73201

Идеальные газы

Лекция

Физика

Используя выводы рассмотренных вопросов разберем основные законы для газов. Основные газовые законы. Из основного уравнения кинетической теории газов можно вывести все газовые законы ранее установленные экспериментально.

Русский

2014-12-05

136.5 KB

17 чел.

Лекция №33. Идеальные газы.

I. Понятие об идеальном газе. Состояние системы.

Предыдущая лекция была посвящена вопросам методов исследования свойств тел на основе молекулярно-кинетической теории.

Используя выводы рассмотренных вопросов, разберем основные законы для газов.

Все газы делятся на два основных вида:

Идеальным газом называется газ, удовлетворяющий следующим условиям:

  1.  размеры молекул пренебрежительно малы
  2.  соударения молекул происходят как соударения упругих шариков
  3.  между молекулами не проявляются силы взаимодействия

Пример идеального газа – сильно разряженные газы (не превышающие атмосферное в 100 раз) при не очень низких температурах.

Реальным газом называется газ, между молекулами которого существуют заметные силы межмолекулярного взаимодействия, и учитывается размер молекул.

Понятие об идеальном газе является практически удобной абстракцией. Такое понятие дало возможность построить молекулярно-кинетическую теорию, рассмотреть вопросы о вычислении теплоемкостей, явления переноса и др. В определенных границах выводы этой теории хорошо подтверждаются экспериментами.

Введем некоторые понятия, необходимые для рассмотрения вопросов лекции.

Термодинамическая система – совокупность макроскопических объектов, обменивающихся энергией в форме работы и в форме теплоты как друг с другом, так и с внешней средой. Макроскопические объекты – компоненты (число от 1 до ).

Состояние системы определяется, как уже говорилось совокупностью её термодинамических параметров (параметров состояния).

Время перехода системы из неравновесного состояния в равновесное называется временем релаксации.

 Термодинамическим процессом (процессом) называется всякое изменение состояния системы.

II. Процессы.

1) Равновесный, при котором система проходит непрерывный ряд равновесных состояний:

Этот процесс бесконечно медленный

2) Обратимый, при котором возможно осуществить обратный переход через те же промежуточные состояния так, чтобы не осталось никаких изменений в окружающих телах. Пример: колебания тяжелого маятника.

Необратимый, при котором в теле или в окружающих телах есть изменения. Примеры: передача тепла от более нагретого тела к менее нагретому; любой процесс с трением.

3) Круговой (цикл), в результате совершения которого система возвращается в исходное состояние.

4) Адиабатный, осуществляемый системой без теплообмена с внешней средой.

5) Политропный, при котором идеальная теплоемкость газа постоянна (общий процесс, его частными случаями являются адиабатный и все изопроцессы).

6) Изопроцессы, протекающие при неизменном значении какого-либо параметра состояния при m = const.

III. Основные газовые законы.

Из основного уравнения кинетической теории газов можно вывести все газовые законы, ранее установленные экспериментально. Для вывода каждого закона используем конкретную формулу основного уравнения.

а) Закон Бойля-Мариотта (изотермический процесс)

, т.к. , получим основное уравнение:

, (из уравнения (8) лекции 7),

где N – число молекул в единице объема

 m – масса газа

– средняя квадратичная скорость молекул

при t = const и m = const, следовательно, правая часть const, т.е.

PV = const        (1)

б) закон Гей-Люссака (изобарический процесс)

          (*)

         (**)

поделив (*) на (**), получим:           (2)

или Vt = V0(1+ αt0), где

Vt – температура при t0C;

V0 – температура при 00С;

– температурный коэффициент

в) Закон Шарля (изохорический процесс)

Получается аналогичным рассуждением:

       (3)

или    Pt = Р0(1 + αt0)

г) Объединенный газовый закон

       (4)

Во всех выше рассмотренных законах масса газа считается постоянной.

Для примера приведем графики различных процессов в разных системах координат:

 

 

 

 

 

 IV. Уравнение состояния идеальных газов и газовая постоянная.

Уравнением состояния газа называется уравнение, связывающее основные параметры, характеризующие состояние газа.

Согласно объединенному газовому закону

,

где С – газовая постоянная.

С зависит от массы, химического состава и выбора единиц измерения P, V, T.

– называется удельная газовая постоянная.

Получим уравнение, выведенное Клапейроном в 1834г. для произвольной массы газа:

PV=mBT        (5)

B для системы СИ: ,

где ρ – плотность газа.

