73203

Процессы в газах

Лекция

Физика

Если тело не получает извне никакой энергии, то работа А при расширении совершается за счет внутренней энергии U (U = кинетической энергии теплового движения атомов вещества + потенциальной энергии их взаимодействия друг с другом).

Русский

2014-12-05

161.5 KB

0 чел.

Лекция №35. Процессы в газах.

I. Первый закон термодинамики и его применение к изопроцессам в газах.

Если тело не получает извне никакой энергии, то работа А при расширении совершается за счет внутренней энергии U (U = кинетической энергии теплового движения атомов вещества + потенциальной энергии их взаимодействия друг с другом).

Нужно учесть еще и то, что энергия может передаваться от одного тела к другому путем теплопередачи. Эту энергию, называемую количеством тепла Q, будем считать: ΔQ > 0  – тело получает тепло, ΔQ < 0 – тело отдает тепло.

Таким образом, бесконечно малое изменение внутренней энергии складывается из двух частей и может быть записано в дифференциальной форме в виде:

dU = δQ  δA,        (1)

где dU – изменение внутренней энергии тела;

δQ – сообщенное телу количество тепла;

δA – (знак «+») – работа, совершенная внешними силами (сжатие газа); (знак «–») – работа, совершенная телом (расширение газа).

В уравнении (1) Q и A не являются полными дифференциалами, т.к. их величины зависят от пути перехода системы из одного состояния в другое, т.е. не являются функциями состояния. Они обычно обозначаются δQ и δA (неполный дифференциал).

Уравнение (1) – первое начало термодинамики или закон сохранения энергии в тепловых процессах. Если произошли конечные изменения системы, то первое начало термодинамики можно записать в виде:

ΔQ = ΔU  ΔA       (2)

Рассмотрим применение первого начала к изопроцессам в газах.

1. Изохорический процесс (V = const)

dU = dQ – dA,

т.к.    dA = PdV = 0, то

– все подводимое тепло идет на увеличение внутренней энергии

По определению dQ = CудVmdT, для данного процесса

Тогда:    , т.е.        – закон Джоуля

2. Изобарический процесс (P = const)

dU = dQ – dA            (3)

По определению для данного процесса:

Подставляя в (3) имеем, с учетом (2):

Используя уравнение состояния:   и выражение работы dA = PdV, получим:

CdT = CdTRdT

C = CR

уравнение Майера    (4)

3. Изотермический процесс (T = const)

dU = dQ – dA,

т.к.    , то

dQ = dA – подводимое тепло идет на внешнюю работу (расширение).

II. Адиабатический процесс.

Процесс, протекающий без теплообмена с внешней средой, называется адиабатическим (не переходимым).

Адиабатическими можно считать быстропротекающие процессы. Т.к. передачи теплоты нет, то dQ = 0.

dU + dA = 0

Для произвольной массы газа:  

Из объединенного газового закона:

По уравнению Майера: R = CC и

Обозначим , тогда: интегрируем

lnT + (γ – 1) V = const → потенциируем

Уравнение адиабаты идеального газа

 TVγ-1 = const  ,           (5)

используя уравнение состояния можно получить уравнение адиабаты в координатах P и V.

Уравнение Пуассона

РVγ = const  ,            (6)

Показатель степени в уравнении Пуассона γ называется показатель адиабаты, т.к. СРμ>C, то γ > 1.

Построим график уравнения (6) и сравним его с графиком изотермы.

Вычислим работу при адиабатическом процессе в идеальном газе (для 1 моля)

dA + dU = 0, т.к. dU = CdT, то

Используя уравнение газового состояния, уравнение Майера, уравнение Пуассона, можно получить другие виды формулы работы для адиабатического процесса.

Чтобы вычислить работу для произвольной массы газа m нужно значение работы умножить на число молей: .

III. Политропный процесс.

Изотермический и адиабатный процессы являются идеальными, к ним можно только приблизиться. Изотермический процесс должен протекать бесконечно медленно, адиабатный процесс – быстропротекающий, но с конечной скоростью (в адиабатной оболочке с теплопроводностью равной нулю). На практике процессы осуществить нельзя.

