73509

КС-грамматики и синтаксический анализ сверху вниз

Лекция

Информатика, кибернетика и программирование

Если возможно написать детерминированный анализатор, осуществляющий разбор сверху вниз, то такой анализатор принято называть LL(1)-грамматикой.

Русский

2014-12-17

215.5 KB

0 чел.

Лекция 2

3. КС-грамматики и синтаксический анализ сверху вниз

Если возможно написать детерминированный анализатор, осуществляющий разбор сверху вниз, то такой анализатор принято называть LL(1)-грамматикой.

3.1. Определения

Определение. Обозначения в написании LL(1)-грамматики означают:

  •  L  строки разбираются слева направо;
  •  L  используются самые левые выводы;
  •  1  варианты порождающего правила выбираются с помощью одного предварительного просмотра символа.

Т.е. грамматику называют LL(1)-грамматикой, если для каждого нетерминала, появляющегося в левой части более одного порождающего правила, множество направляющих символов, соответствующих правым частям альтернативных порождающих правил, – непересекающиеся.

Пример. Рассмотрим грамматику G = ({E, E´, T, T´, F}, {id, +, *, (, )}, P, E), где P =

(1) E  T E´

(2) E´ + T E´

(3) E´  e

(4) T  F T´

(5) T´ * F T´

(6) T´  e

(7) F  ( E )

(8) F  id

Нетерминал

Входной символ

id

+

*

(

)

$

E

(1)

(1)

E´

(2)

(3)

(3)

T

(4)

(4)

T´

(6)

(5)

(6)

(6)

F

(8)

(7)

Символом $ обозначается конец цепочки.

Пусть G = (N, Σ, P, S) – КС-грамматика. Обозначим вершину магазин как M (M  N  Σ {$}) текущий символ входной цепочки – как IN (IN  Σ {$}), а элемент таблицы разбора – как LT(A, a), где A  N, a  Σ. Тогда правила разбора будут следующими:

1) Положить в магазин S $

2) Если M  N, то

2.1) Если LT(M, IN) = A α, то

2.1.1) убрать из магазина A

2.1.2) положить в M правую часть правила α

2.1.3) Вывести правило A α

2.2) Иначе – ошибка

3) Иначе если M  Σ, то

3.1) Если M = IN = a, то

3.1.1) убрать a из M

3.1.2) убрать a из IN

3.2) Иначе – ошибка

4) Иначе

4.1) Если M = IN = $, то конец разбора

4.2) Иначе переход на шаг 2

Разбор:

Входная цепочка: id + id*id$

Магазин

Вход

Выход

E $

id + id*id$

E  T E´

T E´ $

id + id*id$

T  F Tґ

F Tґ Eґ $

id + id*id$

F  id

id Tґ Eґ $

id + id*id$

Tґ Eґ $

+ id*id$

Tґ  e

Eґ $

+ id*id$

Eґ + T Eґ

+ T Eґ $

+ id*id$

T Eґ $

id*id$

T  F Tґ

F Tґ Eґ $

id*id$

F  id

id Tґ Eґ $

id*id$

Tґ Eґ $

*id$

Tґ * F Tґ

* F Tґ Eґ $

*id$

F Tґ Eґ $

id$

F  id

id Tґ Eґ $

id$

Tґ Eґ $

$

Tґ  e

Eґ $

$

Eґ  e

$

$

Определение. Множество терминальных символов-предшественников определяется следующим образом:

a  S(α) α + aβ,

где

  •  α, β  – строки терминалов и/или нетерминалов, α, β (N  Σ)*;
  •  S(α) – множество символов-предшественников α, S(α) Σ {e}.

Это множество символов, с которых могут начинаться строки, выводимые из α.

Пример:

 P  Ac

 P  Bd

 A  a

 A  Aa

 B  b

 B  bB

Здесь символы a и b – символы-предшественники для P.

Определение. Множество терминальных символов-последователей определяется следующим образом:

a  F(A) αAβ + αaγ,

где

  •  Aнетерминал, A  N;
  •  α, β, γ  – строки терминалов и/или нетерминалов, α, β, γ (N  Σ)*;
  •  F(A) – множество символов-последователей A, F(A) Σ {$}.

Это множество символов, которые могут следовать за A.

