73509

КС-грамматики и синтаксический анализ сверху вниз

Лекция

Информатика, кибернетика и программирование

Если возможно написать детерминированный анализатор, осуществляющий разбор сверху вниз, то такой анализатор принято называть LL(1)-грамматикой.

Русский

2014-12-17

215.5 KB

1 чел.

Лекция 2

3. КС-грамматики и синтаксический анализ сверху вниз

Если возможно написать детерминированный анализатор, осуществляющий разбор сверху вниз, то такой анализатор принято называть LL(1)-грамматикой.

3.1. Определения

Определение. Обозначения в написании LL(1)-грамматики означают:

  •  L  строки разбираются слева направо;
  •  L  используются самые левые выводы;
  •  1  варианты порождающего правила выбираются с помощью одного предварительного просмотра символа.

Т.е. грамматику называют LL(1)-грамматикой, если для каждого нетерминала, появляющегося в левой части более одного порождающего правила, множество направляющих символов, соответствующих правым частям альтернативных порождающих правил, – непересекающиеся.

Пример. Рассмотрим грамматику G = ({E, E´, T, T´, F}, {id, +, *, (, )}, P, E), где P =

(1) E  T E´

(2) E´ + T E´

(3) E´  e

(4) T  F T´

(5) T´ * F T´

(6) T´  e

(7) F  ( E )

(8) F  id

Нетерминал

Входной символ

id

+

*

(

)

$

E

(1)

(1)

E´

(2)

(3)

(3)

T

(4)

(4)

T´

(6)

(5)

(6)

(6)

F

(8)

(7)

Символом $ обозначается конец цепочки.

Пусть G = (N, Σ, P, S) – КС-грамматика. Обозначим вершину магазин как M (M  N  Σ {$}) текущий символ входной цепочки – как IN (IN  Σ {$}), а элемент таблицы разбора – как LT(A, a), где A  N, a  Σ. Тогда правила разбора будут следующими:

1) Положить в магазин S $

2) Если M  N, то

2.1) Если LT(M, IN) = A α, то

2.1.1) убрать из магазина A

2.1.2) положить в M правую часть правила α

2.1.3) Вывести правило A α

2.2) Иначе – ошибка

3) Иначе если M  Σ, то

3.1) Если M = IN = a, то

3.1.1) убрать a из M

3.1.2) убрать a из IN

3.2) Иначе – ошибка

4) Иначе

4.1) Если M = IN = $, то конец разбора

4.2) Иначе переход на шаг 2

Разбор:

Входная цепочка: id + id*id$

Магазин

Вход

Выход

E $

id + id*id$

E  T E´

T E´ $

id + id*id$

T  F Tґ

F Tґ Eґ $

id + id*id$

F  id

id Tґ Eґ $

id + id*id$

Tґ Eґ $

+ id*id$

Tґ  e

Eґ $

+ id*id$

Eґ + T Eґ

+ T Eґ $

+ id*id$

T Eґ $

id*id$

T  F Tґ

F Tґ Eґ $

id*id$

F  id

id Tґ Eґ $

id*id$

Tґ Eґ $

*id$

Tґ * F Tґ

* F Tґ Eґ $

*id$

F Tґ Eґ $

id$

F  id

id Tґ Eґ $

id$

Tґ Eґ $

$

Tґ  e

Eґ $

$

Eґ  e

$

$

Определение. Множество терминальных символов-предшественников определяется следующим образом:

a  S(α) α + aβ,

где

  •  α, β  – строки терминалов и/или нетерминалов, α, β (N  Σ)*;
  •  S(α) – множество символов-предшественников α, S(α) Σ {e}.

Это множество символов, с которых могут начинаться строки, выводимые из α.

Пример:

 P  Ac

 P  Bd

 A  a

 A  Aa

 B  b

 B  bB

Здесь символы a и b – символы-предшественники для P.

