73216

Механические колебания

Лекция

Физика

Если колебания происходят под воздействием только одной возвращающей силы их называют свободными или собственными колебаниями. Свободные колебания являются незатухающими если не происходит рассеивания энергии в окружающую среду.

Русский

2014-12-05

331 KB

1 чел.

Лекция №20. Механические колебания.

I. Гармоническое колебательное движение.

Колебательными процессами называют процессы, повторяющиеся через одинаковые промежутки времени.

В случае механических колебаний повторяются изменения положений, скоростей и ускорений каких-либо тел или частей тел.

Силу, под воздействием которой происходит колебательный процесс, называют возвращающей силой.

Если колебания происходят под воздействием только одной возвращающей силы, их называют свободными или собственными колебаниями. Свободные колебания являются незатухающими, если не происходит рассеивания энергии в окружающую среду.

Вынужденные колебания совершаются под воздействием внешней периодически изменяющейся силы (вынуждающей силы).

Гармоническими колебаниями называют колебания, при которых смещение тела от положения равновесия совершается по закону синуса или косинуса.

Для ознакомления с величинами, характеризующими колебательный процесс, рассмотрим физическую модель.

Предположим, что точка В равномерно движется по окружности со скоростью V. Убедимся, что проекция этой точки на диаметр СД будет совершать гармонические колебания около точки О, соответствующей положению равновесия.

Смещение Х (от положения равновесия) – расстояние между проекцией точки В и положением равновесия О (ОХ).

Амплитуда колебания А – максимальное смещение точки от положения равновесия (ОС).

Период Т – время одного полного колебания (в данном случае – время возвращения точки В в исходное состояние).

В начальный момент времени точка находится в положении В.

Через время , она переместилась в точку Е, радиус повернули на угол β:

β = ω∙,

где ω – угловая скорость радиуса ОВ.

Если отсчет производили от горизонтального диаметра, то

α = β + φ

или    α = ωt + φ        (1)

Находим смещение Х:

x = A∙sin(ωt + φ)       (2)

Получено уравнение гармонического колебания. Величина α = ωt + φ называется фазой колебания. Она измеряется в угловых единицах и показывает состояние колебательной системы в любой момент времени . Угол φначальная фаза колебания. 

Угловую скорость определим из условия:

Один оборот (2 радиан) радиус совершит за время Т.

       (3)

Величина ω называется круговой, или циклической частотой колебаний.

Число колебаний за 1, т.е. величина обратная периоду колебаний, называется частотой (измеряется в герцах – Гц):

       (4)

Графически зависимость смещения Х от времени в соответствии с уравнением (2) представляет собой синусоиду.

II. Скорость и ускорение при гармоническом колебательном движении.

Смещение колеблющейся материальной точки определяется уравнением:

x = Asin(ωt + φ);

тогда скорость определим:

        (5)

V = Aωsin(ωt + φ + π/2);

а ускорение:

       (6)

[a = Aω2sin(ωt + φ + π)]

Из выведенных уравнений следует, что скорость или ускорение при колебательном движении являются периодическими функциями от с периодом колебания, равным T. Из графика видно, что фаза скорости отстает от фазы смещения на π/2, а фаза ускорения – на .

Рассмотрим пример и получим дифференциальное уравнение гармонических колебаний.

Пусть масса m может скользить по поверхности без трения. Она соединена с боковой стенкой через пружину с жесткостью k и длиной в нерастянутом состоянии а0.

Тогда возвращающая сила F, согласно закону Гука равна:

F= -kx         (7)

По второму закону Ньютона сила F равна

F = ma,        (8)

где m – масса колеблющейся точки;

а – ускорение колеблющейся точки.

Учитывая, что ускорение  запишем:

или           (9)

Решением этого дифференциального уравнения является функция

x = Asin(ωt + φ)       (10)

Таким образом, колебания такой системы будут гармоническими. (Если сжатие пружины происходит в пределах закона Гука).

III. Затухающие колебания.

Все реальные собственные колебания тел являются затухающими. Потери энергии в механических системах происходят из-за её рассеяния (например: за счет трения). Во многих случаях силы, вызывающие затухания колебаний, пропорциональны скорости.

      (11)

Тогда дифференциальное уравнение колебаний примет вид:

      (12)

Решением такого уравнения служит уравнение вида:

x = A0e-δτsin(ωt + φ),            (13)

где – коэффициент затухания.

Скорость затухания колебаний определяется величиной :

,       (14)

где – логарифмический декремент затухания (физический смысл – время, в течение которого амплитуда уменьшается в е раз).

IV. Энергия гармонического колебательного движения.

Скорость колеблющейся массы m непостоянна, поэтому кинетическая и потенциальная энергии ее будут переменны.