В предыдущем примере a и c – символы-последователи для A (т.е. появляются непосредственно справа от A при выводе)

Определение. Если Aнетерминал, то его направляющими символами (T) будут символы-предшественники A и все символы, следующие за A, если A может генерировать пустую строку.

В общем случае, для заданной цепочки α и нетерминала A (Aα) имеем

T(A, α) = {a | (a  S(α)  ae) * e и a  F(A))}.

Пример:

 T  AB

 A  PQ

 A  BC

 P  pP

 P  e

 Q  qQ

 Q  e

 B  bB

 B  d

 C  cC

 C  f

Эта грамматика дает S(PQ) = {p, q}, S(BC) = {b, d}, поэтому T(A, PQ) = {p, q, b, d} и T(A, BC) = {b, d}.

Из определения LL(1)-грамматики следует, что эти грамматики можно разбирать детерминированно сверху вниз.

3.2. Построение множества символов-предшественников

Пусть G = (N, Σ, P, S) – КС-грамматика. Для произвольной цепочки α определим S(α) как множество терминалов, с которых начинаются строки, выводимые из α. Если α * e, то e также принадлежит S(α).

Алгоритм:

Пусть α = X1 X2Xn.

1) Положить S(α) =

2) i = 1

3) Вычисляем S(Xi)

3.1) Если Xi  Σ {e}, то S(Xi) = {Xi}

3.2) Иначе {Xj  βj}  P, j = 1, 2, …, m,

3.3) S(α) = S(α) (S(Xi) – {e})

3.4) Если e  S(Xi)

3.4.1) Если i < n, то i = i + 1, переход на шаг 3

3.4.2) Иначе S(α) = S(α) {e}, переход на шаг 4

3.5) Иначе переход на шаг 4

4) Конец алгоритма

Чтобы вычислить S(α) для всех нетерминалов грамматики, необходимо, пока удается добавлять новые элементы в какое-либо множество S(A), A  N, повторять алгоритм для каждого A  N. Это позводит в будущем более просто находить множество символов-предшественников для любой цепочки, т.к. упростится выполнение шага 3.

Пример:

S(E) = S(T) = {(, id}

S(E1´) = {+}

S(E2´) = {e}

S(T1´) = {*}

S(T2´) = {e}

S(F1) = {(}

S(F2) = {id}

3.3. Построение множества символов-последователей

Пусть G = (N, Σ, P, S) – КС-грамматика. Для нетерминала A  N определим F(A) как множество терминалов, с которых начинаются строки, выводимые в грамматике после A.

Алгоритм:

Пусть X  N.

1) Положить F(X) =

2) Положить F(S) = {$}

3) Пока удается добавлять новые элементы в какое-либо множество F(X), повторять

3.1) Пусть {A  αBβ}  P, B  N, α, β (N  Σ)* и β ≠ e, тогда F(B) = F(B) (S(β) – {e})

3.2) Если β = e или e  S(β) (т.е. β * e), то F(B) = F(B)  F(A)

Пример:

F(E) = F(E´) = {), $}

F(T) = F(T´) = {+, ), $}

F(F) = {+, *, ), $}

3.4. Построение таблицы разбора

Имея множества символов-предшественников и множества символов-последователей, легко построить множества направляющих символов T(X):

T(X) = (S(X) – {e}) {F(X) | e  S(X)}.

Пример:

T(E) = T(T) = {(, id}

T(E1´) = {+}

T(E2´) = {), $}

T(T1´) = {*}

T(T2´) = {+, ), $}

T(F1) = {(}

T(F2) = {id}

Также легко проверить, является ли грамматика грамматикой типа LL(1): если имеются альтернативы Ai  αi, i = 1, 2, …, n, то грамматика будет относиться к типу LL(1), если

T(Ai)  T(Aj) = , ij.