В природе происходят реальные процессы, являющиеся промежуточными между адиабатными и изотермическими. Чтобы определить такой процесс, на него надо наложить только одно ограничение:

,

т.е. теплоемкость тела С при политропном процессе постоянна.

Используем первое начало термодинамики (для моля):

dQ = dU + dA

делим переменные:  

интегрируем и потенциируем:

Обозначим: , тогда

уравнение политропы (для идеальных газов) (7)

Или это уравнение в другой записи:

            (7.1)

            (7.2)

n  показатель политропы (–∞ < n < ∞).

Политропный процесс – общий процесс, из которого все ранее изученные процессы получаются как частные случаи для реальных процессов (1 < n < γ):

а) для адиабатного процесса:  С = 0, тогда

б) для изотермического процесса: C = ∞, тогданеопределенность, раскрытие дает n = 1, тогда СР = СV или, используя уравнение (7) получим TV1-1 = const = T.

в) для изобарного процесса:  , т.к. Ср = С, то  PV0 = const

P = const

г) для изохорического процесса:  

V = const

Вывод: реальные процессы, происходящие в природе, являющиеся промежуточными между адиабатными и изотермическими (1 < n < γ,) называются политропными.

Примечание: для облегчения запоминания материала и как справка в конце лекции приведена таблица №1.

IV. Круговые процессы.

Согласно определения кругового процесса (цикла), термодинамическая система (тело), выйдя из исходного состояния, проходит ряд промежуточных и снова возвращается в исходное состояние.

Газ или тело, совершающее круговой процесс, называется рабочим телом.

При круговом движении точка, изображающая состояние рабочего тела, описывает замкнутую кривую. Т.к. конечное состояние совпадает с начальным, то изменение внутренней энергии ΔU = 0:

По первому началу термодинамики:

ΔА = ΔQ,

где ΔQ – полное количество тепла, полученное веществом;

ΔА – внешняя работа газа.

Уравнение ΔА = ΔQ надо понимать следующим образом, работа равновесного цикла определяется интегралом вида:

,

где А1 > 0 – работа расширения газа;

А2 < 0 – работа сжатия газа.

Результирующий тепловой эффект Q равен:

Q = Q1 + Q2,

где Q1 > 0 – величина, характеризующая теплообмен рабочего вещества с термостатом более высокой температуры (нагревателем);

Q2 < 0 – с термостатом более низкой температуры (холодильниками).

а) если Q > 0, то A > 0 – рабочее тело получает тепло и совершает работу (превращает тепло в работу – цикл по часовой стрелке – прямой цикл,

б) если Q < 0, то A < 0 – рабочее тело отдает тепло и над ним совершается работа (превращение работы в тепло);

в) цикл обходится против часовой стрелки – обратный цикл.

А1а21 > 0 – работа расширения газа

А2б12 < 0 – работа сжатия газа

Ацикла = А1а21 – А2б12

Работа прямого цикла А > 0 – соответствует действию нагревателя

Работа обратного цикла А < 0 – соответствует действию холодильника

V. Идеальная тепловая машина. Цикл Карно.

Во всех реальных тепловых машинах происходят те или иные потери энергии.

Если в машине отсутствуют потери на теплопроводность, лучеиспускание, трение и т.д., т.е. нет необратимых потерь, то тепловая машина называется идеальной.

Анализируя работу тепловых двигателей, французский инженер Сади Карно в 1824 г. нашел, что наивыгоднейшим, с точки зрения КПД, является обратимый круговой процесс, состоящий из изотермических и адиабатных процессов.

Прямой круговой процесс, состоящий из двух изотермических процессов и двух адиабатических, называется циклом Карно.

  1.  – контакт рабочего тела с нагревателем

(1-2) – изотермическое расширение, от нагревателя отбирается тепло Q

  1.  – прекращение контакта рабочего тела с нагревателем

(2-3) – адиабатическое расширение. U уменьшается и температура понижается TX < TH

  1.  – контакт с холодильником (ТХ)

(3-4) – изотермическое сжатие. Тепло отбирается холодильником от рабочего тела

  1.  – прекращение контакта с холодильником

(4-1) – адиабатическое сжатие, U увеличивается и температура повышается до Тисх

QH QX = Aцикла

– работа изотермического расширения

– работа изотермического сжатия

По определению КПД тепловой машины – это отношение полезной работы за цикл к затраченной энергии нагревателя.

