73216

Механические колебания

Лекция

Физика

Если колебания происходят под воздействием только одной возвращающей силы их называют свободными или собственными колебаниями. Свободные колебания являются незатухающими если не происходит рассеивания энергии в окружающую среду.

Русский

2014-12-05

331 KB

1 чел.

Лекция №20. Механические колебания.

I. Гармоническое колебательное движение.

Колебательными процессами называют процессы, повторяющиеся через одинаковые промежутки времени.

В случае механических колебаний повторяются изменения положений, скоростей и ускорений каких-либо тел или частей тел.

Силу, под воздействием которой происходит колебательный процесс, называют возвращающей силой.

Если колебания происходят под воздействием только одной возвращающей силы, их называют свободными или собственными колебаниями. Свободные колебания являются незатухающими, если не происходит рассеивания энергии в окружающую среду.

Вынужденные колебания совершаются под воздействием внешней периодически изменяющейся силы (вынуждающей силы).

Гармоническими колебаниями называют колебания, при которых смещение тела от положения равновесия совершается по закону синуса или косинуса.

Для ознакомления с величинами, характеризующими колебательный процесс, рассмотрим физическую модель.

Предположим, что точка В равномерно движется по окружности со скоростью V. Убедимся, что проекция этой точки на диаметр СД будет совершать гармонические колебания около точки О, соответствующей положению равновесия.

Смещение Х (от положения равновесия) – расстояние между проекцией точки В и положением равновесия О (ОХ).

Амплитуда колебания А – максимальное смещение точки от положения равновесия (ОС).

Период Т – время одного полного колебания (в данном случае – время возвращения точки В в исходное состояние).

В начальный момент времени точка находится в положении В.

Через время , она переместилась в точку Е, радиус повернули на угол β:

β = ω∙,

где ω – угловая скорость радиуса ОВ.

Если отсчет производили от горизонтального диаметра, то

α = β + φ

или    α = ωt + φ        (1)

Находим смещение Х:

x = A∙sin(ωt + φ)       (2)

Получено уравнение гармонического колебания. Величина α = ωt + φ называется фазой колебания. Она измеряется в угловых единицах и показывает состояние колебательной системы в любой момент времени . Угол φначальная фаза колебания. 

Угловую скорость определим из условия:

Один оборот (2 радиан) радиус совершит за время Т.

       (3)

Величина ω называется круговой, или циклической частотой колебаний.

Число колебаний за 1, т.е. величина обратная периоду колебаний, называется частотой (измеряется в герцах – Гц):

       (4)

Графически зависимость смещения Х от времени в соответствии с уравнением (2) представляет собой синусоиду.

II. Скорость и ускорение при гармоническом колебательном движении.

Смещение колеблющейся материальной точки определяется уравнением:

x = Asin(ωt + φ);

тогда скорость определим:

        (5)

V = Aωsin(ωt + φ + π/2);

а ускорение:

       (6)

[a = Aω2sin(ωt + φ + π)]

Из выведенных уравнений следует, что скорость или ускорение при колебательном движении являются периодическими функциями от с периодом колебания, равным T. Из графика видно, что фаза скорости отстает от фазы смещения на π/2, а фаза ускорения – на .

Рассмотрим пример и получим дифференциальное уравнение гармонических колебаний.

Пусть масса m может скользить по поверхности без трения. Она соединена с боковой стенкой через пружину с жесткостью k и длиной в нерастянутом состоянии а0.

Тогда возвращающая сила F, согласно закону Гука равна:

F= -kx         (7)

По второму закону Ньютона сила F равна

F = ma,        (8)

где m – масса колеблющейся точки;

а – ускорение колеблющейся точки.

Учитывая, что ускорение  запишем:

или           (9)

Решением этого дифференциального уравнения является функция

x = Asin(ωt + φ)       (10)

Таким образом, колебания такой системы будут гармоническими. (Если сжатие пружины происходит в пределах закона Гука).

III. Затухающие колебания.

Все реальные собственные колебания тел являются затухающими. Потери энергии в механических системах происходят из-за её рассеяния (например: за счет трения). Во многих случаях силы, вызывающие затухания колебаний, пропорциональны скорости.

      (11)

Тогда дифференциальное уравнение колебаний примет вид:

      (12)

Решением такого уравнения служит уравнение вида:

x = A0e-δτsin(ωt + φ),            (13)

где – коэффициент затухания.

Скорость затухания колебаний определяется величиной :

,       (14)

где – логарифмический декремент затухания (физический смысл – время, в течение которого амплитуда уменьшается в е раз).

IV. Энергия гармонического колебательного движения.

Скорость колеблющейся массы m непостоянна, поэтому кинетическая и потенциальная энергии ее будут переменны.

