73480

ОСОБЕННОСТИ ХИМИЧЕСКИХ СВОЙСТВ АТОМАРНОГО КИСЛОРОДА И ВОДОРОДА

Курсовая

Химия и фармакология

В этой работе представлены некоторые особенности химических свойств атомарного водорода и кислорода. Химия этих элементов довольно интересна и разнообразна. Особенности химических свойств объясняются строением этих атомов.

Русский

2014-12-16

229.5 KB

1 чел.

КУРСОВАЯ РАБОТА

ОСОБЕННОСТИ ХИМИЧЕСКИХ СВОЙСТВ АТОМАРНОГО КИСЛОРОДА И ВОДОРОДА


СОДЕРЖАНИЕ

ВВЕДЕНИЕ………………………………………………………………………....................3


ГЛАВА 1. ВОДОРОД. КРАТКАЯ    ХАРАКТЕРИСТИКА………………………………..4

  1.  Физические свойства……………………………………..………………………....4
    1.  Строение атома водорода…………………………………………………………...5
    2.  Получение в промышленности………………….……………………………….....6
    3.  Получение в лаборатории…………………………………………………………..6
    4.  Химические свойства………………………..…………………………………...…7
      1.  Взаимодействие со щелочными и щелочноземельными металлами……...8
      2.  Взаимодействие с оксидами металлов (как правило, d-элементов)……………………………………………………………………..8
      3.  Гидрирование органических соединений……………………………….....9
    5.  Соединения водорода……………………………………………………………….9   

ГЛАВА 2. КИСЛОРОД. КРАТКАЯ ХАРАКТЕРИСТИКА КИСЛОРОДА……………..11

2.1. Физические свойства………………………….…………………..…………….…11

2.2.Получение……………………………………………..……………………...........12

2.3.Химические свойства……………………………………………………..………..12

2.3.1. Фториды кислорода………………………………....................................14

ЗАКЛЮЧЕНИЕ…………………………………………………….………………..……....16

ЛИТЕРАТУРА.........................................................................................................................17

ВВЕДЕНИЕ

Темой настоящего исследования явилось изучение особенностей химических свойств атомарного кислорода и водорода.

Актуальность этой работы заключается в исследовании этих свойств на примере некоторых химических реакций.

Важнейшая цель работы состояла в нахождении особенностей химических свойств атомарного кислорода и водорода.

При написании курсовой работы решался ряд задач:

  •  Рассмотрение физических свойств этих элементов и их некоторых соединений
  •  Определение особенностей химических свойств
  •  Изучение химии этих элементов
  •  Анализа этих элементов

Так же в этой работе рассматриваются физические свойства этих элементов, для того чтобы было легче понять химию кислорода и водорода.

Приводится несколько реакций, которые отображают особенности химических свойств атомарного кислорода и водорода.

Некоторое внимание уделяется краткой характеристике этих элементов и способам их получения.


Глава 1. ВОДОРОД. КРАТКАЯ ХАРАКТЕРИСТИКА

Водород - первый элемент периодической системы элементов; обозначается символом H. Название представляет собой кальку с латинского: лат. Hydrogenium (от др.-греч. ὕδωρ — «вода» и γεννάω — «рождаю») — «порождающий воду». Широко распространён в природе. Катион (и ядро) самого распространённого изотопа водорода 1H — протон.

Три изотопа водорода имеют собственные названия: 1H — протий (Н), 2H — дейтерий (D) и 3H — тритий (радиоактивен) (T).

Простое вещество водород - H2 - лёгкий бесцветный газ. В смеси с воздухом или кислородом горюч и взрывоопасен. Нетоксичен. Растворим в этаноле и ряде металлов: железе, никеле, палладии, титане, платине.

  1.  ФИЗИЧЕСКИЕ СВОЙСТВА

 Водород — самый лёгкий газ, он легче воздуха в 14,5 раз. Очевидно, что чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в семь раз выше теплопроводности воздуха.