Однако гораздо удобнее пользоваться уравнением состояния в универсальном виде, что и было сделано Менделеевым в 1874г.

уравнение Менделеева-Клапейрона,  (6)

где μ – масса киломоля газа;

R – универсальная газовая постоянная.

R = 8,32∙103 Дж/Кмоль∙К

или    R = 8,32 ДЖ/моль∙К

– число молей.

Выясним физический смысл универсальной газовой постоянной.

В цилиндре заключен 1 моль газа. Нагреваем газ на 10 при Р = const. Вычислим работу расширения газа.

A = F(ℓ1– ℓ) = ps(ℓ1– ℓ)= pV1–pV = R(T + 1) – RT = R

A = R             (7)

Физический смысл R: R численно равна работе при изобарическом расширении 1 моля газа при нагревании его на 1 градус.

Уравнение Менделеева-Клапейрона широко используется для решения многих практических задач (вплоть до давлений, немного превышающих атмосферное и не очень низких температурах).

V. Смесь газов. Закон Дальтона.

Остановимся еще вкратце на смеси идеальных газов.

Смесью газов называется совокупность нескольких разнородных газов, которые при рассматриваемых условиях не вступают друг с другом в химические реакции.

Смесь газов – гомогенная термодинамическая система (внутри которой нет поверхностей раздела, отделяющих друг от друга макроскопические части системы, различающиеся по своим свойствам и составу).

Парциальным давлением Pi i-го газа в смеси называется давление, под которым находился бы этот газ, если бы из смеси были удалены все остальные газы, а V и T остались прежними.

Закон Дальтона: в случае идеальных газов сумма парциальных давлений равна давлению всей газовой смеси:  P = P1 + P2 +…+ Pn

       (8)

аналогично и для парциальных объемов:

закон Амага      (9)

При расчете параметров состояния смеси идеальных газов можно пользоваться уравнением Менделеева-Клапейрона в форме:

,        (10)

где М – масса всей системы;

– кажущийся молекулярный вес.

Для реальных газов наблюдаются отступления, которые будут разобраны на более поздних лекциях.

VI. Идеальный газ в поле тяжести. Распределение Больцмана.

При рассмотрении закона распределения Максвелла, кинетической теории газов, законов идеальных газов предполагалось, что на молекулы действуют лишь силы ударов со стороны других молекул. Однако, т.к. молекулы обладают массой и находятся в поле тяготения Земли, то на них действует сила тяжести. Рассмотрим влияние этой силы:

а) выделим элементарный объем с площадью S параллельной поверхности Земли;

б) газ однородный (масса одной молекулы m);

в) T = const;

г) n0 – число молекул в единице объема;

д) объем – dV = Sdh, тогда число молекул в объеме:

dN = n0dV

Сила тяжести равна: dp = dNmg

Давление равно:

“ – “ указывает на уменьшение Р с высотой h.

Согласно основного уравнения кинетической теории газов:

P = n0kT

dP = kTdn0

или

это барометрическая формула  (11)

Барометрическая формула показывает, что концентрация молекул n и давление p падают с высотой по экспоненциальному закону.

mg(hh0) = ΔE – приращение потенциальной энергии.

общий закон Больцмана.

Закон Больцмана был использован для определения числа Авогадро.


ГАЗЫ

Идеальные

Реальные

ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА

ЗАМКНУТАЯ ИЛИ

ИЗОЛИРОВАННАЯ

нет теплообмена с внешней средой

НЕЗАМКНУТАЯ

есть теплообмен с

внешней средой

ГОМОГЕННАЯ

внутри которой нет поверхности раздела

макроскопических

частей системы

ГЕТЕРОГЕННАЯ

есть поверхности

раздела

ФИЗИЧЕСКИ

ОДНОРОДНАЯ

состав и физические

свойства одинаковы во

всех частях системы

СОСТОЯНИЯ  СИСТЕМЫ

СТАЦИОНАРНОЕ –

не изменяется во времени

НЕСТАЦИОНАРНОЕ –

изменяется во времени

РАВНОВЕСНОЕ –

при котором все  термодинамические параметры const во времени. Равновесное состояние графически изображаются точкой на графике