Потенциальная энергия dW = -Fdx

       (15)

Учитывая что, F = -kx, запишем:

подставим: k = 2; x = Asin(ωt + φ)

Окончательно:

     (16)

Кинетическая энергия:

     (17)

Полная энергия равна сумме Wк + Wп:

      (18)

Следовательно, полая энергия колеблющегося тела пропорциональна квадрату амплитуды и не зависит от времени (постоянна в процессе незатухающих колебаний).

V. Вынужденные колебания. Резонанс.

Рассмотрим случай, когда вынуждающая сила изменяется по гармоническому закону:

Fвн = F0sinωt        (19)

ω – вынуждающая циклическая частота.

Возвращающая сила, обеспечивающая колебания, как и прежде, равна:

F = -kx         (20)

Запишем II Закон Ньютона для колеблющейся массы:

Fвн + F = ma

Подставляя вместо Fвн ее значение и вместо а = -ω2x получаем:

F0sinωtkx = -2x;

откуда           (21)

Но известно, что k = 02,

где ω0 – собственная частота колебаний системы

     (22)

Сравнивания это выражение с выражением для обычных гармонических колебаний находим, что амплитуда такого колебания изменяется по закону:

     (23)

Как видно из уравнения (23), если вынуждающая частота приближается к собственной частоте колебаний, амплитуда увеличивается. Наступает Резонанс.

VI. Сложение одинаково направленных колебаний.

Складываются два одинаково направленных колебания одной частоты ω (или Т), но отличающихся начальной фазой (φ1 и φ2) и амплитудой (А1 и А2).

x1 = A1sin(ωt + φ1)

x2 = A2sin(ωt + φ2)

Чтобы найти результирующее колебание надо найти А, φ и закон изменения x, т.е. ω.

Изобразим векторную диаграмму для нахождения результирующей А.

Если равномерно вращать (ω1 = ω2) систему векторов, то их проекции на ось ОУ будут совершать гармонические колебания, причем проекция , будет совершать колебания с той же частотой ω, следовательно, закон изменения x результирующего колебания тот же.

Амплитуду А находим по теореме косинусов:

A2 = A12 + A22 + A1A2cos(φ1 – φ2)     (24)

     (25)

Таким образом: x = Asin(ωt + φ), где

A и φ находятся из уравнений (24) и (25).

Следствие из (24):

1) если φ1 – φ2 = 2n,

где n = 0, 1, 2, 3, …, то cos1 – φ2) = 1;

А = А1 + А2 → колебания совпадают по фазе и усиливают друг друга;

2) если φ1 – φ2 = (2n + 1)∙, то cos1 – φ2) = –1 и А = А1 + А2 → колебания в противофазах ослабляют друг друга;

3) если φ1 – φ2 = (2n+1)∙, и А1 = А2 , то А = 0 → колебания гасят друг друга.

VI. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.

Пусть точка М одновременно колеблется в двух взаимно перпендикулярных направлениях, вдоль осей X и Y. Рассмотрим несколько случаев:

1) Составляющие колебания имеют:

ω1 = ω2 = ω

φ1 = φ2 = 0

А1 ≠ А2 

x = A1∙sinωt        (26)

y = A2∙sinωt        (27)

Находим траекторию движения, исключив из (26) и (27) t:

– уравнение прямой через начало координат (28)

Результирующее колебание S:

2) Составляющие колебания имеют:

ω1 = ω2 = ω

φ2 – φ1 =  (частный случай φ1 = 0; φ2 = π/2)

А1  А2 

Найдем траекторию движения (исключая t):

              (29)

Уравнение (29) – уравнение эллипса с полуосями А1 и А2;

если А1 = А2, то траектория – окружность.

3) Общий случай, когда:

А1 ≠ А2 

ω1ω2

φ1 – φ2 = φ

В этом случае колеблющаяся точка будет двигаться по кривым, называемым фигуры Лиссажу. Вид кривых зависит от соотношений амплитуд, частот и начальных фаз колебаний.

Примеры: (А1 = А2), (φ1 = φ2)

(а)

(б)


VII
. Примеры колебательных систем.

1. Пружинный маятник – тело, совершающее прямолинейные колебания (вдоль оси ОХ или ОУ) под действием упругой силы:

F = -kx,

где k – коэффициент упругости.

;

2. Математический маятник материальная точка, подвешенная к неподвижной точке на невесомой нерастяжимой нити (или стержне) и совершающее движение в вертикальной плоскости под действием силы тяжести:

3. Физический маятник – абстрактное твердое тело, совершающее колебания под действием силы тяжести вокруг неподвижной горизонтальной оси О, не проходящей через его центр тяжести С.