Молекула водорода двухатомна — Н2. При нормальных условиях — это газ без цвета, запаха и вкуса. Плотность 0,08987 г/л (н. у.), температура кипения −252,76 °C, удельная теплота сгорания 120,9·106 Дж/кг, малорастворимый в воде — 18,8 мл/л.

Водород хорошо растворим во многих металлах (Ni, Pt, Pd и др.), особенно в палладии (850 объёмов H2 на 1 объём Pd). С растворимостью водорода в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия водорода с углеродом (так называемая декарбонизация). Практически не растворим в серебре.

Жидкий водород существует в очень узком интервале температур от −252,76 до −259,2 °C. Это бесцветная жидкость, очень лёгкая (плотность при −253 °C 0,0708 г/см³) и текучая (вязкость при −253 °C 13,8 сП.). Критические параметры водорода очень низкие: температура −240,2 °C и давление 12,8 атм. Этим объясняются трудности при ожижении водорода. В жидком состоянии равновесный водород состоит из 99,79 % пара-Н2, 0,21 % орто-Н2.

Твёрдый водород, температура плавления −259,2 °C, плотность 0,0807 г/см³ (при −262 °C) — снегоподобная масса, кристаллы гексагональной сингонии, пространственная группа P6/mmc, параметры ячейки a = 0,378 нм и c = 0,6167 нм. При высоком давлении водород переходит в металлическое состояние.

Молекулярный водород существует в двух спиновых формах (модификациях) — в виде орто- и параводорода. В молекуле ортоводорода o-H2(т. пл. −259,10 °C, т. кип. −252,56 °C) ядерные спины направлены одинаково (параллельны), а у параводорода p-H2 (т. пл. −259,32 °C, т. кип. −252,89 °C) — противоположно друг другу (антипараллельны). Равновесная смесь o-H2 и p-H2 при заданной температуре называется равновесный водород e-H2.

Разделить модификации водорода можно адсорбцией на активном угле при температуре жидкого азота. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону последнего. При 80 К соотношение форм приблизительно 1:1. Десорбированный параводород при нагревании превращается в ортоводород вплоть до образования равновесной при комнатной температуре смеси (орто-пара: 75:25). Без катализатора превращение происходит медленно (в условиях межзвёздной среды — с характерными временами вплоть до космологических), что даёт возможность изучить свойства отдельных модификаций.

  1.  СТРОЕНИЕ АТОМА ВОДОРОДА.

Радиальная зависимость dp(r)/dr плотности вероятности нахождения электрона в атоме водорода, находящемся в основном состоянии, представлена на рисунке. Эта зависимость даёт вероятность того, что электрон будет обнаружен в тонком шаровом слое радиуса r толщиной dr с центром в ядре. Площадь этого слоя равна S = 4πr2, его объём dV = 4πr2dr. Общая вероятность нахождения электрона в слое равна (4πr2dr) ψ2, поскольку в основном состоянии волновая функция электрона сферически симметрична (то есть постоянна в рассматриваемом шаровом слое). Рисунок 1 выражает зависимость dp(r)/dr = 4πr2ψ2. Кривая радиального распределения плотности вероятности dp(r)/dr нахождения электрона в атоме водорода имеет максимум приa0. Этот наиболее вероятный радиус совпадает с боровским радиусом. Размытое облако плотности вероятности, полученное при квантовомеханическом рассмотрении, значительно отличается от результатов теории Бора и согласуется с принципом неопределённости Гейзенберга. Это размытое сферически симметричное распределение плотности вероятности нахождения электрона, называемое электронной оболочкой, экранирует ядро и делает физическую систему протон-электрон электронейтральной и сферически симметричной — у атома водорода в основном состоянии отсутствуют электрический и магнитный дипольные моменты (как и моменты более высоких порядков), если пренебречь спинами электрона и ядра. Следует отметить, что максимум объёмной плотности вероятности ψ2 достигается не при r = a0, как для радиальной зависимости, а при r = 0.



