73203

Процессы в газах

Лекция

Физика

Если тело не получает извне никакой энергии, то работа А при расширении совершается за счет внутренней энергии U (U = кинетической энергии теплового движения атомов вещества + потенциальной энергии их взаимодействия друг с другом).

Русский

2014-12-05

161.5 KB

0 чел.

Лекция №35. Процессы в газах.

I. Первый закон термодинамики и его применение к изопроцессам в газах.

Если тело не получает извне никакой энергии, то работа А при расширении совершается за счет внутренней энергии U (U = кинетической энергии теплового движения атомов вещества + потенциальной энергии их взаимодействия друг с другом).

Нужно учесть еще и то, что энергия может передаваться от одного тела к другому путем теплопередачи. Эту энергию, называемую количеством тепла Q, будем считать: ΔQ > 0  – тело получает тепло, ΔQ < 0 – тело отдает тепло.

Таким образом, бесконечно малое изменение внутренней энергии складывается из двух частей и может быть записано в дифференциальной форме в виде:

dU = δQ  δA,        (1)

где dU – изменение внутренней энергии тела;

δQ – сообщенное телу количество тепла;

δA – (знак «+») – работа, совершенная внешними силами (сжатие газа); (знак «–») – работа, совершенная телом (расширение газа).

В уравнении (1) Q и A не являются полными дифференциалами, т.к. их величины зависят от пути перехода системы из одного состояния в другое, т.е. не являются функциями состояния. Они обычно обозначаются δQ и δA (неполный дифференциал).

Уравнение (1) – первое начало термодинамики или закон сохранения энергии в тепловых процессах. Если произошли конечные изменения системы, то первое начало термодинамики можно записать в виде:

ΔQ = ΔU  ΔA       (2)

Рассмотрим применение первого начала к изопроцессам в газах.

1. Изохорический процесс (V = const)

dU = dQ – dA,

т.к.    dA = PdV = 0, то

– все подводимое тепло идет на увеличение внутренней энергии

По определению dQ = CудVmdT, для данного процесса

Тогда:    , т.е.        – закон Джоуля

2. Изобарический процесс (P = const)

dU = dQ – dA            (3)

По определению для данного процесса:

Подставляя в (3) имеем, с учетом (2):

Используя уравнение состояния:   и выражение работы dA = PdV, получим:

CdT = CdTRdT

C = CR

уравнение Майера    (4)

3. Изотермический процесс (T = const)

dU = dQ – dA,

т.к.    , то

dQ = dA – подводимое тепло идет на внешнюю работу (расширение).

II. Адиабатический процесс.

Процесс, протекающий без теплообмена с внешней средой, называется адиабатическим (не переходимым).

Адиабатическими можно считать быстропротекающие процессы. Т.к. передачи теплоты нет, то dQ = 0.

dU + dA = 0

Для произвольной массы газа:  

Из объединенного газового закона:

По уравнению Майера: R = CC и

Обозначим , тогда: интегрируем

lnT + (γ – 1) V = const → потенциируем

Уравнение адиабаты идеального газа

 TVγ-1 = const  ,           (5)

используя уравнение состояния можно получить уравнение адиабаты в координатах P и V.

Уравнение Пуассона

РVγ = const  ,            (6)

Показатель степени в уравнении Пуассона γ называется показатель адиабаты, т.к. СРμ>C, то γ > 1.

Построим график уравнения (6) и сравним его с графиком изотермы.

Вычислим работу при адиабатическом процессе в идеальном газе (для 1 моля)

dA + dU = 0, т.к. dU = CdT, то

Используя уравнение газового состояния, уравнение Майера, уравнение Пуассона, можно получить другие виды формулы работы для адиабатического процесса.

Чтобы вычислить работу для произвольной массы газа m нужно значение работы умножить на число молей: .

III. Политропный процесс.

Изотермический и адиабатный процессы являются идеальными, к ним можно только приблизиться. Изотермический процесс должен протекать бесконечно медленно, адиабатный процесс – быстропротекающий, но с конечной скоростью (в адиабатной оболочке с теплопроводностью равной нулю). На практике процессы осуществить нельзя.

