7335

Закон полного тока для магнитного поля в вакууме

Лекция

Физика

Тема: Закон полного тока для магнитного поля в вакууме Вихревой характер магнитного поля. Циркуляция вектора магнитной индукции. Закон полного тока для магнитного поля в вакууме Применение закона полного тока к расчету магнитного ...

Русский

2013-01-21

85.5 KB

93 чел.

Тема: Закон полного тока для магнитного поля в вакууме

  1.  

  1.  Вихревой характер магнитного поля. Циркуляция вектора магнитной индукции.

Закон полного тока для магнитного поля в вакууме

  1.  Применение закона полного тока к расчету магнитного пол

  1.  

  1.  Магнитное поле тороида (тороидальной катушки)

  1.  

  1.  Магнитное поле соленоида

  1.  Вихревой характер магнитного поля. Циркуляция вектора магнитной индукции. Закон полного тока для магнитного поля в вакууме

Раньше было показано, что линии магнитной индукции поля прямого тока представляют собой концентрические окружности, охватывающие проводник. Можно показать, что это имеет место для магнитного поля любого тока. То есть силовые линии магнитного поля замкнуты. Поля с замкнутыми силовыми линиями называются вихревыми. Следовательно, магнитное поле является вихревым. В этом состоит отличие магнитного поля от электростатического, силовые линии которого не замкнуты.

Циркуляцией вектора  по замкнутому контуру  L называется интеграл вида

, (1)

где dlэлемент контура.

Вычислим циркуляцию вектора  по некоторому замкнутому контуру L c радиусом α, охватывающему проводник с силой тока I. Для простоты расчетов выберем длинный проводник, и рассматриваемый контур совместим с одной из силовых линий. В этом случае любой из элементов контура будет совпадать по направлению с вектором , значение магнитной индукции в любой точке контура будет одинаковым и интеграл (1) имеет вид

. (2)

Магнитная индукция, создаваемая длинным проводником с силой тока I на расстоянии α, определяется известной формулой

. (3)

Подставив формулу (3) в формулу (2) для циркуляции получим

. (4)

Повторив приведенный вывод для другого контура, с другим  радиусом, можно убедиться, что циркуляция не зависит от его размера. Можно также показать, что циркуляция не зависит и от формы контура, главное, чтобы контур охватывал проводник с током. Таким образом, формула (4) справедлива для любого контура, охватывающего проводник с током. Циркуляция вектора магнитной индукции по контуру L, охватывающему N проводников с токами Ii, с учетом принципа суперпозиции, определится формулой

, (5)

где – алгебраическая сумма токов, охватываемых контуром L.

Формула (5) является математической формулой закона полного тока для магнитного поля в вакууме, которому можно дать такое определение

циркуляция вектора магнитной индукции по любому замкнутому контуру L равна алгебраической сумме токов, охватываемых этим контуром.

При этом каждый ток учитывается столько раз, сколько раз он охватывается контуром. Например, для приведенного на рисунке случая . Если контур не охватывает ток, то циркуляция вектора  по такому контуру равна нулю.

Закон полного тока справедлив не только в вакууме, но в любой среде. Он позволяет вычислять индукцию магнитного поля без применения закона Био-Савара-Лапласа, что намного облегчает вычисления.

  1.  Применение закона полного тока к расчету магнитного поля
    1.  Магнитное поле тороида (тороидальной катушки)

Тороидом называется кольцевая катушка, витки которой намотаны на каркас, имеющий форму тора («бублика»). На рисунке показано сечение тороида плоскостью, проходящей через его осевую линию. Для простоты положим, что витки плотно прилегают друг к другу и намотаны из провода, диаметр которого много меньше радиуса тороида. В этом случае линии магнитной индукции будут иметь форму окружностей, центры которых лежат на прямой, проходящей через центр тороида, и перпендикулярной плоскости чертежа. Применение закона полного тока сводится к выбору контура и расчету циркуляции. По закону полного тока контур может быть любой формы и любых размеров. Для простоты расчетов мы будем выбирать контуры, совпадающие с линиями магнитной индукции. Тогда в любой точке выбранного контура значение магнитной индукции будет одинаковым, и циркуляция будет равна

. (6)

Применив закон полного тока, получим

. (7)

Если rr1, то такой контур не охватывает токов, =0, циркуляция равна нулю и В=0. Если rr2, то при числе витков равном N контур будет охватывать 2N  проводников с током. Причем, в N из них ток течет в одном направлении, а в Nв противоположном. Алгебраическая сумма токов во всех проводниках будет равна нулю, циркуляция будет равна нулю и В=0. Таким образом, вне тороида магнитное поле отсутствует, оно сосредоточено (локализовано) в области r1<r<r2. Контур радиуса r, лежащий внутри тороида, охватывает  N  проводников с током I одного направления. Поэтому по формуле (7) для магнитной индукции внутри тороида получим

или . (8)

Магнитная индукция на осевой линии тороида определяется формулой

или , (9)

где  – число витков на единицу длины.