Рисунок . Зависимость dp(r)/dr = 4πr2ψ2

  1.  ПОЛУЧЕНИЕ В ПРОМЫШЛЕННОСТИ
  •  Электролиз водных растворов солей:

  •  Пропускание паров воды над раскалённым коксом при температуре около 1000 °C:

  •  Конверсия с водяным паром при 1000 °C:

  •  Каталитическое окисление кислородом:

  •  Крекинг и риформинг углеводородов в процессе переработки нефти.
  •  Из природного газа.

  1.   ПОЛУЧЕНИЕ В ЛАБОРАТОРИИ

  •  Взаимодействие кальция с водой:

  •  Гидролиз гидридов:

  •  Действие щелочей на цинк или алюминий:

  •  С помощью электролиза. При электролизе водных растворов щелочей или кислот на катоде происходит выделение водорода, например:

          

  •  Действие разбавленных кислот на металлы. Для проведения такой реакции чаще всего используют цинк и разбавленную серную кислоту:

 

  1.  ХИМИЧЕСКИЕ СВОЙСТВА

Атом водорода имеет всего один электрон, поэтому при образовании химических соединений может легко отдавать его, либо образовывать одну общую электронную пару, либо присоединять еще один электрон, образуя двухэлектронную внешнюю оболочку, как у благородного газа гелия. Из-за малого заряда ядра атом водорода сравнительно слабо притягивает электроны и может присоединять их только в том случае, когда другой элемент легко их отдает. Такими элементами являются щелочные и щелочноземельные металлы, которые при нагревавши в атмосфере водорода образуют солеобразные соединения - гидриды:

  •  Молекулы водорода достаточно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия:

Очевидно, что затрачиваемая на эту реакцию энергия (энергия диссоциации) должна быть восполнена энергией, выделяющуюся при взаимодействии атомов водорода с введённым в реакцию веществом. Следовательно, можно ожидать, что реакция водорода, при которых выделяется менее 435 кДж/моль, не будет протекать самопроизвольно. В случае взаимодействия веществ с атомарным водородом такой затраты энергии на диссоциацию уже не требуется. Поэтому здесь и возможен значительно более широкий круг реакций.

Атомарный водород удобно получать действием на обычный водород тихого электрического разряда. При этом часть молекул распадается на атомы, которые под уменьшенным давлением соединяются в молекулы не моментально, благодаря чему и могут быть изучены химические свойства атомарного водорода. Аналогично водороду может быть получен в атомарном состоянии и кислород. Его химическая активность при переходе в атомарное состояние тоже резко возрастает.

Большое количество энергии, выделяющейся при образовании молекулы водорода, объясняет её устойчивость при обычных условиях. Вместе с тем оно же наводит на мысль о возможности термической диссоциации (разложения при нагревании) молекулы Н2, если сообщить ей достаточное количество тепла. Опыт показывает, что заметная термическая диссоциация водорода начинается примерно с 2000 °С и происходит тем в большей степени, чем выше температура. Наоборот, при понижении температуры отдельные атомы вновь соединяются в молекулы.

  •  Поэтому при обычных температурах водород реагирует только с очень активными металлами, например с кальцием, образуя гидрид кальция:

  •  и с единственным неметаллом — фтором, образуя фтороводород:

  •  С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например при освещении:

  •  Он может «отнимать» кислород от некоторых оксидов, например:

  •  Записанное уравнение отражает восстановительные свойства водорода.

  •  С галогенами образует галогеноводороды:

, реакция протекает со взрывом в темноте и при любой температуре,

, реакция протекает со взрывом, только на свету.