В природе происходят реальные процессы, являющиеся промежуточными между адиабатными и изотермическими. Чтобы определить такой процесс, на него надо наложить только одно ограничение:

,

т.е. теплоемкость тела С при политропном процессе постоянна.

Используем первое начало термодинамики (для моля):

dQ = dU + dA

делим переменные:  

интегрируем и потенциируем:

Обозначим: , тогда

уравнение политропы (для идеальных газов) (7)

Или это уравнение в другой записи:

            (7.1)

            (7.2)

n  показатель политропы (–∞ < n < ∞).

Политропный процесс – общий процесс, из которого все ранее изученные процессы получаются как частные случаи для реальных процессов (1 < n < γ):

а) для адиабатного процесса:  С = 0, тогда

б) для изотермического процесса: C = ∞, тогданеопределенность, раскрытие дает n = 1, тогда СР = СV или, используя уравнение (7) получим TV1-1 = const = T.

в) для изобарного процесса:  , т.к. Ср = С, то  PV0 = const

P = const

г) для изохорического процесса:  

V = const

Вывод: реальные процессы, происходящие в природе, являющиеся промежуточными между адиабатными и изотермическими (1 < n < γ,) называются политропными.

Примечание: для облегчения запоминания материала и как справка в конце лекции приведена таблица №1.

IV. Круговые процессы.

Согласно определения кругового процесса (цикла), термодинамическая система (тело), выйдя из исходного состояния, проходит ряд промежуточных и снова возвращается в исходное состояние.

Газ или тело, совершающее круговой процесс, называется рабочим телом.

При круговом движении точка, изображающая состояние рабочего тела, описывает замкнутую кривую. Т.к. конечное состояние совпадает с начальным, то изменение внутренней энергии ΔU = 0:

По первому началу термодинамики:

ΔА = ΔQ,

где ΔQ – полное количество тепла, полученное веществом;

ΔА – внешняя работа газа.

Уравнение ΔА = ΔQ надо понимать следующим образом, работа равновесного цикла определяется интегралом вида:

,

где А1 > 0 – работа расширения газа;

А2 < 0 – работа сжатия газа.

Результирующий тепловой эффект Q равен:

Q = Q1 + Q2,

где Q1 > 0 – величина, характеризующая теплообмен рабочего вещества с термостатом более высокой температуры (нагревателем);

Q2 < 0 – с термостатом более низкой температуры (холодильниками).

а) если Q > 0, то A > 0 – рабочее тело получает тепло и совершает работу (превращает тепло в работу – цикл по часовой стрелке – прямой цикл,

б) если Q < 0, то A < 0 – рабочее тело отдает тепло и над ним совершается работа (превращение работы в тепло);

в) цикл обходится против часовой стрелки – обратный цикл.

А1а21 > 0 – работа расширения газа

А2б12 < 0 – работа сжатия газа

Ацикла = А1а21 – А2б12

Работа прямого цикла А > 0 – соответствует действию нагревателя

Работа обратного цикла А < 0 – соответствует действию холодильника

V. Идеальная тепловая машина. Цикл Карно.

Во всех реальных тепловых машинах происходят те или иные потери энергии.

Если в машине отсутствуют потери на теплопроводность, лучеиспускание, трение и т.д., т.е. нет необратимых потерь, то тепловая машина называется идеальной.

Анализируя работу тепловых двигателей, французский инженер Сади Карно в 1824 г. нашел, что наивыгоднейшим, с точки зрения КПД, является обратимый круговой процесс, состоящий из изотермических и адиабатных процессов.

Прямой круговой процесс, состоящий из двух изотермических процессов и двух адиабатических, называется циклом Карно.

  1.  – контакт рабочего тела с нагревателем

(1-2) – изотермическое расширение, от нагревателя отбирается тепло Q

  1.  – прекращение контакта рабочего тела с нагревателем

(2-3) – адиабатическое расширение. U уменьшается и температура понижается TX < TH

  1.  – контакт с холодильником (ТХ)

(3-4) – изотермическое сжатие. Тепло отбирается холодильником от рабочего тела

  1.  – прекращение контакта с холодильником

(4-1) – адиабатическое сжатие, U увеличивается и температура повышается до Тисх

QH QX = Aцикла

– работа изотермического расширения

– работа изотермического сжатия

По определению КПД тепловой машины – это отношение полезной работы за цикл к затраченной энергии нагревателя.

