ребра, він перестає бути перетином. Так, перетини {d, e, f} і {b, c, e, g, h} - прості, а перетин {d, g, h, i} не є таким. Очевидно, що для кожного ребра простого перетину можна зазначити ланцюг, що проходить через це ребро, але не проходить через інші ребра даного перетину.  


                             5

  7   a        d        h            2

        S  2    c        4     e    3    g         S

         3       b               4        i

       1

       f

                  Рис.1. Задача максимального потоку

Якщо у зв'язній мережі віддалиться простий перетин, то мережа розпадеться рівно на дві частини: ліву і праву, що містить S і S відповідно. Кожне ребро простого перетину зв'язує вершини з різних частин. Будемо називати ребро перетину прямим, якщо воно в мережі не орієнтоване або орієнтоване зліва праворуч, і оберненим у противному випадку. Буде орієнтоване ребро прямим або оберненим, залежить від вибору перетину. Так, у прикладі ребро е  в перетинах {d, e, f} і {b, c, e, g, h} - обернене, а в перетині {a, c, e, g, i}- пряме.

Кожному простому перетину W припишемо пропускну спроможність c(W), рівну сумі пропускних спроможностей усіх його прямих ребер. У прикладі на рис.2.12 перетин {d, e, f} має пропускну спроможність 5+1=6, а перетин {b, c, e, g, h} - 3+2+3+2=10.

Теорема про максимальну пропускну спроможність мережі сформульована Фордом і Фалкерсоном так: максимальний розмір потоку Rmax через мережу S дорівнює мінімальній пропускній спроможності cmin її простих перетинів. Ця теорема покладена в основу задачі визначення максимальної пропускної спроможності мережі.

 Розглянемо  алгоритм  Форда - Фалкерсона для розв'язання цієї задачі.

         Крок 0. Нехай джерела  позначені,  але  не  переглянуті, а всі  інші  вузли  не  позначені.

         Крок  1. Вибрати  довільний  позначений,  але  не  переглянутий  вузол  i.

         Крок  2.   Переглянути  всі  дуги  e (i, j)  із  пропускною   спроможністю      е  0, що  з'єднують  вузол  i  з  ще  не  позначеними  вузлами j. Приписати позначки вузлам  j  і відзначити  дуги  e j =  e  = (i, j). Тепер  вузол  i  позначений  та  переглянутий,  вузли  j  позначені,  але  не  переглянуті. Якщо  при  цьому  стік  виявився  позначеним, то  необхідний  ланцюг  знайдений. У противному  випадку після  перегляду  по  всіх  дугах  (i, j)  перейти  до  кроку  

Крок  3. Нехай вузол i позначений і переглянутий. Перейти до кроку 1 і повторювати кроки алгоритму доти, поки не залишиться позначених і не переглянутих вузлів. На цьому пошук максимального потоку закінчується.

Пошук найкоротшого шляху.

Якщо для мережі кожне ребро характеризується деяким числом, що є відстанню між вузлами мережі, то виникає задача визначення найкоротшої відстані між заданими вузлами, тобто початку і стоку. 

       Розглянемо  алгоритм  Дейкстри  для  визначення  найкоротшого  шляху  (ланцюга) з  початку  в  стік.

Крок 0. Вибрати як перспективну  множину  вузлів  множину  S c = S 0 і  покласти  d i = 0  для  i S 0  та  d i =   для  i  S 0 .

Крок 1. Вибрати  вузол  i   S c,  якому  відповідає  найменше  значення   di ( i  S0 ) . Знайдений  в  такий спосіб розмір  d i  відповідає  найкоротшому  шляху  з  деякого  джерела  у  вузол  i (довжиною  дуги  є  c e), а  дуга  e i ( визначена  для  усіх  вузлів  i  S c  ,  крім  джерел ) є остання  дуга  шляху . Якщо    i    -  стік ,  то  процедура  пошуку  найкоротшого  шляху  закінчується .

Крок  2. Переглянути дуги  e  = ( i , j )  і  замінити  оцінку d j на  min {d j , d i + c e}.    Якщо   d j була   дорівнена   ,  увести  вузол  j у  S c. Якщо  d j  зменшилася,  увести  позначення  e j = e = (i*,  j).

Крок  3. Видалити  i* із  S c  і  перейти  до  кроку  1 ,  якщо  множина  S c  не  порожня. На цьому пошук найкоротшого шляху закінчується.

2. Індивідуально побудована мережа з варіантом вхідних даних.

Вершина№1: початок
Вершина№2: cтік

3. Повні розрахунки на мережі з пошуку максимального потоку та

найкоротшого шляху.