  •  С сажей взаимодействует при сильном нагревании:
  •  

1.5.1. ВЗАИМОДЕЙСТВИЕ С ЩЕЛОЧНЫМИ И ЩЕЛОЧНОЗЕМЕЛЬНЫМИ МЕТАЛЛАМИ

  •  При взаимодействии с активными металлами водород образует гидриды:

  •  Гидриды — солеобразные, твёрдые вещества, легко гидролизуются:

1.5.2. ВЗАИМОДЕЙСТВИЕ С ОКСИДАМИ МЕТАЛЛОВ (КАК ПРАВИЛО, d-ЭЛЕМЕНТОВ)

  •  Оксиды восстанавливаются до металлов:

1.5.3.ГИДРИРОВАНИЕ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

  •  Молекулярный водород широко применяется в органическом синтезе для восстановления органических соединений. Эти процессы называют реакциями гидрирования. Эти реакции проводят в присутствии катализатора при повышенных давлении и температуре. Катализатор может быть как гомогенным (напр. Катализатор Уилкинсона), так и гетерогенным (напр.никель Ренея, палладий на угле).
  •  Так, в частности, при каталитическом гидрировании ненасыщенных соединений, таких как алкены и алкины, образуются насыщенные соединения — алканы.

Однако эти реакции, в которых водород выступает как восстановитель, протекают лишь при нагревании. При высоких давлениях водород вытесняет некоторые металлы также из растворов их солей.

Опыт показывает, что химическая активность водорода иногда сильно повышается. Это наблюдается тогда, когда реагирующие с ним вещества находятся в непосредственном контакте с выделяющимся водородом. Повышенную активность такого водорода "в момент выделения" ("in statu nascendi") объясняется тем, что реагируют не молекулы Н2, а атомы.

Действительно, при реакциях получения водорода (например, действием цинка на кислоту) первоначально выделяются именно отдельные атомы. Если же у места их выделения имеется вещество, способное с ними реагировать, то такая реакция может происходить без предварительного образования молекул Н2.

Это представление было косвенно подтверждено, когда удалось получить атомарный водород в газообразном состоянии и изучить его реакционную способность. Оказалось, что он значительно активнее молекулярного. Так, атомарный водород уже при обычных условиях соединяется с серой, фосфором, мышьяком и т. д., восстанавливает оксиды многих металлов, вытесняет некоторые металлы (Cu, Pb, Ag и др.) из их солей и вступает в другие химические реакции, на которые при тех же условиях не способен обычный молекулярный водород.

1.6.СОЕДИНЕНИЯ ВОДОРОДА

Гидриды (бинарные соединения, содержащие водород) делятся на два основных типа:
а) летучие
 (молекулярные) гидриды,
б) солеобразные (ионные) гидриды.

Элементы IVА – VIIA групп и бор образуют молекулярные гидриды. Из них устойчивы только гидриды элементов, образующих неметаллы:

B2H6 ;CH4; NH3; H2O; HF
SiH
4 ;PH3;  H2S;  HCl
AsH
3; H2Se; HBr
H
2Te;  HI


   
За исключением воды, все эти соединения при комнатной температуре – газообразные вещества, отсюда их название – "летучие гидриды" .
Некоторые из элементов, образующих неметаллы, входят в состав и более сложных гидридов. Например, углерод образует соединения с общими формулами C
nH2n+2, CnH2n, CnH2n–2 и другие, где nможет быть очень велико (эти соединения изучает органическая химия).
   К ионным гидридам относятся гидриды щелочных, щелочноземельных элементов и магния. Кристаллы этих гидридов состоят из анионов Н
 и катионов металла в высшей степени окисления Меили Ме2 (в зависимости от группы системы элементов).

LiH

NaH

MgH2

KH

CaH2

RbH

SrH2

CsH

BaH2


  И ионные, и почти все молекулярные гидриды (кроме Н
2О и НF) являются восстановителями, но ионные гидриды проявляют восстановительные свойства значительно сильнее, чем молекулярные.
  Кроме гидридов, водород входит в состав гидроксидов и некоторых солей. Со свойствами этих, более сложных, соединений водорода вы познакомитесь в следующих главах. 
 Главными потребителями получаемого в промышленности водорода являются заводы по производству аммиака и азотных удобрений, где аммиак получают непосредственно из азота и водорода:

N2 +3H2  2NH3 (Рt, Pt – катализатор)


Глава 2. КИСЛОРОД. КРАТКАЯ ХАРАКТЕРИСТИКА

Кислород  — элемент 16-й группы (по устаревшей классификации — главной подгруппы VI группы), второго периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 8. Обозначается символом O(лат. Oxygenium). Кислород — химически активный неметалл, является самым лёгким элементом из группы халькогенов.