Используя уравнение адиабаты:

Теорема Карно:  – КПД цикла Карно идеальной тепловой машины

Цикл Карно обратим, т.к. все его составные части являются равновесными процессами.

Поэтому машина, работающая по циклу Карно, может работать не только в качестве тепловой машины (прямой цикл), но и в качестве холодильной (обратный цикл). Отнятие тепла от более холодного тела (фреон) и передача его более нагретому (окружающая среда) совершается за счет работы внешних сил (электрическая энергия). Иногда используют обратный цикл для нагревания тел – эти устройства называется тепловыми насосами.

Т.к. Tx ≠ 0, то η < 1. Отметим также, что для работы тепловых машин всегда требуются два тепловых термостата. Конечно, если взять только один термостат, то, пользуясь им, можно изотермическим расширением рабочего вещества получить полезную работу, но в реальных условиях не может быть бесконечного расширения, для работы машины необходимо периодическое возвращение рабочего вещества в начальное состояние.

В циклическом процессе нельзя получить работу, пользуясь одним только тепловым резервуаром.


Таблица №1 к разделу III

Название

процесса

Уравнение

процесса

Связь между

параметрами

состояния

Работа процесса

Количество

теплоты,

сообщенное

в процессе

Изменение

внутренней

энергии

Теплоемкость

Показатель

политропы

изотермический

T = const

PV = const

dA = PdV

dQ = dA

Q = A

dU = 0

ΔU = 0

+∞ при dV > 0

(расширение)

–∞ dV < 0

(сжатие)

n = 1

изохорический

V = const

dA = 0

A = 0

dQ = CVdT

Q = CV(T2 – T1)

dU = CvdT

ΔU = Cv(T1 – T2)

n =

изобарический

P = const

dA = PdV

A = P(V2 – V1)

dQ = CPdT

Q = CP(T2 – T1)

dU = CVdT

ΔU = Cv(T1 – T2)

n = 0

адиабатный

δQ = const

PVγ = const

dA = PdV= –dU

A = CV(T1 – T2) =

dQ = 0

Q = 0

dU = -dA

ΔU = -A = Cv(T1 – T2)

C = 0

n = γ

политропный

C = const

PV = const

dA = PdV

dQ = CdT

Q = C(T2 – T1)

dU = CVdT

ΔU = Cv(T1 – T2)

Примечания:

  1.  Индексы 1 и 2 – начальное и конечное состояние.
  2.  Все величины выражены в одной системе.
  3.  Даны основные соотношение для равновесных процессов, совершаемых идеальным газом, m = const, CV = const, CP = const.
  4.  Работа совершается системой против внешнего давления dA > 0


Ст =

dU = dQ

dU ~ dT

R = CC 

адиабата

изотерма

V

Р

TVn-1 = const

nPn-1 = const

PVn-1 = const

V

Р

А

1

2

А1а2

А2б1

а

б

QX

QH

(P4,V4,TX) 4

3(P3,V3,TX)

2 (P2,V2,TH)

1(Р1,V1,TH)

А

Р

V

изотерма

адиабата

Т.Т. 1 И 4:

Т.Т. 2 И 3:

  1.  

 