Пример:

T(E1´)  T(E2´) =

T(T1´)  T(T2´) =

Построение таблицы разбора:

1) Помечаем грамматику

Пусть Pi – правило с номером i из множества P, i = 1, 2, …, n. Тогда:

1) Полагаем i = 1, count = 0

2) Пусть Pi+k–1 = Ak  αk, k = 1, 2, …, p, тогда

2.1) I(Ak) = count + k, count = count + p

2.2) Для каждой цепочки αk = X1, X2, …, Xm, где m = |αk|, полагаем

2.2.1) I(Xj) = count + j, j = 1, 2, …, m

2.2.2) count = count + m

3) i = i + 1

4) Если i < n, переход на шаг 2, иначе – конец алгоритма

Для рассмотренного выше примера

(1) E (1)  T (2) E´ (3)

(2) E´ (4)  + (6) T (7) E´ (8)

(3) E´ (5)  e (9)

(4) T (10)  F (11) T´ (12)

(5) T´ (13)  * (15) F (16) T´ (17)

(6) T´ (14)  e (18)

(7) F (19)  ( (21) E (22) ) (23)

(8) F (20)  id (24)

2) Строим множества T(X)

3) Заполняем таблицу

Введем множество индексов элементов правил, стоящих по левую сторону от знака вывода (L). В нашем случае L = {1, 4, 5, 10, 13, 14, 19, 20}. Введем также множество индексов элементов правил, являющихся самыми правыми в своем правиле (R). В нашем случае R = {3, 8, 9, 12, 17, 18, 23, 24}.

Тогда

ID

X

Terminals

Jump

Accept

Stack

Return

Error

1

E 

(, id

2

2

T

(, id

10

true

3

E´

+, ), $

4

4

E´

+

6

false

5

E´

), $

9

6

+

+

7

true

7

T

(, id

10

true

8

E´

+, ), $

4

9

e

), $

0

true

10

T 

(, id

11

11

F

(, id

19

true

12

T´

+, *, ), $

13

13

T´

*

15

false

14

T´

+, ), $

18

15

*

*

16

true

16

F

(, id

19

true

17

T´

+, *, ), $

13

18

e

+, ), $

0

true

19

F 

(

21

false

20

F 

id

24

21

(

(

22

true

22

E

(, id

1

true

23

)

)

0

true

true

24

id

id

0

true

true

3.5. Алгоритм разбора

1) Положить в M элемент 0 (M ← 0), i = 1

2) Если IN  Terminalsi, то

2.1) Если Accepti = true, то перейти к следующему символу в IN

2.2) Если Stacki = true, то добавить в M индекс i (Mi)

2.3) Если Returni = true, то

2.3.1) k = M, убрать k из M (Mk)

2.3.2) Если k = 0, переход на шаг 4

2.3.2) i = k + 1

2.3.3) Переход на шаг 2

2.4) Если Jumpi ≠ 0, то

2.4.1) i = Jumpi

2.4.2) Переход на шаг 2

3) Иначе если Errori = false, то

3.1) i = i + 1

3.2) Переход на шаг 2

4) Если M не пуст, то ошибка, иначе разбор успешен

Разбор цепочки id + id*id$

Магазин

Вход

i

Действие

0

id + id*id$

1

jump = 2

0

id + id*id$

2

stack, jump = 10

2 0

id + id*id$

10

jump = 11

2 0

id + id*id$

11

stack, jump = 19

11 2 0

id + id*id$

19

error = false, i = 20

11 2 0

id + id*id$

20

jump = 24

11 2 0

id + id*id$

24

accept, return

2 0

+ id*id$

12

jump = 13

2 0

+ id*id$

13

error = false, i = 14

2 0

+ id*id$

14

jump = 18

2 0

+ id*id$

18

return

0

+ id*id$

3

jump = 4

0

+ id*id$

4

jump = 6

0

+ id*id$

6

accept, jump = 7

0

id*id$

7

stack, jump = 10

8 0

id*id$

10

jump = 11

8 0

id*id$

11

stack, jump = 19

12 8 0

id*id$

19

error = false, i = 20

12 8 0

id*id$

20

jump = 24

12 8 0

id*id$

24

accept, return

8 0

*id$

13

jump = 15

8 0

*id$

15

accept, jump = 16

8 0

id$

16

stack, jump = 19

17 8 0

id$

19

error = false, i = 20

17 8 0

id$

20

jump = 24

17 8 0

id$

24

accept, return

8 0

$

18

return

0

$

9

return

$

success


 