Простое вещество кислород (CAS-номер: 7782-44-7) при нормальных условиях — газ без цвета, вкуса и запаха, молекула которого состоит из двух атомов кислорода (формула O2), в связи с чем его также называют дикислород. Жидкий кислород имеет светло-голубой цвет, а твёрдый представляет собой кристаллы светло-синего цвета.

Существуют и другие аллотропные формы кислорода, например, озон (CAS-номер: 10028-15-6) — при нормальных условиях газ голубого цвета со специфическим запахом, молекула которого состоит из трёх атомов кислорода (формула O3).

Экспериментально установлено, что двухатомная молекула кислорода О2 содержит два неспаренных электрона. Используя метод валентных связей, такое электронное строение этой молекулы объяснить невозможно. Тем не менее, связь в молекуле кислорода близка по свойствам к ковалентной. Молекула кислорода неполярна. Межатомное расстояние (ro–o = 1,21 A = 121 нм) меньше, чем расстояние между атомами, связанными простой связью. Молярная энергия связи довольно велика и составляет 498 кДж/моль.

2.1. СТРОЕНИЕ АТОМА КИСЛОРОДА.

Кислород - замечательный элемент. Благодаря незаполненности электронной оболочки, на которой не хватает двух электронов, он обладает способностью вступать в реакции с другими элементами, являясь одним из самых активных химических элементов. Связанный кислород составляет более 85% гидросферы, более 45% литосферы и более 23% атмосферы. Кислород стоит на первом месте по числу образуемых минералов (1364), в живых организмах содержится около 70% кислорода, он входит в состав важнейших органических соединений - белков, жиров, амонокислот и т. д., в состав скелета. Исключительно велика роль кислорода в биохимических и физиологических процессах, особенно вдыхании. Практически все животные, растения и микроорганизмы (за исключением микробов-анаэробов) получают необходимую для жизнедеятельности энергию за счет биологического окисления различных веществ при помощи кислорода. Все окислительные процессы в природных водах, приводящие к самоочищению водных объектов, также протекают благодаря присутствию в воде кислорода.
В природе известны три разновидности кислорода - три стабильных изотопа кислорода: 16О, 18О (тяжелый) и 17О, среднее содержание которых составляет соответственно 99,759; 0,204 и 0,037% от общего числа атомов кислорода на Земле. Зги изотопы различаются количеством нейтральных частиц (нейтронов), входящих в состав ядра, при этом количество прогонов
в ядре одинаково и равно восьми. На рис. 2 приведено схематическое изображение атома кислорода. Особенностью атома кислорода является незаполненность внешней электронной оболочки; для этого не хватает двух электронов. Конфигурация атома кислорода записывается как 1s22s22р4 . Число электронов в атоме кислорода равно сумме верхних индексов при обозначении s- и p-орбиталей. На s-орбитали может присутствовать не более 2 электронов, на трех p-орбиталях - не более 6. S-орбитали у атома кислорода заняты полностью, на одной р-орбитали расположены два парных электрона, а двум p-орбиталям до заполнения не хватает 2 электронов. Способность атома кислорода к взаимодействию с другими веществами определяется именно этим.

2.2. ФИЗИЧЕСКИЕ СВОЙСТВА.

При нормальных условиях кислород — это газ без цвета, вкуса и запаха. 1 л его имеет массу 1,429 г. Немного тяжелее воздуха. Слабо растворяется в воде (4,9 мл/100 г при 0 °C, 2,09 мл/100 г при 50 °C) и спирте(2,78 мл/100 г при 25 °C). Хорошо растворяется в расплавленном серебре (22 объёма O2 в 1 объёме Ag при 961 °C). Является парамагнетиком.

При нагревании газообразного кислорода происходит его обратимая диссоциация на атомы: при 2000 °C — 0,03 %, при 2600 °C — 1 %, 4000 °C — 59 %, 6000 °C — 99,5 %.