, 

где  – приведённая длина физического маятника.

т. О1 – центр качания физического маятника

т.т. О и О1 обладают свойством взаимности (взаимозаменяемости).


m

a0

m

1,5

2,0

1,0

0,5

0

0

Авых

β

φ

α

α

Е

В

Д

0

С

В1

Е1

–А

Т

х

τ

А

Т

v

а

0

0

0

τ

τ

х

τ

0

x

y

φ

φ1

φ2

φ1 – φ2

A2sinφ2

A1sinφ1

A1cosφ1

A2cosφ2

α

0

x

y

y

x

A1

A2

0

y

x

α

d

L

O

C

mg

O1

α

m

mg


 

А также другие работы, которые могут Вас заинтересовать

49990. ИЗУЧЕНИЕ ЯВЛЕНИЯ ИНТЕРФЕРЕНЦИИ СВЕТА НА ДВУХЛУЧЕВОМ ИНТЕРФЕРОМЕТРЕ И ОПРЕДЕЛЕНИЕ ИЗМЕНЕНИЯ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ ВОЗДУХА 836.5 KB
  До точки Р волна проходит в среде с показателем преломления n1 путь s1 вторая волна проходит в среде с показателем преломления n2 путь s2. Интерферометр Жамена предназначен для измерения небольших изменений показателей преломления. Для уяснения принципа действия такого рефрактометра вообразим что на пути одного из интерферирующих лучей помещен плоскопараллельный слой какоголибо вещества толщиной с показателем преломления n2.
49991. ИЗУЧЕНИЕ ФОТОЭЛЕМЕНТА С ВНЕШНИМ ФОТОЭЛЕКТРИЧЕСКИМ ЭФФЕКТОМ 120.5 KB
  Внешний фотоэффект используют в приборах называемых фотоэлементами . Измерение основных характеристик фотоэлемента Фотоэлемент представляет собой стеклянный баллон рис. Анод фотоэлемента 3 изготовлен в виде диска или сферы помещенного в центре баллона.
49992. ИЗУЧЕНИЕ ЯВЛЕНИЯ ТЕПЛОВОГО ИЗЛУЧЕНИЯ 200.5 KB
  Энергия нагретого тела E1 много больше энергии излучения E2 что и составляет сущность проблемной ситуации. Происхождение теплового излучения При нагревании любого тела повышается запас его энергии сосредоточенной на различных степенях свободы: поступательного движения атомов и молекул газа вращательного и колебательного движения атомов или ионов в молекулах и кристаллах и т. Таким образом любые нагретые тела т. тела с температурой больше 0 К испускают электромагнитное излучение микроскопические механизмы которого различны в разных...
49993. ОПРЕДЕЛЕНИЕ ПОСТОЯННОЙ ПЛАНКА СПЕКТРОМЕТРИЧЕСКИМ МЕТОДОМ 942 KB
  Краткое теоретическое введение Согласно квантовой теории излучение света атомами вещества связано с изменением их энергетического состояния. По теории Бора переход атома водорода из одного энергетического состояния в другое связан с переходом электрона атома с одной орбиты на другую. Орбиты электрона в атоме квантованы и поэтому энергия атома водорода не может иметь любое произвольное значение.
49994. ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА СООТНОШЕНИЯ НЕОПРЕДЕЛЕННОСТЕЙ ДЛЯ ФОТОНОВ 130.5 KB
  Одним из фундаментальных положений квантовой механики является принцип неопределенностей сформулированный В. О том каково его значение можно судить исходя из того факта что всего одного из соотношений неопределенностей достаточно чтобы объяснить целый ряд закономерностей в атомной и ядерной физике. Обозначив канонически сопряженные величины буквами А и В можно написать B ≥ 3 Соотношение 3 называется соотношением неопределенностей для величин А и В.
49995. Стройові вправи. Загальнорозвивальні вправи 69 KB
  Стройові вправи. Шикування як вид стройових вправ. Загальнорозвивальні вправи. Прикладні вправи.
49997. Нечеткая логика. Создание простейшей системы нечеткой логики 67 KB
  Создание простейшей системы нечеткой логики реализованной на языке высокого уровня. Задание Согласно заданным вариантам разработать программу на любом алгоритмическом языке способную: Различать степени изменения лингвистической переменной в трех степенях...
49998. МИКРОПРОГРАММИРОВАНИЕ КОМАНД СМ ЭВМ 92 KB
  Цель работы: Знакомство с принципами микропрограммной эмуляции ЭВМ с программным управлением, микропрограммирование машинных команд СМ ЭВМ. Вариант индивидуального задания: № 5 Найти наибольший общий делитель двух чисел по алгоритму Евклида.