Потенциальная энергия dW = -Fdx

       (15)

Учитывая что, F = -kx, запишем:

подставим: k = 2; x = Asin(ωt + φ)

Окончательно:

     (16)

Кинетическая энергия:

     (17)

Полная энергия равна сумме Wк + Wп:

      (18)

Следовательно, полая энергия колеблющегося тела пропорциональна квадрату амплитуды и не зависит от времени (постоянна в процессе незатухающих колебаний).

V. Вынужденные колебания. Резонанс.

Рассмотрим случай, когда вынуждающая сила изменяется по гармоническому закону:

Fвн = F0sinωt        (19)

ω – вынуждающая циклическая частота.

Возвращающая сила, обеспечивающая колебания, как и прежде, равна:

F = -kx         (20)

Запишем II Закон Ньютона для колеблющейся массы:

Fвн + F = ma

Подставляя вместо Fвн ее значение и вместо а = -ω2x получаем:

F0sinωtkx = -2x;

откуда           (21)

Но известно, что k = 02,

где ω0 – собственная частота колебаний системы

     (22)

Сравнивания это выражение с выражением для обычных гармонических колебаний находим, что амплитуда такого колебания изменяется по закону:

     (23)

Как видно из уравнения (23), если вынуждающая частота приближается к собственной частоте колебаний, амплитуда увеличивается. Наступает Резонанс.

VI. Сложение одинаково направленных колебаний.

Складываются два одинаково направленных колебания одной частоты ω (или Т), но отличающихся начальной фазой (φ1 и φ2) и амплитудой (А1 и А2).

x1 = A1sin(ωt + φ1)

x2 = A2sin(ωt + φ2)

Чтобы найти результирующее колебание надо найти А, φ и закон изменения x, т.е. ω.

Изобразим векторную диаграмму для нахождения результирующей А.

Если равномерно вращать (ω1 = ω2) систему векторов, то их проекции на ось ОУ будут совершать гармонические колебания, причем проекция , будет совершать колебания с той же частотой ω, следовательно, закон изменения x результирующего колебания тот же.

Амплитуду А находим по теореме косинусов:

A2 = A12 + A22 + A1A2cos(φ1 – φ2)     (24)

     (25)

Таким образом: x = Asin(ωt + φ), где

A и φ находятся из уравнений (24) и (25).

Следствие из (24):

1) если φ1 – φ2 = 2n,

где n = 0, 1, 2, 3, …, то cos1 – φ2) = 1;

А = А1 + А2 → колебания совпадают по фазе и усиливают друг друга;

2) если φ1 – φ2 = (2n + 1)∙, то cos1 – φ2) = –1 и А = А1 + А2 → колебания в противофазах ослабляют друг друга;

3) если φ1 – φ2 = (2n+1)∙, и А1 = А2 , то А = 0 → колебания гасят друг друга.

VI. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.

Пусть точка М одновременно колеблется в двух взаимно перпендикулярных направлениях, вдоль осей X и Y. Рассмотрим несколько случаев:

1) Составляющие колебания имеют:

ω1 = ω2 = ω

φ1 = φ2 = 0

А1 ≠ А2 

x = A1∙sinωt        (26)

y = A2∙sinωt        (27)

Находим траекторию движения, исключив из (26) и (27) t:

– уравнение прямой через начало координат (28)

Результирующее колебание S:

2) Составляющие колебания имеют:

ω1 = ω2 = ω

φ2 – φ1 =  (частный случай φ1 = 0; φ2 = π/2)

А1  А2 

Найдем траекторию движения (исключая t):

              (29)

Уравнение (29) – уравнение эллипса с полуосями А1 и А2;

если А1 = А2, то траектория – окружность.

3) Общий случай, когда:

А1 ≠ А2 

ω1ω2

φ1 – φ2 = φ

В этом случае колеблющаяся точка будет двигаться по кривым, называемым фигуры Лиссажу. Вид кривых зависит от соотношений амплитуд, частот и начальных фаз колебаний.

Примеры: (А1 = А2), (φ1 = φ2)

(а)

(б)


VII
. Примеры колебательных систем.

1. Пружинный маятник – тело, совершающее прямолинейные колебания (вдоль оси ОХ или ОУ) под действием упругой силы:

F = -kx,

где k – коэффициент упругости.

;

2. Математический маятник материальная точка, подвешенная к неподвижной точке на невесомой нерастяжимой нити (или стержне) и совершающее движение в вертикальной плоскости под действием силы тяжести:

3. Физический маятник – абстрактное твердое тело, совершающее колебания под действием силы тяжести вокруг неподвижной горизонтальной оси О, не проходящей через его центр тяжести С.

, 

где  – приведённая длина физического маятника.