Жидкий кислород (температура кипения −182,98 °C) — это бледно-голубая жидкость.

Твёрдый кислород (температура плавления −218,35°C) — синие кристаллы. Известны шесть кристаллических фаз, из которых три существуют при давлении в 1 атм.:

  •  α-О2 — существует при температуре ниже 23,65 К; ярко-синие кристаллы относятся к моноклинной сингонии, параметры ячейки a=5,403 Å, b=3,429 Å, c=5,086 Å; β=132,53°.
  •  β-О2 — существует в интервале температур от 23,65 до 43,65 К; бледно-синие кристаллы (при повышении давления цвет переходит в розовый) имеют ромбоэдрическую решётку, параметры ячейки a=4,21 Å, α=46,25°.
  •  γ-О2 — существует при температурах от 43,65 до 54,21 К; бледно-синие кристаллы имеют кубическую симметрию, период решётки a=6,83 Å.

Ещё три фазы образуются при высоких давлениях:

  •  δ-О2 интервал температур 20-240 К и давление 6-8 ГПа, оранжевые кристаллы;
  •  ε-О4 давление от 10 и до 96 ГПа, цвет кристаллов от тёмно-красного до чёрного, моноклинная сингония;
  •  ζ-Оn давление более 96 ГПа, металлическое состояние с характерным металлическим блеском, при низких температурах переходит в сверхпроводящее состояние.

2.3. ПОЛУЧЕНИЕ

В настоящее время в промышленности кислород получают из воздуха. Основным промышленным способом получения кислорода, является криогенная ректификация. Также хорошо известны и успешно применяются в промышленности кислородные установки, работающие на основе мембранной технологии.

В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением около 15 МПа.

   Небольшие количества кислорода можно получать нагреванием перманганата калия KMnO4:

Используют также реакцию каталитического разложения пероксида водорода Н2О2 в присутствии оксида марганца(IV):

Кислород можно получить каталитическим разложением хлората калия (бертолетовой соли) KClO3:

К лабораторным способам получения кислорода относится метод электролиза водных растворов щелочей, а также разложение оксида ртути(II) (при t = 100 °C):

На подводных лодках обычно получается реакцией пероксид натрия и углекислого газа, выдыхаемого человеком:

2.4. ХИМИЧЕСКИЕ СВОЙСТВА

  •  Сильный окислитель, взаимодействует практически со всеми элементами, образуя оксиды. Степень окисления −2. Как правило, реакция окисления протекает с выделением тепла и ускоряется при повышении температуры. Пример реакций, протекающих при комнатной температуре:

  •  Окисляет соединения, которые содержат элементы с не максимальной степенью окисления:

  •  Окисляет большинство органических соединений:

  •  При определённых условиях можно провести мягкое окисление органического соединения:

  •  Кислород реагирует непосредственно (при нормальных условиях, при нагревании и/или в присутствии катализаторов) со всеми простыми веществами, кроме Au и инертных газов (He, Ne, Ar, Kr, Xe, Rn); реакции с галогенами происходят под воздействием электрического разряда или ультрафиолета. Косвенным путём получены оксиды золота и тяжёлых инертных газов (Xe, Rn). Во всех двухэлементных соединениях кислорода с другими элементами кислород играет роль окислителя, кроме соединений со фтором.
  •  Кислород образует пероксиды со степенью окисления атома кислорода, формально равной −1.
  •  Например, пероксиды получаются при сгорании щелочных металлов в кислороде:

  •  Некоторые оксиды поглощают кислород:

  •  По теории горения, разработанной А. Н. Бахом и К. О. Энглером, окисление происходит в две стадии с образованием промежуточного пероксидного соединения. Это промежуточное соединение можно выделить, например, при охлаждении пламени горящего водорода льдом, наряду с водой, образуется пероксид водорода:

  •  В надпероксидах кислород формально имеет степень окисления −½, то есть один электрон на два атома кислорода (ион O2). Получают взаимодействием пероксидов с кислородом при повышенных давлении и температуре:

  •  Калий K, рубидий Rb и цезий Cs реагируют с кислородом с образованием надпероксидов:

  •  Озониды содержат ион O3 со степенью окисления кислорода, формально равной −1/3. Получают действием озона на гидроксиды щелочных металлов:

  •  В ионе диоксигенила O2+ кислород имеет формально степень окисления +½. Получают по реакции:

2.4.1. ФТОРИДЫ КИСЛОРОДА

  •  Дифторид кислорода, OF2 степень окисления кислорода +2, получают пропусканием фтора через раствор щелочи:

 

  •  Монофторид кислорода (Диоксидифторид), O2F2, нестабилен, степень окисления кислорода +1. Получают из смеси фтора с кислородом в тлеющем разряде при температуре −196 °C:

  •  Пропуская тлеющий разряд через смесь фтора с кислородом при определённых давлении и температуре, получают смеси высших фторидов кислорода O3F2, О4F2, О5F2 и О6F2.
  •  Квантовомеханические расчёты предсказывают устойчивое существование иона трифторгидроксония OF3+. Если этот ион действительно существует, то степень окисления кислорода в нём будет равна +4.
  •  Кислород поддерживает процессы дыхания, горения, гниения.
  •  В свободном виде элемент существует в двух аллотропных модификациях: O2 и O3 (озон).


ЗАКЛЮЧЕНИЕ

В этой работе представлены некоторые особенности химических свойств атомарного водорода и кислорода. Химия этих элементов довольно интересна и разнообразна. Особенности химических свойств объясняются строением этих атомов. Актуальность этой работы заключается в дальнейшем исследовании химических свойств этих элементов.


Литература

  •  Начала химии. Современный курс для поступающих в вузы: Учебное пособие для вузов /Н. Е. Кузьменко, В. В. Еремин, В. А. Попков. — М.: Издательство «Экзамен»,2008.
  •  Учебный справочник школьника. Учебное издание. — М.: Дрофа, 2011.
  •  Дигонский С. В., Тен В. В. Неизвестный водород. — СПб: Наука, 2006 ISBN 5-02-025114-3
  •  Редкол.:Кнунянц И. Л. (гл. ред.) Химическая энциклопедия: в 5 т. — Москва: Советская энциклопедия, 2009. — Т. 2. — С. 387. — 671 с. — 100 000 экз.
  •  Дикислород // Большая Энциклопедия Нефти Газа
  •  J. Priestley, Experiments and Observations on Different Kinds of Air, 1776.
  •  W. Ramsay, The Gases of the Atmosphere (the History of Their Discovery), Macmillan and Co, London, 1896.
  •  Inorganic Crystal Structure Database
  •  Margaret-Jane Crawford и Thomas M. Klapötke The trifluorooxonium cation, OF3(// Journal of Fluorine Chemistry. — 2012. — В. 2. — Т. 99. — С. 151-156. — DOI:10.1016/S0022-1139(99)00139-6
  •  Руководство для врачей скорой помощи / Михайлович В. А. — 2-е изд., перераб. и доп. — Л.: Медицина, 1990. — С. 28-33. — 544 с. — 120 000 экз. — ISBN 5-225-01503-4
  •  Food-Info.net : E-numbers : E948 : Oxygen.


 