А также другие работы, которые могут Вас заинтересовать

80495. ЛИТОВСЬКО-РУСЬКА ДЕРЖАВА ТА ПРАВО (друга пол. XIV - перша пол. XVI ст.) 67.08 KB
  Державною мовою тут була давньоруська близька до української та білоруської Руська правда стала основним джерелом права литовська знать хреститься руськими іменами приймає православну віру. Йому підлягали старости військо був вищою апеляційною інстанцією в судових справах мав виключне право надання в користування земельних володінь. Московські політики твердили про спадкові права московських князів про шапку Мономаха яка ніби то доводить їхні спадкові права на Візантію і на Київ. Придбання шляхтичем маєтку не позбавляло селян що...
80496. Господарство та економічна думка суспільства Європейської цивілізації в період Середньовіччя ( V – XV ст.) 63.5 KB
  Загальна характеристика господарства Європи в V XV ст. Особливості розвитку сільського господарства. Загальна характеристика господарства Європи в V XV ст. Господарство Середньовіччя характеризується такими загальними ознаками: панування приватної власності основою якої була земля у формі феода умовнослужбове спадкове надання що дало назву системі господарства; монополія феодалів на землю яка виявлялася в принципі Немає землі без сеньйора умовний характер ієрархічна структура земельної власності що ґрунтувалася на васальних...
80497. Формування передумов ринкової економіки в країнах Європейської цивілізації (XVI – перша половина XVII ст.) 54.5 KB
  Основні аспекти розвитку господарства країн Західної Європи. Особливості економічного розвитку країн Центральної ПівденноСхідної і Східної Європи. Основні аспекти розвитку господарства країн Західної Європи Протягом 1618 ст. В економічному розвитку Західної Європи велику роль відіграли географічні відкриття кінця ХV початку XVI ст.
80498. Розвиток ринкового господарства в період становлення національних держав (друга половина XVII - перша половина XIX ст.) 113.5 KB
  Петті не був послідовним у своїй теорії трудової вартості. Звідси він змішує абстрактну працю як джерело вартості з конкретною працею як джерелом споживної вартості. Дійсно у створенні споживної вартості беруть участь і праця і земля: Труд батько багатства земля його мати . Але джерелом вартості згідно з теорією трудової вартості може бути тільки праця.
80499. Ринкове господарство країн Європейської цивілізації в період монополістичної конкуренції (друга половина XIX - початок ХХ ст.) 128 KB
  Основним його змістом були структурні зрушення в національних господарствах окремих країн внаслідок яких зявились нові й модернізувалися старі галузі виробництва змінювалась їхня роль в економіці. Почалася електрифікація виробництва транспорту побуту. Зростання продуктивних сил виникнення нових капіталомістких технологій вимагали значного укрупнення виробництва і великих капіталовкладень. Посилився процес концентрації виробництва і централізації капіталу.
80500. Предмет і методи історії економіки та економічної думки 57.5 KB
  Предмет і методи історії економіки та економічної думки 1. Предмет історії економіки та економічної думки. Періодизація історії економіки та економічної думки. Предмет історії економіки та економічної думки Економічне життя суспільства є надзвичайно багатогранним.
80501. Господарство первісного суспільства та його еволюція на етапі ранніх цивілізацій 74 KB
  Кожному із цих етапів світової історії були притаманні певні риси особливості здобутки матеріальної культури заняття та знаряддя праці. Для нього були характерними примітивні знаряддя праці збиральництво мисливство рибальство як основні види господарювання що свідчило про привласнювальний характер цієї епохи. У мезоліті середньому кам\'яному віці вдосконалювалися знаряддя праці первісних людей. Визначальними рисами міднобронзового віку були існування відтворюючого господарства швидкий розвиток орного землеробства тваринництва...
80502. Особливості господарського розвитку та економічної думки періоду формування світових цивілізацій (VІІІ ст. до н.е. – V ст. н.е.) 57 KB
  Особливості господарського розвитку та економічної думки періоду формування світових цивілізацій VІІІ ст. Це виявилося в економічному розвитку Греції і Риму. прогрес у землеробстві привів до відокремлення ремесла від сільського господарства й розвитку торгівлі між окремими районами Греції. Господарство Спарти було відсталим грошовий обмін не набув розвитку.
80503. Розроблення інвестиційної стратегії підприємства 199 KB
  Поняття інвестиційної стратегії її звязок із загальною стратегією економічного розвитку підприємства порядок розроблення. Принципи і послідовність розробки інвестиційної стратегії підприємств. Основні підходи до обґрунтування стратегічних цілей напрямів та форм інвестиційної діяльності.