73182

Исследование операций с множествами

Лабораторная работа

Информатика, кибернетика и программирование

Множества А и В равны тогда и только тогда когда каждый элемент множества А является элементом множества В и наоборот каждый элемент множества В является элементом множества А т. Пересечением или произведением двух множеств называется множество состоящие из всех тех элементов...

Русский

2014-12-05

1.12 MB

1 чел.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ, МОЛОДЁЖИ
И СПОРТА УКРАИНЫ

ГОСУДАРСТВЕННОЕ ВЫСШЕЕ УЧЕБНОЕ ЗАВЕДЕНИЕ
“НАЦИОНАЛЬНЫЙ ГОРНЫЙ УНИВЕРСИТЕТ”


Кафедра: программного обеспечения

компьютерных систем


Лабораторная работа № 1
по курсу дискретной математики
на тему: “
 Исследование операций с множествами ”


Выполнил: студент 1-вого

курса факультета ФИТ

группы КНит-14-2
Задорожний А.А.

Проверил: Минеев А. С.




Днепропетровск-2014 г.


1. Краткие теоретические сведения

Равенство  множеств. Множества А и В равны тогда и только тогда,  когда каждый элемент множества А является элементом множества В, и наоборот, каждый элемент множества В является элементом множества А, т. е.

                                                          А  В и В  А

Объединение множеств.  Объединением или суммой двух множеств А и В называется множество, состоящее из всех элементов, каждый из которых принадлежит хотя бы одному из данных множеств.

                                                                          Выполняются законы:

                                                          S             1)Ассоциативный.

B

                                                                           (АВ)С=А(ВС)=АВС.

A

                    А                    В                            2) Коммутативный.

АВ=ВА; АА=А;

                                                                                А=А;

                                   АS=S;  АВ=А если В  А.

Пересечение множеств. Пересечением или произведением двух множеств называется множество, состоящие, из всех тех элементов, которые принадлежат обеим множествам.

 

                                                     S               Справедлив коммутативный и           

                                                                      ассоциативный закон  в частности:

                         А                                           А(ВС)=(АВ)(АС).

                                           В                       

Два множества А и В являются взаимоисключающими, или несовместимыми, если АВ=.

Дополнение множеств. Дополнение множества А называется множество,  в котором содержатся все элементы пространства S, кроме принадлежащих множеству А. Оно обозначается через А.

                                                                 Справедливыми будут следующие

                                                                  выражения   

                                                                                            =

         А                     А                             =S; S=; (A)=A;  AA=S;

                                                                     AA=;

                                                                   AB при ВА;

                                                                   A=B если А=В.

Кроме того, справедливы законы де Моргана:

(АВ)=А В;  (АВ)=А В.

  Разность  множеств. Разность А-В множеств А и В есть множество, состоящие из элементов множества А, не принадлежащих множеству В.

                                                                        A - B=A \ B=A  B=A - (AB).

                        A                              S                (читаем “A  без  B”)

          А-В                                                          

                                     В                           

                                                                        

                            В-А                                 

                                                                         

Из последней диаграммы выведены следующие соотношения:

А -  = А, А - S = , S - A =A.

Выражения, где присутствует разность, необходимо записывать со скобками.

Описанные выше операции со множествами проиллюстрируем  примером. Предположим, что элементами пространства S – натуральные числа от 1 до 6. S={1, 2, 3, 4, 5, 6}  и определим следующие подмножества:

    А={2, 4, 6}; B={1, 2, 3, 4}; C={1, 3, 5}.

Учитывая приведенные соотношения можно записать:

(АВ)={1, 2, 3, 4, 6},   (BC)={1,  2, 3, 4, 5}

(ABC)={1, 2, 3, 4, 5, 6}=S=AC,

AB={2, 4}, BC={1, 3}, AC=,

ABC=,A={1, 3, 5}=C, B={5, 6},

C={2, 4, 6}=A, A-B={6}, B-A={1, 3},

  A-C={2, 4, 6}=A, C-A={1, 2, 5}=C,

  B-C={2, 4}, C-B={5}.

2. Четыре выбранных выражения и вариант взаиморасположения множеств

2.1: Вариант взаиморасположения множеств:

[все диаграммы Эйлера-Венна сделаны ВРУЧНУЮ в программе Paint.net (формат: .pdn)]


2.2: Выбранные выражения:


1.) (A+B) * (C-D);

2.) (A-B) * (C*D);

3.) ((A+B) - ^C) - D;

4.) (B-A) * ^(C-D).

3. Диаграммы Эйлера - Венна с последовательным выполнением заданных операций

1. (A+B) * (C-D);


2. (A-B) * (C*D);

3. ((A+B) - ^C) - D;

4. (B-A) * ^(C-D).

4. Диаграммы Эйлера - Венна, выбранные по данным расчетов на ЭВМ

5. Словесное описание результатов операций

1. (A+B) * (C-D):

1. (A+B) - объединяем множество А с множеством B;

2. (C-D) -  убираем из множества С элементы множества D;

3. ((A+B) * (C-D))  - объединяем общие элементы множеств (A+B) и (С-D).


2. (A-B) * (C*D):

1. (A-B) - убираем из множества A элементы множества B;

2. (C*D) -  объединяем общие элементы множеств C и D;

3. ((A-B) * (C*D)) - объединяем общие элементы множеств (A-B) и (С*D).