Определение. Множество терминальных символов-последователей определяется следующим образом:

a  F(A) αAβ + αaγ,

где

  •  Aнетерминал, A  N;
  •  α, β, γ  – строки терминалов и/или нетерминалов, α, β, γ (N  Σ)*;
  •  F(A) – множество символов-последователей A, F(A) Σ {$}.

Это множество символов, которые могут следовать за A.

В предыдущем примере a и c – символы-последователи для A (т.е. появляются непосредственно справа от A при выводе)

Определение. Если Aнетерминал, то его направляющими символами (T) будут символы-предшественники A и все символы, следующие за A, если A может генерировать пустую строку.

В общем случае, для заданной цепочки α и нетерминала A (Aα) имеем

T(A, α) = {a | (a  S(α)  ae) * e и a  F(A))}.

Пример:

 T  AB

 A  PQ

 A  BC

 P  pP

 P  e

 Q  qQ

 Q  e

 B  bB

 B  d

 C  cC

 C  f

Эта грамматика дает S(PQ) = {p, q}, S(BC) = {b, d}, поэтому T(A, PQ) = {p, q, b, d} и T(A, BC) = {b, d}.

Из определения LL(1)-грамматики следует, что эти грамматики можно разбирать детерминированно сверху вниз.

3.2. Построение множества символов-предшественников

Пусть G = (N, Σ, P, S) – КС-грамматика. Для произвольной цепочки α определим S(α) как множество терминалов, с которых начинаются строки, выводимые из α. Если α * e, то e также принадлежит S(α).

Алгоритм:

Пусть α = X1 X2Xn.

1) Положить S(α) =

2) i = 1

3) Вычисляем S(Xi)

3.1) Если Xi  Σ {e}, то S(Xi) = {Xi}

3.2) Иначе {Xj  βj}  P, j = 1, 2, …, m,

3.3) S(α) = S(α) (S(Xi) – {e})

3.4) Если e  S(Xi)

3.4.1) Если i < n, то i = i + 1, переход на шаг 3

3.4.2) Иначе S(α) = S(α) {e}, переход на шаг 4

3.5) Иначе переход на шаг 4

4) Конец алгоритма

Чтобы вычислить S(α) для всех нетерминалов грамматики, необходимо, пока удается добавлять новые элементы в какое-либо множество S(A), A  N, повторять алгоритм для каждого A  N. Это позводит в будущем более просто находить множество символов-предшественников для любой цепочки, т.к. упростится выполнение шага 3.

Пример:

S(E) = S(T) = {(, id}

S(E1´) = {+}

S(E2´) = {e}

S(T1´) = {*}

S(T2´) = {e}

S(F1) = {(}

S(F2) = {id}

3.3. Построение множества символов-последователей

Пусть G = (N, Σ, P, S) – КС-грамматика. Для нетерминала A  N определим F(A) как множество терминалов, с которых начинаются строки, выводимые в грамматике после A.

Алгоритм:

Пусть X  N.

1) Положить F(X) =

2) Положить F(S) = {$}

3) Пока удается добавлять новые элементы в какое-либо множество F(X), повторять

3.1) Пусть {A  αBβ}  P, B  N, α, β (N  Σ)* и β ≠ e, тогда F(B) = F(B) (S(β) – {e})

3.2) Если β = e или e  S(β) (т.е. β * e), то F(B) = F(B)  F(A)

Пример:

F(E) = F(E´) = {), $}

F(T) = F(T´) = {+, ), $}

F(F) = {+, *, ), $}

3.4. Построение таблицы разбора

Имея множества символов-предшественников и множества символов-последователей, легко построить множества направляющих символов T(X):

T(X) = (S(X) – {e}) {F(X) | e  S(X)}.