  1.  Магнитное поле соленоида

Если неограниченно увеличивать средний радиус  тороида, сохраняя неизменным диаметр обмотки и густоту витков n, то в пределе получится бесконечно длинная прямая катушка, называемая соленоидом. Магнитная индукция вне соленоида отсутствует, как и у тороида оно сосредоточено внутри. Причем линии магнитной индукции направлены параллельно оси. Для нахождения магнитной индукции поля соленоида выделим мысленно  участок конечной длины l и проведем контур 1-2-3-4-1. Циркуляцию вектора  по этому контуру можно представить как сумму циркуляций по отдельным участкам

. (10)

На участках 1-2 и 3-4 элементы контура перпендикулярны вектору , поэтому первый и третий интегралы равны нулю (см. формулу (1)). Участок 4-1 лежит вне соленоида, где магнитная индукция равна нулю, поэтому четвертый интеграл в формуле (10) также равен нулю. Следовательно, циркуляция магнитной индукции по контуру 1-2-3-4-1 равна

. (11)

Теперь применим закон полного тока (5)

, (12)

где N – число витков на длине l.

Из формулы (12) получим формулу для магнитной индукции соленоида

или . (13)

Как следует из формулы (13), магнитная индукция не зависит от расстояния. Следовательно, магнитное поле соленоида однородно.

На практике формула (13) применяется в случаях, когда диаметр d витков катушки много меньше ее длины l. Достаточно точные значения для магнитной индукции получаются при отношении .

Вопросы для самопроверки:

 

  1.  Какие поля называются вихревыми?
  2.  Что понимают под циркуляцией вектора?
  3.  Дайте определение закону полного тока для магнитного поля в вакууме.
  4.  Что такое соленоид? Какой формулой определяется магнитная индукция соленоида?  Каким является магнитное поле соленоида?


L

dl

I

B

I1

I2

I3

+

+

+

+

+

+

+

+

+

+

+

+

r1

rср

r2

  1.  

 

А также другие работы, которые могут Вас заинтересовать

83256. Конструктивные особенности тормозной системы автомобиля Audi A7 101.18 KB
  Запасная система служит для остановки автомобиля при выходе из строя рабочей тормозной системы. Ею в основном пользуются для удержания стоящего автомобиля но можно применять и в качестве аварийной при выходе из строя рабочей тормозной системы.
83257. Фондовый ранок как составляющая денежного рынка 21.35 KB
  Одним из них является финансовый рынок. Финансовый рынок это рынок который опосредует распределение денежных средств между участниками экономических отношений. Одним из сегментов финансового рынка выступает рынок ценных бумаг или фондовый рынок.
83258. Малый бизнес в России 25.5 KB
  Малый бизнес отличается динамичностью и гибкостью и может регулярно осуществлять структурные изменения в том числе номенклатурные поскольку небольшие предприятия сравнительно легко создать и уничтожить.
83259. Классификация вирусов 20.85 KB
  Компьютерный вирус — разновидность компьютерных программ или вредоносный код, отличительной особенностью которых является способность к размножению (саморепликация). В дополнение к этому вирусы могут без ведома пользователя выполнять прочие произвольные действия, в том числе наносящие вред...
83260. English Skills 14.23 KB
  In addition, teaching the learners a lot of listening activities is a good way of enlargening their vocabulary. On the other hand, it also helps the learners improve their listening comprehension. For instance, people know that the largest difference between mother language learning...
83261. Безопасность жизнедеятельности на объектах промышленности, строительства, транспорта, АПК и других 35.35 KB
  Аэрозоль попадает в атмосферу из дымовых факелов химических предприятий при низкой облачности и высокой влажности. За год в атмосферу попадает десятки миллионов том серного ангидрида из-за предприятий черной и цветной металлургии.
83262. Задача моделирования предпочтений ЛПР 18.02 KB
  Задача моделирования предпочтений ЛПР Изучение моделирования предпочтений имеет большое значение для разработки управленческого решения так как принятие правильных решений это область управленческого искусства.
83263. Содержание методик коррекционно-педагогической работы при брадилалии, тахилалии 39.62 KB
  При устранении брадилалии логопедические приемы направлены на воспитание более быстрых и четких речевых движений в процессе речи; убыстренных речевых реакций; темпа внутренней речи; темпов письма и чтения; выразительных форм сценического чтения и драматизированной речи...
83264. Исследование влияния браков и разводов на воспроизводство населения 64 KB
  Одними из основных факторов влияющих на процесс воспроизводства населения являются браки и разводы. Брачностью называется процесс образования брачных или супружеских пар населения. Брачность находится в тесной связи с воспроизводством населения выступая как один из важнейших факторов рождаемости и смертности.