7337

Энергия электрического поля

Лекция

Физика

Тема: Энергия электрического поля 1. Энергия уединенного заряженного проводника и системы заряженных проводников 2. Энергия заряженного конденсатора 3. Энергия электростатического поля. Объемная плотность энергии. 4. Пондеромоторные силы. Применение...

Русский

2013-01-21

73 KB

71 чел.

Тема: Энергия электрического поля

1. Энергия уединенного заряженного проводника

и системы заряженных проводников

2. Энергия заряженного конденсатора

3. Энергия электростатического поля. Объемная плотность энергии.

4. Пондеромоторные силы. Применение закона сохранения энергии к расчету пондеромоторных сил.

  1.  Энергия уединенного заряженного проводника и системы проводников

При сообщении проводнику некоторого заряда вокруг него возникает электрическое поле. Чтобы сообщить проводнику следующую порцию заряда необходимо совершить работу против сил этого поля. Так как электростатическое поле потенциально, то совершаемая работа идет на увеличение потенциальной энергии проводника.

Рассмотрим уединенный проводник с емкостью С и потенциалом . При перенесении заряда dQ из бесконечности на поверхность проводника необходимо совершить работу dA против сил поля

. (1)

Обе величины в правой части формулы (1) являются переменными. Используя связь между величинами С,  и Q приведем праву часть к одной переменной. Для этого  выразим dQ через и подставим в формулу (1)

. (2)

Чтобы найти работу по зарядке проводника от нулевого потенциала до некоторого потенциала  проинтегрируем выражение (2)

.(3)

По определению эта работа равна изменению потенциальной энергии. Поэтому энергия уединенного проводника, заряженного до потенциала  определяется формулой

. (4)

Используя связь между величинами С,  и Q формула (4) может быть представлена в нескольких видах

. (5)

Применяя принцип суперпозиции электрических полей можно получить следующую формулу для энергии системы из n неподвижных заряженных проводников

, (6)

где – потенциал суммарного поля в той точке, где находится проводник с зарядом Qi.

  1.  Энергия заряженного конденсатора

Процесс зарядки конденсатора можно представить как последовательное перемещение малых порций dQ заряда с одной пластины (обкладки) на другую. Если первоначально пластины нейтральны, то перенос, например, положительного заряда с первой пластины на вторую приведет к возникновению отрицательного заряда на первой пластине. Следовательно, в результате таких переносов первая пластина будет заряжаться отрицательно, а вторая – положительно. Между пластинами возникнет постепенно возрастающая разность потенциалов 12=U. Вывод формулы для энергии заряженного конденсатора аналогичен приведенному выше выводу формулы (4). Отличие состоит в замене потенциала    на разность потенциалов U

. (7)

Таким образом, формула для энергии заряженного конденсатора имеет следующий вид

. (8)

                                                                          

3. Энергия электростатического поля. Объемная плотность энергии.

При изучении поля неподвижных зарядов мы не можем рассматривать отдельно электрический заряд и созданное им электрическое поле. Поэтому, оставаясь в рамках электростатики, нельзя однозначно указать, является ли носителем электрической энергии электрический заряд либо электрическое поле. Изучение переменных электромагнитных полей показало, что они могут существовать отдельно от породивших их электрических зарядов и распространяться в пространстве в виде электромагнитных волн. Факт существования электромагнитных волн и переноса ими энергии позволяет утверждать, что энергия заряженных проводников сосредоточена в электрическом поле. Учитывая это, преобразуем формулу (7) для энергии заряженного конденсатора таким образом, чтобы в него входила характеристика поля – его напряженность.  Для этого в (7) вместо емкости С подставим выражение для емкости плоского конденсатора , а напряжение U заменим выражением  . Тогда для энергии заряженного конденсатора получим

. (9)

Произведение  в формуле (9) равно объему V, занимаемому электрическим полем. Поделив левую и правую части формулы (9) на объем V  получим формулу для объемной плотности энергии w (энергии, приходящейся на единицу объема)

или   . (10)

Учитывая связь электрического смещения D с поляризованностью Р диэлектрика ,  можно получить другую формулу для объемной плотности энергии электрического поля

. (11)

В формуле (11) первое слагаемое выражает плотность энергии электрического поля в вакууме, а второе слагаемое выражает энергию, затрачиваемую на поляризацию единицы объема диэлектрика.

В общем случае неоднородного электрического поля его энергию в некотором объеме V можно вычислить по формуле

. (12)

4. Пондеромоторные силы. Применение закона сохранения энергии к расчету пондеромоторных сил.

На всякое заряженное тело, помещенное в электрическое поле, действуют механическая сила. Пондеромоторными называются силы, действующие со стороны электрического поля на макроскопические заряженные тела.

Определим силу  взаимного притяжения между разноименно заряженными пластинами плоского конденсатора (пондеромоторную силу) двумя способами.