3. ((A+B) - ^C) – D:

1. (A+B) - объединяем множество А с множеством B;
2. ^
C      -  берём все элементы не входящие в множество С;

3. ((A+B) - ^C) -  убираем из множества (A+B) элементы множества ^C;

4. (((A+B) - ^C) - D) - убираем из множества ((A+B) - ^C)) элементы множества D;

4. (B-A) * ^(C-D):

1. (B-A) - убираем из множества B элементы множества A;

2. (C-D) -  убираем из множества C элементы множества D;

3. (^(C-D)) - берём все элементы не входящие в множество (C-D);

4. ((B-A) * ^(C-D)) – объединяем общие элементы множеств (B-A) и (^(C-D)).

6. Выводы по лабораторной работе


Во время написания лабораторной работы научились строить диаграммы Эйлера-Венна с помощью множественных выражений, а также выполнять различные операции над множествами, работать в программе SetCalculator и строить вручную диаграммы в Paint.net. Были изучены законы Де Моргана и другие законы преобразований.


 

А также другие работы, которые могут Вас заинтересовать

29582. Массовое сознание 12.93 KB
  На общественное мнение влияют мнения людей признаваемых обществом авторитетными и компетентными личный опыт людей В формировании общественного мнения выделяются: субъект воздействия элитные группы стремящиеся к достижению или удержанию власти заказчики и исполнители государство аналитики журналисты и т.; объект воздействия массовое сознание изменение которого является целью субъекта; инструмент воздействия СМИ как массмедиа так и институты социализации культура и т. Формы и способы влияния общественного мнения на личность...
29583. Массовое сознание: Субъективистский и объективистский подходы 14.37 KB
  Массовое сознание включает в себя понятие массы: МассаОртега и Гаса это суждение некомпетентных низкое качество современной цивилизации; Масса Юнгер механизное общество в котором человек является придатком машины; Масса Зиммель Вебер Манхейм это бюрократическое общество которое отличается широко расчленненой организацией в которой принятие решений допускается на высших этапах иерархии; МассаЛенин совокупность трудящихся наименее организованных и просвещенных. МассаШарков это шаблонное Например когда в деревнях все...
29584. Стратегия и тактика планирования рекламной кампании 16.33 KB
  Стратегия и тактика планирования рекламной кампании. Планирование рекламной кампании это процесс в котором принимают участие все структурные подразделения рекламного агентства и маркетинговый отдел рекламодателя. Результат этого процесса составление плана рекламной кампании на определенный период. Главная задача планирования рекламной кампании определить как будет доноситься рекламное послание до потребителя: в какой форме с помощью каких средств массовой информации и в рамках какого бюджета.
29585. Основные понятия в медиапланировании (рейтинг, доля, HUT, PUT, PUR). Их расчет и соотношение в планировании рекламных кампаний 33.55 KB
  Home Using TV одним из базовых показателей в медиапланировании является число людей или домохозяйств в которых смотрят телевизор. Этот показатель описывает количество людей или домохозяйств использующих ТВ на определенный момент времени Иными словами это процент индивидуумов или домохозяйств использующих телевизор в данное время дня. Показатель HUT не включает людей смотрящих телевизор вне дома например в магазинах аэропортах отелях и т. То есть рекламное сообщение смогут увидеть те люди которые по крайней мере в данный момент...
29586. Медиавес рекламной кампании и его измерение (охват, частота, количество предъявлений) 46.5 KB
  Охват — это количество разных индивидуумов, которые были затронуты графиком прохождения рекламной кампании за данный период времени, или, другими словами, увидели нашу рекламную кампанию, наше рекламное объявление хотя бы один раз, обычно представляется в процентном формате.
29587. Принципы отбора медианосителей и оценка их эффективности 13.6 KB
  Рейтинг телевизионного времени доля в тех телезрителей которые смотрели конкретный канал в определенное время от потенциального числа телезрителей. Максимально высокий рейтинг имеет пиковое телевизионное время праймтайм. Сумма всех рейтингов целевой рейтинг показатель чистого полезного охвата умноженный на частоту контакта. Стоимость одного общерейтингового пункта мера определяющая эффективность конкретной программы.
29588. Эффективность рекламных кампаний и лояльность потребителей. Экономические и коммуникативные показатели эффективности 16.05 KB
  Наиболее популярный способ выявления эффективности рекламы методика облегчения вспоминания используемая для того чтобы определить в какой мере человек способен вспомнить ее содержание. Но даже если человек и хорошо запомнил содержание рекламы это вовсе не означает что он готов купить то что рекламируют. Второй способ выявления эффективности рекламы методика узнавания. Людям которые прочитали журнал или видели телевизионную программу предъявляют копии рекламы и задают вопросы о ней.
29589. Новые технологии и виды услуг рекламного рынка 15.87 KB
  Относительно низкая стоимость проекта. Небольшие временные затраты в разработке проекта. Краткосрочность эффекта от реализации проекта Маркетинг слухов Преимущества: 1. Невысокая стоимость в организации проекта.
29590. Соотношение охвата и частоты в медиапланировании. Использование ПО в медиапланировании 20.38 KB
  Соотношение охвата и частоты в медиапланировании. Охват это численность представителей ЦА в рамках компании имевших контакт с рекламой хотя бы 1 раз. При вычислении охвата получатели сообщения учитываются лишь один раз независимо от числа прочитанных ими газет просмотренных или прослушанных телерадиопрограмм. Охват аудитории может быть представлен и как характеристика аудитории которая видела слышала рекламу определенное число раз и как характеристика аудитории которая видела слышала рекламу не менее определенного числа раз.