Пример:

T(E) = T(T) = {(, id}

T(E1´) = {+}

T(E2´) = {), $}

T(T1´) = {*}

T(T2´) = {+, ), $}

T(F1) = {(}

T(F2) = {id}

Также легко проверить, является ли грамматика грамматикой типа LL(1): если имеются альтернативы Ai  αi, i = 1, 2, …, n, то грамматика будет относиться к типу LL(1), если

T(Ai)  T(Aj) = , ij.

Пример:

T(E1´)  T(E2´) =

T(T1´)  T(T2´) =

Построение таблицы разбора:

1) Помечаем грамматику

Пусть Pi – правило с номером i из множества P, i = 1, 2, …, n. Тогда:

1) Полагаем i = 1, count = 0

2) Пусть Pi+k–1 = Ak  αk, k = 1, 2, …, p, тогда

2.1) I(Ak) = count + k, count = count + p

2.2) Для каждой цепочки αk = X1, X2, …, Xm, где m = |αk|, полагаем

2.2.1) I(Xj) = count + j, j = 1, 2, …, m

2.2.2) count = count + m

3) i = i + 1

4) Если i < n, переход на шаг 2, иначе – конец алгоритма

Для рассмотренного выше примера

(1) E (1)  T (2) E´ (3)

(2) E´ (4)  + (6) T (7) E´ (8)

(3) E´ (5)  e (9)

(4) T (10)  F (11) T´ (12)

(5) T´ (13)  * (15) F (16) T´ (17)

(6) T´ (14)  e (18)

(7) F (19)  ( (21) E (22) ) (23)

(8) F (20)  id (24)

2) Строим множества T(X)

3) Заполняем таблицу

Введем множество индексов элементов правил, стоящих по левую сторону от знака вывода (L). В нашем случае L = {1, 4, 5, 10, 13, 14, 19, 20}. Введем также множество индексов элементов правил, являющихся самыми правыми в своем правиле (R). В нашем случае R = {3, 8, 9, 12, 17, 18, 23, 24}.

Тогда

ID

X

Terminals

Jump

Accept

Stack

Return

Error

1

E 

(, id

2

2

T

(, id

10

true

3

E´

+, ), $

4

4

E´

+

6

false

5

E´

), $

9

6

+

+

7

true

7

T

(, id

10

true

8

E´

+, ), $

4

9

e

), $

0

true

10

T 

(, id

11

11

F

(, id

19

true

12

T´

+, *, ), $

13

13

T´

*

15

false

14

T´

+, ), $

18

15

*

*

16

true

16

F

(, id

19

true

17

T´

+, *, ), $

13

18

e

+, ), $

0

true

19

F 

(

21

false

20

F 

id

24

21

(

(

22

true

22

E

(, id

1

true

23

)

)

0

true

true

24

id

id

0

true

true

3.5. Алгоритм разбора

1) Положить в M элемент 0 (M ← 0), i = 1

2) Если IN  Terminalsi, то

2.1) Если Accepti = true, то перейти к следующему символу в IN

2.2) Если Stacki = true, то добавить в M индекс i (Mi)

2.3) Если Returni = true, то

2.3.1) k = M, убрать k из M (Mk)