т. О1 – центр качания физического маятника

т.т. О и О1 обладают свойством взаимности (взаимозаменяемости).


m

a0

m

1,5

2,0

1,0

0,5

0

0

Авых

β

φ

α

α

Е

В

Д

0

С

В1

Е1

–А

Т

х

τ

А

Т

v

а

0

0

0

τ

τ

х

τ

0

x

y

φ

φ1

φ2

φ1 – φ2

A2sinφ2

A1sinφ1

A1cosφ1

A2cosφ2

α

0

x

y

y

x

A1

A2

0

y

x

α

d

L

O

C

mg

O1

α

m

mg


 

А также другие работы, которые могут Вас заинтересовать

20417. Системы управления контентом 47.5 KB
  История управления контентом началась с управления документами в традиционном смысле этого слова т. По мере развития понятия документ системы управления документами стали называть системами управления контентом. Системы управления контентом действительно научились разделять управление документами хранение изменение и т.
20418. Диаграмма состояний (statechart diagram) 253 KB
  Вершинами графа являются возможные состояния автомата изображаемые соответствующими графическими символами а дуги обозначают его переходы из состояния в состояние. Длительность нахождения системы в любом из возможных состояний существенно превышает время которое затрачивается на переход из одного состояния в другое. При этом автомат может находиться в отдельном состоянии как угодно долго если не происходит никаких событий; время нахождения автомата в том или ином состоянии а также время достижения того или иного состояния никак не...
20419. АСУ «Экспресс» 31.5 KB
  АСУ Экспресс начала работать в 1972 году на Московском железнодорожном узле. Она получила название Экспресс1 и предназначалась для массового обслуживания пассажиров в реальном масштабе времени. Основной целью создания системы Экспресс1 являлось получение опыта в автоматизации управления билетнокассовыми операциями в масштабе такого крупного железнодорожного узла как Москва обслуживающего в сутки до 250 тысяч пассажиров поездами прямого и местного сообщения.
20420. Система АСУ Экспресс 66.5 KB
  1972 Система Экспресс1 запущена в эксплуатацию в предварительных кассах Киевского вокзала Москвы. 1974 Система Экспресс1 введена в эксплуатацию в масштабе Московского железнодорожного узла. 1982 Система Экспресс2 запущена в Москве с обслуживанием пассажиров через бюро заказов по телефону.
20421. Диаграмма классов (class diagram) 207 KB
  В этих разделах могут указываться имя класса атрибуты переменные и операции методы. Имя класса должно быть уникальным в пределах пакета который описывается некоторой совокупностью диаграмм классов или одной диаграммой. В дополнение к общему правилу наименования элементов языка UML имя класса записывается по центру секции имени полужирным шрифтом и должно начинаться с заглавной буквы. В первой секции обозначения класса могут находиться ссылки на стандартные шаблоны или абстрактные классы от которых образован данный класс и от которых он...
20422. Основные пакеты метамодели языка UML 282 KB
  org view=Basic_packages_metamodeli_language_UML 2730 Основные пакеты метамодели языка UML Возвращаясь к рассмотрению языка UML напомним что основой его представления на метамодельном уровне является описание трех его логических блоков или пакетов: Основные элементы Элементы поведения и Общие механизмы рис. Пакет Типы данных определяет основные структуры данных для языка UML. Основные пакеты метамодели языка UML Рис. Подпакеты пакета Основные элементы языка UML Пакет Основные элементы Ниже дается краткая характеристика элементов...
20423. Жизненный цикл ИС 86 KB
  Модель жизненного цикла отражает различные состояния системы начиная с момента возникновения необходимости в данной ИС и заканчивая моментом ее полного выхода из употребления. Модель жизненного цикла структура содержащая процессы действия и задачи которые осуществляются в ходе разработки функционирования и сопровождения программного продукта в течение всей жизни системы от определения требований до завершения ее использования. В настоящее время известны и используются следующие модели жизненного цикла: Каскадная модель рис....
20424. Мультипроцессоры 58 KB
  Мультипроцессоры Мультипроцессорные системы обладают одной характерной особенностью: все процессоры имеют прямой доступ к общей памяти. Мультипроцессорные системы шинной архитектуры состоят из некоторого количества процессоров подсоединенных к общей шине а через нее к модулям памяти. Простейшая конфигурация содержит плату с шиной или материнскую плату в которую вставляются процессоры и модули памяти. Поскольку используется единая память когда процессор А записывает слово в память а процессор В микросекундой позже считывает слово из...
20425. Компоненты NET 231.5 KB
  Использовать методы службы NET Romoting . Однако WCF содержит и другой тип сериализатора NetDataContractSerializer который является полной копией стандартного сериализатора однако помимо всего прочего он добавляет полное имя типа в сериализованный поток байтов. Хостинг IIS Internet Information Server WPF Приложения WPF строятся на основе языка XAML и языка реализации логики C.