Используя уравнение адиабаты:

Теорема Карно:  – КПД цикла Карно идеальной тепловой машины

Цикл Карно обратим, т.к. все его составные части являются равновесными процессами.

Поэтому машина, работающая по циклу Карно, может работать не только в качестве тепловой машины (прямой цикл), но и в качестве холодильной (обратный цикл). Отнятие тепла от более холодного тела (фреон) и передача его более нагретому (окружающая среда) совершается за счет работы внешних сил (электрическая энергия). Иногда используют обратный цикл для нагревания тел – эти устройства называется тепловыми насосами.

Т.к. Tx ≠ 0, то η < 1. Отметим также, что для работы тепловых машин всегда требуются два тепловых термостата. Конечно, если взять только один термостат, то, пользуясь им, можно изотермическим расширением рабочего вещества получить полезную работу, но в реальных условиях не может быть бесконечного расширения, для работы машины необходимо периодическое возвращение рабочего вещества в начальное состояние.

В циклическом процессе нельзя получить работу, пользуясь одним только тепловым резервуаром.


Таблица №1 к разделу III

Название

процесса

Уравнение

процесса

Связь между

параметрами

состояния

Работа процесса

Количество

теплоты,

сообщенное

в процессе

Изменение

внутренней

энергии

Теплоемкость

Показатель

политропы

изотермический

T = const

PV = const

dA = PdV

dQ = dA

Q = A

dU = 0

ΔU = 0

+∞ при dV > 0

(расширение)

–∞ dV < 0

(сжатие)

n = 1

изохорический

V = const

dA = 0

A = 0

dQ = CVdT

Q = CV(T2 – T1)

dU = CvdT

ΔU = Cv(T1 – T2)

n =

изобарический

P = const

dA = PdV

A = P(V2 – V1)

dQ = CPdT

Q = CP(T2 – T1)

dU = CVdT

ΔU = Cv(T1 – T2)

n = 0

адиабатный

δQ = const

PVγ = const

dA = PdV= –dU

A = CV(T1 – T2) =

dQ = 0

Q = 0

dU = -dA

ΔU = -A = Cv(T1 – T2)

C = 0

n = γ

политропный

C = const

PV = const

dA = PdV

dQ = CdT

Q = C(T2 – T1)

dU = CVdT

ΔU = Cv(T1 – T2)

Примечания:

  1.  Индексы 1 и 2 – начальное и конечное состояние.
  2.  Все величины выражены в одной системе.
  3.  Даны основные соотношение для равновесных процессов, совершаемых идеальным газом, m = const, CV = const, CP = const.
  4.  Работа совершается системой против внешнего давления dA > 0


Ст =

dU = dQ

dU ~ dT

R = CC 

адиабата

изотерма

V

Р

TVn-1 = const

nPn-1 = const

PVn-1 = const

V

Р

А

1

2

А1а2

А2б1

а

б

QX

QH

(P4,V4,TX) 4

3(P3,V3,TX)

2 (P2,V2,TH)

1(Р1,V1,TH)

А

Р

V

изотерма

адиабата

Т.Т. 1 И 4:

Т.Т. 2 И 3:

  1.  

 