2.3.2) Если k = 0, переход на шаг 4

2.3.2) i = k + 1

2.3.3) Переход на шаг 2

2.4) Если Jumpi ≠ 0, то

2.4.1) i = Jumpi

2.4.2) Переход на шаг 2

3) Иначе если Errori = false, то

3.1) i = i + 1

3.2) Переход на шаг 2

4) Если M не пуст, то ошибка, иначе разбор успешен

Разбор цепочки id + id*id$

Магазин

Вход

i

Действие

0

id + id*id$

1

jump = 2

0

id + id*id$

2

stack, jump = 10

2 0

id + id*id$

10

jump = 11

2 0

id + id*id$

11

stack, jump = 19

11 2 0

id + id*id$

19

error = false, i = 20

11 2 0

id + id*id$

20

jump = 24

11 2 0

id + id*id$

24

accept, return

2 0

+ id*id$

12

jump = 13

2 0

+ id*id$

13

error = false, i = 14

2 0

+ id*id$

14

jump = 18

2 0

+ id*id$

18

return

0

+ id*id$

3

jump = 4

0

+ id*id$

4

jump = 6

0

+ id*id$

6

accept, jump = 7

0

id*id$

7

stack, jump = 10

8 0

id*id$

10

jump = 11

8 0

id*id$

11

stack, jump = 19

12 8 0

id*id$

19

error = false, i = 20

12 8 0

id*id$

20

jump = 24

12 8 0

id*id$

24

accept, return

8 0

*id$

13

jump = 15

8 0

*id$

15

accept, jump = 16

8 0

id$

16

stack, jump = 19

17 8 0

id$

19

error = false, i = 20

17 8 0

id$

20

jump = 24

17 8 0

id$

24

accept, return

8 0

$

18

return

0

$

9

return

$

success


 

А также другие работы, которые могут Вас заинтересовать

22413. Множества. Числовые множества 256 KB
  Множества. Числовые множества План 1. Множества. Подмножества.
22414. Отображения. Числовые функции 326.5 KB
  Отображением f множества X в множество Y называется всякое правило которое любому элементу xX ставит единственный элемент y обозначаемый fx. Бинарным отношением f между множествами X и Y называется любое подмножество множества XY. Бинарное отношение f между множествами X и Y называется отображением множества X в множество Y если для любого элемента xX существует один и только один элемент yY такой что x yf . Отображение f множества X в Y называется также функцией определенной на множестве X со значениями в множестве Y.
22415. Числовая последовательность и ее предел 211.5 KB
  Числовая последовательность и ее предел Числовая последовательность и свойства последовательностей. Числовая последовательность и свойства последовательностей. Числовой последовательность или просто последовательность называется функция f определенная на множестве натуральных чисел N значения которой числа действительные или комплексные. Последовательность обозначаем через ее значения : x1 x2 x3 xn или кратко {xn}.
22416. Предел функции 329.5 KB
  Предел функции Предел функции в точке по Коши и по Гейне. Предел функции на бесконечности. Бесконечно малые и бесконечно большие функции и их свойства. Свойства предела функции.
22417. Україна у Другій Світовій війні та першому повоєнному десятиріччі (1939 – 1955 рр.) 49 KB
  Напередодні Другої світової війни населення Західної України становило близько 7 мли осіб. На всіх цих землях панувала іноземна адміністрація, яка проводила колонізаційну політику. Це викликало обурення українців, призводило до спротиву офіційним властям
22418. Сравнения функций. Свойства функций, непрерывных на отрезке 218.5 KB
  Если предел 1 равен 0 то функция fx называется бесконечно малой более высокого порядка чем gx при x  a а функция gx называется бесконечно малой более низкого порядка чем fx при x  a. Если предел 1 равен   то функция fx является бесконечно малой болей низкого порядка чем gx при x  a а gx функция является бесконечно малой более высокого порядка чем fx при x  a. Если предел 1 равен   то функция является бесконечно большой при x  a. Тогда по свойству бесконечно малых функция бесконечно малая при...
22419. Производная и дифференциал функции одной переменной 224 KB
  Производная и дифференциал функции одной переменной Приращение аргумента и приращение функции. Понятие функции дифференцируемой в точке. Дифференциал функции. Производная функции.
22420. Теоремы о дифференцируемых функциях. Производные и дифференциалы высших порядков 246.5 KB
  Производные и дифференциалы высших порядков Возрастание и убывание функции в точке. Точки экстремума функции. Линеаризация функции. Приближенное вычисление значений функции.
22421. Правила Лопиталя. Формула Тейлора 245 KB
  Формула Тейлора. Формула Тейлора с остаточным членом в форме Пеано. Формула Тейлора с остаточным членом в форме Лагранжа. Разложение основных элементарных функций по формуле Тейлора.