7353

Явление электромагнитной индукции

Лекция

Физика

Тема: Явление электромагнитной индукции. Явление электромагнитной индукции (опыты Фарадея). Правило Ленца. Закон электромагнитной индукции. Поток сцепленный с контуром. Индуктивность. Индуктивность соленоида. Явление самоиндукции...

Русский

2013-01-21

115 KB

282 чел.

Тема: Явление электромагнитной индукции

1. Явление электромагнитной индукции (опыты Фарадея). Правило Ленца.

2. Закон электромагнитной индукции.

3. Поток сцепленный с контуром.

Индуктивность.  Индуктивность соленоида.

4. Явление самоиндукции.

5. Установление тока при замыкании

 

и исчезновение тока при размыкании электрической цепи

 

1. Явление электромагнитной индукции (опыты Фарадея). Правило Ленца.

В предыдущих лекциях было показано, что электрические токи создают вокруг себя магнитное поле. Существует и обратное явление – магнитное поле вызывает появление электрических токов. Это явление было открыто М. Фарадеем в 1831г. и получило название электромагнитной индукции.

Электромагнитной индукцией называется явление возникновения ЭДС (электрического тока) в проводящем контуре при изменении магнитного потока, охватываемого этим контуром.

Электромагнитную индукцию Фарадей наблюдал в следующих опытах:

– при вдвигании или выдвигании магнита в катушку, подсоединенную к гальванометру;

– при приближении или удалении катушки с постоянным током к другой катушке, подсоединенной к гальванометру;

– в случае двух неподвижных, близко расположенных катушек, когда через одну из них протекает изменяющийся ток (например, при включении или выключении источника питания), а вторая подсоединена к гальванометру.

Во всех перечисленных опытах электромагнитная индукция проявляется в отклонении стрелки гальванометра, подсоединенного к катушке.

Такими простыми опытами были установлены основные закономерности электромагнитной индукции:

– причиной возникновения ЭДС индукции является изменение магнитного потока;

– величина ЭДС индукции определяется скоростью изменения магнитного потока;

– знак ЭДС противоположен знаку изменения магнитного потока.

Знак ЭДС определяется общим правилом нахождения направления индукционного тока, правилом Ленца:

индукционный ток всегда имеет такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызвавшего этот индукционный ток.

 

При приближении магнита к проводящему контуру магнитный поток Ф1 увеличивается и в контуре  наводится индукционный ток I1, который своим магнитным полем В1 препятствует возрастанию магнитного потока (приближению магнита). При удалении магнита от контура магнитный поток Ф2 уменьшается и в нем наводится ток I2 противоположного направления, который своим магнитным полем В2 препятствует уменьшению магнитного потока (удалению магнита).

2. Закон электромагнитной индукции.

На основе результатов опытов Фарадея и правила Ленца был установлен закон электромагнитной индукции, который гласит, что

ЭДС электромагнитной индукции, возникающая в замкнутом контуре, численно равна и противоположна по знаку скорости изменения магнитного потока, охватываемого этим контуром.

Математическая формула закона электромагнитной индукции имеет следующий вид

. (1)

Из формулы (1) следует, что при увеличении магнитного потока (∆Ф>0) ЭДС индукции имеет отрицательный знак, а при уменьшении магнитного потока (∆Ф<0) ЭДС имеет положительный знак.

Возникновение индукционного тока в неподвижном проводнике английский ученый Максвелл объяснил возникновением в нем электрического поля, которое порождается переменным магнитным полем. Циркуляция вектора напряженности ЕВ этого поля по любому неподвижному проводящему контуру L представляет собой ЭДС электромагнитной индукции

. (2)

3. Поток, сцепленный с контуром. Индуктивность. Индуктивность длинного соленоида.

Если по контуру протекает электрический ток I, то вокруг него возникает магнитное поле с индукцией В, определяемой законом Био-Савара-Лапласа. Силовые линии поля, пересекая поверхность, охватываемую этим контуром, будут создавать магнитный поток Ф. Этот поток называют магнитным потоком, сцепленным с контуром т.к. он создан самим контуром.

Поскольку магнитный поток пропорционален магнитной индукции, а магнитная индукция пропорциональна силе тока, то магнитный поток пропорционален силе тока

, (3)

где коэффициент пропорциональности L выражает свойства контура и называется индуктивностью. Из формулы (3) можно получить размерность и единицу измерения индуктивности

,  .