ЕРАВНОВЕСНОЕ –

параметры изменяются со временем. Нельзя изобразить точкой на графике

ИЗОТЕРМИЧЕСКИЙ

T=const

ИЗОХОРИЧЕСКИЙ

V=const

ИЗОБАРИЧЕСКИЙ

P=const

V

2

S

1

P

2

V

Р

V

Р

Т

Т

1

V

P

3

2

1

изотерма

изобара

изотерма

изотерма

изобара

изобара

dh

S

изохора

адиабата

изохора

изохора

адиабата

адиабата

1

T2 > T1

T1 > T2

h

T2

T1

T1

T2

p, n

Пример: любое химически однородное тело в одном агрегатном состоянии

Пример: тающий лёд, горные породы

Пример: газ, если не действует внешнее силовое поле

V

P

Р

изобара

V

изотерма

V

P


 

А также другие работы, которые могут Вас заинтересовать

44714. Варианты Палитры 2.2 MB
  Каждая страница содержит различные варианты касающиеся палитры. Эта полоса может быть открыта дважды щелкая палитре цветов Бруска Палитры или щелкая кнопкой Show Plette Options инструментальной панели Plette. Как только Брусок Вариантов Палитры открыт Вы можете тогда нажать по цвету в Бруске Палитры чтобы отобразить его свойства.
44715. Печать Особенностей 1.19 MB
  Однако иногда Вы можете хотеть печатать только некоторые страницы схемы. Чтобы просмотреть следующие или предыдущие страницы распечатки щелкните Next Pge или Prev Pge. Чтобы иметь две страницы отображенные сразу щелкните Two Pge. Содержание Страницы Pge Content Содержание страницы диалогового окна Параметров станицы обеспечивает варианты для того чтобы определить содержание распечатки.
44716. Окисление оксида азота в производстве азотной кислоты 246 KB
  Определение температуры газа на выходе из окислителя. Определение объема окислителя.2 Определение массового расхода NH3 по реакции: кг ч 2.3 Определение фактического расхода NH3: кг ч; Xабс=0.
44717. Degrees of Comparison of Adjectives and Adverbs 48.5 KB
  Prctise reding the following wordcombintions: erliest times useful power hotir engines solr energy solr evportion sunctivted processes surrounding ir suns rys stright lines the most effective wys the loss of energy glsslike mteril effective prevention trnsprent sheets of glss or plstic ctul pplictions typicl rrngements highpressure boilers lrge block of electric power. TEXT 5 Solr Power The suns energy mnifests itself s therml photoelectric nd photochemicl effects. Men hve tried to use solr energy since...
44718. Modal verbs. Nouns as attribute 88.7 KB
  II Prctise reding twosyllble words with the stress on the first syllble rdr rnging hrbour lnding trvel mesure becon presence wether echo signl timer system object constnt mountin strongest portion during. Prctise reding the following word combintions: cpble of determining the presence of objects their chrcter ll of them ultrhigh frequency rdio wve energy directionl ntenn in bem visul redble signls within the field of view of rdr the use of these timed pulses t the constnt velocity the fluorescent screen...
44719. Sequence of Tenses. Imperative Mood. Quantifiers and their equivalents 54 KB
  LBERT EINSTEIN 18791955 Imgintion is more importnt thn knowledgeâ Einstein lbert Einstein ws born in Germny on Mrch 141879. t the ge of 21 fter four yers of university study lbert Einstein got job s clerk t n office. Einstein expressed his theory in the eqution E=mc roughly tht energy equls mss times the squre of the speed of light. lbert Einstein ws very tlented mn gret thinker.
44720. Infinitive (forms and functions) 33.55 KB
  The oceans cover 147 million square miles of the earth's total surface of 197 million square miles. Geographically, this vast expanse of water has been very thoroughly explored; the surface currents have been charted, the depths of the seas bordering the land have been carefully sounded. Yet, the nature of the ocean was practically unknown until recently, when new techniques and careful mapping did disclose new details of the ocean waters.
44721. Gerund (forms and functions) 114.28 KB
  Prctise reding the following twosyllble words with the stress on the second syllble: Include between employ pply design convert trnsform obtin Prctise reding the following mny syllble words: Electricity impossible ccumulte numerous resistnce temperture emergency photocell complicted Prctise reding the following words with double stress: Engineering semiconductor utomtion conductivity irrespective reproduce Memorize the spelling nd pronuncition of the following words: Vry ['vεərI]...
44722. Ing forms: Participle/Gerund/Verbal Noun 51 KB
  Trnsistors mde it possible to design compct smlldimensioned electronic devices which consume very little power. The trnsistors re successfully used for direct trnsformtion of het energy into electricl energy by mens of therml elements. In lter yers light sources nd lsers were built on the bsis of trnsistors.