А также другие работы, которые могут Вас заинтересовать

41939. Решение обычных дифференциальных уравнений в MathCad 87.45 KB
  Тема: решение обычных дифференциальных уравнений в MthCd. Цель работы: с использованием встроенных функций и блочной структуры найти решение обычных дифференциальных уравнений. Задание: 1 Найти решение обычного дифференциального уравнения y =fxy с использованием блока решений.
41940. Изучение внешнего и внутреннего законов фотоэффекта 83.44 KB
  Цель работы: Изучить законы фотоэффекта вычислить постоянную Планка вычислить работу выхода. Так как фотон движется со скоростью света то он обладает импульсом с абсолютной величиной p = mc = hv c Работа выхода. энергия ε которую нужно сообщить электрону для того чтобы он вырвался с максимальной скоростью Vm из пластины характеризуемой работой выхода А определяется соотношением: ε =1 2 mVm 2 А = eUeU0 где U0 =А e – потенциал...
41941. Изучение терморезистора. Определение константы 294.8 KB
  РТ21 Лабораторная работа № 9 Изучение терморезистора. Цель работы: Изучить терморезистор определить константу терморезистора В. Зависимость сопротивления терморезистора от температуры с достаточной точностью выражается формулой: 1 где А константа пропорциональная холодному сопротивлению терморезистора при 20 С В константа зависящая от физических свойств полупроводника терморезистора. Постоянная В является одной из важнейших характеристик терморезистора так как она определяет его температурный коэффициент...
41942. Исследование напряженного состояния тонкостенной цилиндрической оболочки 948.96 KB
  Внутренние силы и напряжения В соответствии с теорией расчета тонкостенные оболочки вращения находятся в плоском напряженном состоянии. В таких оболочках действуют кольцевые σк в первом главном сечении и меридиональные напряжения σм во втором главном сечении которые могут определяться через внутренние силы и моменты: где S меридиональная сила; Т кольцевая сила; М меридиональный момент; К кольцевой момент; δ толщина стенки; z координата точки в которой определяется напряжение; z изменяется в интервале от δ 2 до δ 2....
41943. Исследование колебаний вращающегося вала 214.31 KB
  Теоретический расчет частот собственных колебаний вала и деформаций возникающих при его вращении. Экспериментальное определение прогибов вращающегося вала в различных схемах нагружения. Изза неточности изготовления и сборки центры масс деталей как правило не находятся на оси вращения вала т.
41944. Определение напряжений в днищах, нагруженных внутреннем давлением 145.5 KB
  Теоретический расчет напряжений и деформаций в эллиптическом и плоском днищах, нагруженных внутренним давлением; Экспериментальное определение напряжений и деформаций в днищах, сравнение их с расчетными значениями; Сравнение днищ различной формы с точки зрения возникающих в них напряжений.
41945. Исследование распределения напряжений в эллиптическом и коническом днищах 385.56 KB
  Напряжения и деформации МПа МПа МПа Коническое днище МПа МПа 159 МПа Описание экспериментальной установки Основными элементами лабораторной установки рисунок 1 являются рабочая емкость 1 плунжерный насос 2 манометр 3 и бачок для масла. Обработка экспериментальных данных Деформации возникающие в стеке конического днища и эллиптического днища пропорциональны разности показаний где разность показаний от всех датчиков коэффициент тензочувствительности Используя закон Гука для плоского нагруженного состояния в котором находится...
41946. Анализ напряженного состояния аппарата, нагруженного внутренним давлением и изгибающим моментом 410.71 KB
  В соответствии с этой теорией меридиональные и кольцевые напряжения возникающие в стенке цилиндрической оболочки составляют: ; ; МПа МПагде r – радиус оболочки по срединной поверхности r = 01055м Из приведенных соотношений видно что напряжения вызванные внутренним давлением р постоянны не зависят от положения сечения на оболочке. При изгибе колонны в её стенках возникают нормальные в меридиональном направлении а также касательные напряжения которыми в виду их малости можно пренебречь. Меридиональные напряжения определяются по...
41947. РОЗРАХУНОК ПРИПУСКІВ НА МЕХАНІЧНУ ОБРОБКУ ОПТИЧНИХ ДЕТАЛЕЙ 19.86 MB
  Обладнання для виконання лабораторної роботи Оптичні деталі: лінза призма. Припуск zt на товщину по осі заготовок лінз та пластин встановлюють від верхньої межі допуску на розмір готової деталі. Величину zt яка лежить в межах від 18 до 80 мм призначають в залежності від діаметра Do круглих або найбільшої сторони некруглих пластин: Припуск zd на діаметр встановлюють від номінального розміру готової деталі від 15 до 120 мм. Призначають zd так як і припуск на товщину по осі в залежності від діаметра деталі.