С одной стороны эту силу можно определить как силу F2 , действующую на вторую пластину со стороны первой

, (14)

где Q2 – величина заряда на второй пластине, E1– напряженность поля первой пластины.

Величина заряда Q2 второй пластины определяется формулой

, (15)

где σ2 – поверхностная плотность заряда на второй пластине, а напряженность Е1 поля, создаваемого первой пластиной вычисляется формулой

, (16)

где σ1 – поверхностная плотность заряда на первой пластине.

Подставим формулы (16) и (15) в формулу (14)

или  (17) т.к. σ1= σ2.

Учитывая, что , получим формулу для силы, действующей на одну пластину со стороны другой

.

Для силы, действующей на единицу площади пластины, формула будет иметь следующий вид

. (18)

Теперь получим формулу для пондеромоторной силы, используя закон сохранения энергии. Если тело перемещается в электрическом поле, то пондеромоторными силами поля будет совершаться работа А. По закону сохранения энергии эта работа будет совершаться за счет  энергии поля, то есть

или . (19)

Работа по изменению расстояния между пластинами заряженного конденсатора на величину dx определяется формулой

, (20)

где F – сила взаимодействия между обкладками (пондеромоторная сила).

Энергия заряженного конденсатора определяется формулой (9). При смещении одной из обкладок на расстояние dx  энергии  конденсатора изменится на величину  

(21).

Приравняв формулы (20) и (21), получим формулу для силы, действующей на единицу площади пластины

(22).

Как видим, формулы (18) и (22) одинаковые. Вместе с тем использование закона сохранения энергии для расчета пондеромоторных сил намного упрощает расчеты.

Вопросы для самопроверки:

1. Вывести формулу для энергии уединенного заряженного проводника и системы проводников.

2. Что является носителем электрической энергии? Что понимают под объемной плотностью энергии? Вывести формулу для  объемной плотности энергии электрического поля.

3. Что понимают под пондеромоторными силами? Как можно рассчитать силу взаимодействия обкладок заряженного конденсатора?


 

А также другие работы, которые могут Вас заинтересовать

47447. Филогенез систем органов хордовых. Мочеполовая система. Центральная нервная система. Эндокринная система 90.5 KB
  Образование головного мозга называют цефализацией. Совместная эволюция органов чувств и головного мозга приводит к возникновению динамических координации между обонятельными рецепторами и передним мозгом зрительными и средним слуховыми и задним. Внутри головного и спинного мозга расположена общая полость соответствующая невроцелю. В спинном мозге это спинномозговой канал а в головном желудочки мозга.
47448. Антропогенез 83.5 KB
  Место человека в системе животного мира 2. Методы изучения эволюции человека 3. Адаптивные экологические типы человека 4. Место человека в системе животного мира Неограниченный прогресс в эволюции живой материи проявился в возникновении человека как биосоциального существа.
47449. Общая экология. Основные понятия экологии 45 KB
  Факторы среды и адаптации к ним организмов. Среды жизни и адаптации к ним организмов 5. Связи организмов в экосистемах 1. Геккелем для обозначения науки изучающей о взаимоотношения организмов со средой обитания.
47450. Общая экология. Виды биологических ритмов 42 KB
  Динамика и развитие экосистем. Динамика экосистем 2. Динамика и развитие экосистем. Динамика экосистем Любая экосистема приспосабливаясь к изменениям внешней среды находится в состоянии динамики.
47451. Биология как наука. Общая характеристика жизни 44.5 KB
  Общая характеристика жизни. Общая характеристика жизни. Развитие представлений о сущности жизни. Определение жизни.
47452. Клетка – элементарная биологическая система 117 KB
  Вне клетки не существует настоящей жизнедеятельности. Исходя из предположения о схожести гомологичности растительных и животных клеток доказываемой одинаковым механизмом их возникновения Шванн обобщил многочисленные данные в виде теории согласно которой клетки являются структурной и функциональной основой живых существ. Ему принадлежит вывод о том что клетка может возникнуть лишь из предсуществующей клетки. Выдающаяся роль клетки как первоисточника жизни обусловливается тем что именно она является биологической единицей с помощью...
47453. Изменчивость и ее формы 41.5 KB
  Изменчивость и ее формы. Изменчивость как свойство живых систем Модификационная изменчивость. Наследственная генотипическая изменчивость
47454. Генетика человека. Нормальная наследственность человека 31.5 KB
  Генеалогический метод Популяционностатистический метод Близнецовый метод Метод дерматоглифики Цитогенетический метод Биохимические методы Методы рекомбинантной ДНК Методы генетики соматических клеток Карты хромосом 1. Генеалогический метод Генеалогический метод является наиболее старым методом генетики человека. Метод относительно прост и доступен. В методе составляются и ё анализируются семейные родословные что позволяет определить наследственный или ненаследственный характер заболевания отдельного симптома;...
47455. Медицинская генетика. Медико-генетическое консультирование 33.5 KB
  Наследственные болезни человека Генные болезни Хромосомные болезни Болезни с наследственным предрасположением