3.1 Пошук максимального потоку:

fmax(1:9) = 14

p(1) = (1:2:3:9) = min {5; 3; 7} = 3;  p() = 3;

p(2) = (1:2:9) = min {2; 3} = 2;  p() = 5;

p(3) = (1:6:7:8:5:9) = min {9; 2; 4; 3; 2} = 2;  p() = 7;

p(4) = (1:6:9) = min {7; 8} = 7;  p() = 14

p(1-2) = 2 -> R

p(2-3) = R

p(5-9) = R
p(6-7) = R

p(1-6) = 7 -> R

R = ресурси вичерпані.

3.2 Пошук найкоротшого шляху

1.) d(1) = 0; d(2..9) = ;

2.)  y = (1) = 0;

d(2) = 5 (<) - min

d(6) = 9  (<)

3.) y = (2) = 5;

d(9) = 5 + 3 = 8 ✓ (<); - min  [Стік]

d(3) = 5 + 3 = 8 ✓ (<); - min 

4. Висновки з лабораторної роботи.

Таким  чином,  максимальний  потік  становить  14  одиниць. Найкоротший шлях з початку (1) у стік (9) складається з дуг (1, 2) і (2, 9) та дорівнює 14.2 одиниць.


 

А также другие работы, которые могут Вас заинтересовать

75334. Английское общество и государство в XIV-XV веков 43.5 KB
  Английское общество и государство в XIVXV вв. Во второй четверти XIV в. Под давлением экономической необходимости и усиливающейся борьбы крестьянства многие даже крупные феодалы к середине XIV в. Малая производительность барщинного труда там где он сохранялся слабая приспособляемость домениального хозяйства к условиям рынка наконец нехватка наемной рабочей силы в хозяйстве феодалов коммутировавших барщину уже к середине XIV в.
75335. Испания и Португалия в XI-XIII вв. Ход Реконкисты 66.5 KB
  Испания и Португалия в XIXIII вв. Окончательная победа реконкисты В течение XI XIII вв. За два столетия с середины XI до середины XIII в. Причины успехов реконкисты коренились во внутренней истории как самого Халифата так и Кастилии и Арагона а также в характере реконкисты с конца XI по конец XIII в.
75336. Четвертый крестовый поход. Захват Константинополя и образование Латинской империи 34.5 KB
  Четвертый крестовый поход. Четвертый крестовый поход 1202-1204. Поэтому папа Иннокентий III 1198-1216 развернул пропаганду похода направленного против Египта. В Четвертом крестовом походе справедливо усматривают переломный момент и кризис крестоносного движения ибо впервые жертвой крестоносцев стали христианские государства.
75337. Последние крестовые походы. Причины их затухания и итоги крестоносного движения 38.5 KB
  Последние крестовые походы. Последние крестовые походы. европейскими странами предпринимались крестовые походы против османов не принесшие успеха. Крестовые походы не только не достигли своей прямой цели но принесли гибель сотням тысяч их участников и сопровождались тратой колоссальных средств европейских государств.
75338. Франция в XII-XIII веках 43.5 KB
  Социальноэкономическое развитие Франции в это время отличали заметные сдвиги и прогресс в развитии производительных сил следствием которых явилось повышение продуктивности сельского хозяйства см. Процесс сокращения и даже ликвидации барской запашки получил наиболее выраженные формы именно во Франции и особенно в хозяйствах светских феодалов. Особенностью развития Южной Франции в Х1ХП вв. Обретя большую степень самостоятельности и ориентированные по преимуществу на внешнюю торговлю южные города не сыграли значительной роли в деле...
75339. Франция в XIV-XV веков 34 KB
  Франция в XIVXV вв. В первой трети XIV в. Широкое распространение денежной ренты и личная свобода крестьянства укрепили его наследственные владельческие права на цензиву ставшую в XIV в. XIV вв.
75340. Германия в XII-XIII веках 43.5 KB
  Германия в XII-XIII вв. Наиболее важную роль в истории XII первой половины XIII в. Положение крестьянства в XII XIII вв. Все эти обстоятельства вызвали по все видимости значительный рост аграрного производства в XII XIII вв.
75341. Германия в 14-15 веках 46 KB
  Швейцарский союз. эти три кантона заключили между собой вечный союз для борьбы за свободу. Так возник и утвердился Швейцадский союз который в течение последующих двух веков продолжал отстаивать свою свободу и политическую независимость. С этой целью они стали объединяться в союзы.
75342. Германия в XIV-XV веках 30.5 KB
  Германия в XIVXV вв. XIV XV вв. империя не имела твердо закрепленных границ они изменялись в результате войн династических браков перемен в вассальных связях Для средневековой Германии XIV и XV столетия стали временем наивысшего расцвета ее городов бурного роста ремесел и торговли Собственное производство в немецких городах было рассчитано на местные рынки. Во второй половине XIV в.