А также другие работы, которые могут Вас заинтересовать

68197. МЕХАНІЗМ ОПОДАТКУВАННЯ НЕРУХОМОГО МАЙНА В УКРАЇНІ 361.5 KB
  Сьогодні у нашій державі оподаткування нерухомості не відіграє значної фіскальної та соціальної ролі в порівнянні із зарубіжними країнами. Для зміцнення матеріальнофінансової бази місцевого самоврядування та нівелювання значної дохідної і майнової нерівності населення особливої...
68198. ЖИТЛОВО-БУДІВЕЛЬНИЙ КОМПЛЕКС В СИСТЕМІ РОЗВИТКУ РЕГІОНУ 2.24 MB
  Системне дослідження соціально-економічних процесів що відбуваються на рівні регіону передбачає виявлення галузевої структури учасників господарської діяльності визначення всіх структуроутворюючих підсистем та елементів їх аналіз і оцінка взаємного впливу.
68199. ЕКСПЕРИМЕНТАЛЬНЕ ОБГРУНТУВАННЯ ЗАСТОСУВАННЯ ОЛІЇ НАСІННЯ ВИНОГРАДУ В ЯКОСТІ РАНОЗАГОЮВАЛЬНОГО ЗАСОБУ 389 KB
  Олія насіння винограду є діючою речовиною рослинного походження що має бути перспективною у складі препаратів для місцевого лікування ран у 2й та 3й фазах ранового процесу. Вищезазначене обумовлює актуальність вивчення фармакологічних властивостей олії насіння винограду з метою обґрунтування її практичного...
68200. ФОРМУВАННЯ ПРОФЕСІЙНОЇ КОМПЕТЕНТНОСТІ МАЙБУТНІХ ЕКОНОМІСТІВ ЗАСОБАМИ МЕРЕЖЕВИХ ТЕХНОЛОГІЙ 305 KB
  Інтеграція України до європейського економічного й інформаційного простору, поява нових сфер економічної діяльності тісно інтегрованих із інформаційними технологіями, що постійно оновлюються, зумовлюють необхідність у підвищенні якості економічної освіти та супроводжуються зростанням...
68201. ТЕОРІЯ І МЕТОДИКА ПРОЕКТУВАННЯ СИСТЕМИ ПЕДАГОГІЧНОЇ ПІДГОТОВКИ МАЙБУТНІХ ІНЖЕНЕРІВ-ПЕДАГОГІВ 523.5 KB
  Реалізація соціального замовлення суспільства на формування у майбутніх інженерівпедагогів умінь аналізувати прогнозувати та обирати раціональні шляхи й засоби навчання вимагає таких методологічних підходів які б забезпечували оновлення концепцій професійної педагогічної підготовки...
68202. ЗАДАЧІ З РУХОМИМИ МЕЖАМИ ДЛЯ ГІПЕРБОЛІЧНИХ СИСТЕМ КВАЗІЛІНІЙНИХ РІВНЯНЬ 1.29 MB
  Багато математичних моделей природознавства містять задачі з нелокальними нерозділеними або інтегральними крайовими умовами. Крайові задачі з нелокальними умовами для систем гіперболічних рівнянь досліджували...
68203. ЗАСТАВА В СИСТЕМІ МЕНЕДЖМЕНТУ КРЕДИТНОГО РИЗИКУ БАНКУ 283 KB
  У загальній структурі кредитних вкладень банків тільки 29 займає стандартна заборгованість при якій обслуговування боргу позичальником відповідає умовам кредитної угоди вказує на доцільність вивчення причин чому не спрацював механізм застави і банки не змогли відшкодувати належним чином...
68204. ІСТОРИКО-КНИГОЗНАВЧЕ ДОСЛІДЖЕННЯ ВИДАНЬ І. ФЕДОРОВА ТА П. МСТИСЛАВЦЯ: ФІЛІГРАНОЛОГІЧНИЙ АСПЕКТ 152.5 KB
  З цією метою здійснено історикокнигознавче дослідження водяних знаків їхніх спільних та окремих видань насамперед великоформатних для введення у науковий обіг відомостей історії друкування видань почерговості публікації їх частин історії закупівлі паперу виявлення невідомих раніше варіантів...
68205. ВИКОРИСТАННЯ ІМПОРТНОЇ СИРОВИНИ В ПАРФУМЕРНО-КОСМЕТИЧНІЙ ПРОМИСЛОВОСТІ: ОБЛІКОВО-КОНТРОЛЬНІ АСПЕКТИ 272.5 KB
  Для сучасних світових тенденцій економічного розвитку характерне зростання ролі зовнішньоекономічної діяльності. В процесі її здійснення виникають певні проблеми, зумовлені невідповідністю принципів вітчизняних стандартів бухгалтерського обліку вимогам митного та податкового законодавства...