А также другие работы, которые могут Вас заинтересовать

45877. Изнашивание режущего инструмента в процессе резания. Критерии и кривые износа 168.52 KB
  Изнашивание режущего инструмента в процессе резания. В процессе работы инструмента в результате высокого контактного давления высокой температуры в зоне резания и большой относительной скорости перемещения происходит износ лезвий инструмента. Различают следующие виды износа: 1 Износ по задней поверхности инструмента. 2 Износ по передней поверхности инструмента.
45878. Критерии оптимизации режима резания при точении. Выбор инструментального материала для резцов 108.19 KB
  Критерии оптимизации режима резания при точении. Основной целью оптимизации является установление таких числовых значений элементов режима резания глубины резания подачи и скорости которые позволяют наиболее производительно с наименьшими затратами осуществлять механическую обработку детали и надежно обеспечить заданное качество обработки. Определить глубину резанияt: t = Dd 2 мм. При черновой обработке необходимо стремиться работать с максимально возможной в данных условиях глубиной резания равной всему припуску или большей части...
45879. Смазочно-охлаждающие технологические среды: назначение, требования, состав, методы отчистки и способы подачи 17.26 KB
  Способы подачи СОЖ: Полить струей жидкости на переднюю поверхность или через насадку с отверстием со стороны задней поверхности. Высоконапорная подача 152 МПа расход СОЖ уменьшается примерно в 20 раз. Функциональные свойства 1Под смазочным действием понимают способность СОЖ образовывать на контактных поверхностях инструмента на стружке и детали прочные пленки полностью или частично предотвращающие соприкосновение передней поверхности со стружкой и задних поверхностей с поверхностью резания. 2Охлаждающее дейстте СОЖ заключается в...
45880. Ультразвуковое резание. Резание с нагревом заготовки 15.43 KB
  Функции: непрерывно падают абразив в рабочий зазор и выносят оттуда частицы снятого металла; охлаждают инструмент в зоне резания. Механическая обработка с ультразвуковыми колебаниями является разновидностью резания с вибрациями. Позволяет ликвидировать нарост уменьшить объем зоны опережающей деформации и усадки стружки уменьшить силу резания. В отношении стойкости инструмента удовлетворяют результаты полученные только для быстрорежущего инструмента на низких режимах резания.
45881. Виды инструментальных материалов и ихприменяемость 16.07 KB
  Инструментальные стали. Стали применяют достаточно широко для изготовления корпусной и крепежноприсоединителыюй частей режущих инструментов а во многих случаях и их режущей части. Если инструмент работает при низких скоростях резания и не нагревается свыше 200220 С то его можно изготовлять из углеродистой инструментальной стали марок У7А У8А У10А У13А и др. Однако и в этом случае ввиду высокой критической скорости закалки эти стали прокаливаются на небольшую глубину и сердцевина инструмента остается вязкой.
45882. Виды токарных резцов. Особенность их применения. Способы соединения режущей пластины с державкой. Какие факторы определяют выбор резцов для токарных работ 50.15 KB
  В качестве режущего инструмента при точении используют резцы.Виды токарных резцов а – проходные: 1 – прямой 2 – отогнутый 3 – упорный; б – подрезной; в – канавочные: 1 – для наружных канавок 2 – для внутренних; г – отрезной; д – расточные: 1 – для сквозных отверстий 2 – для глухих; е – резьбовые: 1 – для наружных резьб 2 – для внутренних; ж – фасонный Проходные прямые резцы используются для их рекомендуется назначать для обтачивания гладких открытых цилиндрических поверхностей без уступов и ступеней. Проходные упорные резцы имеют угол в...
45883. Виды фрез, и их применяемость. Как базируется фреза на станке. В чем особенности конструкции черновых, чистовых и шпоночных фрез 251.16 KB
  Цилиндрические фрезы Базовые поверхности внутренний диаметр и торцыприменяются для фрезерования открытых поверхностей. Эти фрезы могут быть с прямыми и винтовыми фрезами. Фрезы с винтовыми зубьями работают плавно они широко применяются на производстве. Фрезы с прямыми зубьями используются лишь для обработке узких плоскостей где преимущества фрез с винтовым зубом не оказывают большого влияния на процесс резания.
45884. Сверла. Назначение, технологические возможности сверления. Дефекты просверленных отверстий и мероприятия по повышению точности отверстий 69.7 KB
  Сверла. Сверла изготавливают из быстрор. Перовые сверла применяются при обр. часть пушечного сверла представ.
45885. Зенкеры. Назначение, технологические возможности зенкерования отверстий. Почему зенкерование обеспечивает более высокую точность обработки в сравнении со сверлением 111.52 KB
  Назначение технологические возможности зенкерования отверстий. Зенкеры применяются для увеличения диаметров цилиних отв. получений отв. Точность отверстий полученных зенкерованием составляет 1112 квалитет шерть R=2.