Получим формулу для индуктивности соленоида длиной l, содержащего N витков площадью S. Магнитный поток через один виток определяется формулой , а через все витки – следующей формулой

. (4)

Магнитная индукция соленоида вычисляется по формуле

.(5)

Подставив формулу (5) в формулу (4) для магнитного потока, получим

. (6)

Сравнивая формулу (6) с формулой (3) получим для индуктивности соленоида

. (7)

Умножив и разделив правую часть формулы (7) на l, получим другую формулу для индуктивности соленоида

, (8)

где n– число витков на единицу длины соленоида, а V– объем соленоида.

Из формул (7) и (8) видно, что индуктивность зависит от числа витков, геометрических размеров соленоида и магнитной проницаемости (сердечника).

4. Явление самоиндукции.

Если сила тока в контуре будет изменяться, то будет изменяться и магнитный поток, сцепленный с контуром. Это приведет к возникновению в контуре ЭДС электромагнитной индукции, которая называется самоиндукцией.

Самоиндукцией называется явление возникновения ЭДС индукции в контуре при изменении в нем силы тока.

Получим формулу для ЭДС самоиндукции. Для этого формулу (3) подставим в формулу (1) закона электромагнитной индукции (при постоянной индуктивности)

. (9)

В данном случае причиной возникновения ЭДС является изменение силы тока. По правилу Ленца индукционный ток Iинд будет направлен противоположно току I при его увеличении и будет совпадать с током I по направлению при его уменьшении. То есть индукционный ток препятствует изменению тока I. Так как значение Iинд определяется индуктивностью, то можно сказать, что индуктивность характеризует инерционные свойства электрической цепи.

Препятствующее действие ЭДС самоиндукции проявляется в возникновении в цепи переменного тока дополнительного (реактивного) индуктивного сопротивления

. (10)

5. Установление и исчезновение тока при замыкании и размыкании электрической цепи.

При замыкании и размыкании электрической цепи сила тока в ней изменяется, вследствие чего возникает ЭДС самоиндукции. Эта ЭДС препятствует изменению силы тока. Препятствующее действие ЭДС самоиндукции проявляется в замедлении нарастания силы тока при замыкании цепи и ее убывания при размыкании цепи.

Найдем закон изменения силы тока в цепи, содержащей катушку с индуктивностью L, активное сопротивление R и источник постоянного тока с электродвижущей силой 0.

В общем случае  в такой цепи действуют ЭДС самоиндукции и 0, и сила тока определяется законом Ома

. (11)

Произведя разделение переменных в формуле (11) получим

. (12)

Интегрирование последнего уравнения при постоянных значениях величин ε0, L и R приводит к следующему выражению

, (13)

где С – постоянная интегрирования.

Потенциирование формулы (13) дает

(14).

Полагая, что в начальный момент времени t=0, I=I0, из формулы (14) получим значение постоянной С 

. (15)

Если подставим (15) в (14), то после несложных преобразований получим

.(16)

При замыкании цепи начальное значение силы тока I0=0, первое слагаемое формулы (16) обращается в ноль и закон нарастания силы тока в цепи имеет вид

. (17)

Сила тока нарастает тем медленнее, чем больше индуктивность цепи и меньше ее активное сопротивление.

При размыкании цепи (выключении источника) ε0=0, второе слагаемое формулы (16) обращается в ноль и закон убывания силы тока в цепи имеет вид

. (18)

Сила тока убывает тем медленнее, чем больше индуктивность цепи и меньше ее активное сопротивление.

Вопросы для самопроверки:

  1.  В чем заключается электромагнитная индукция? Что является причиной возникновения ЭДС индукции? Чем определяются величина и знак ЭДС индукции?
  2.  В чем заключается самоиндукция?
  3.  Что такое индуктивность, и в каких единицах она измеряется? Какие свойства электрической цепи характеризует индуктивность и в чем это проявляется?
  4.  От чего зависит скорость нарастания или убывания силы тока в цепи при ее замыкании или размыкании?


В

1

В1инд

∆Ф1>0

I1инд

2

2инд

I2инд

∆Ф2>0

I

B

I<0

I

I

Iинд

Iинд

I>0

R

L

0

1

2

t

I

0/R

R1/L1> R2/L2

0

I

0/R

t

R1/L1> R2/L2

0


 

А также другие работы, которые могут Вас заинтересовать

54180. Метод розмірностей 342 KB
  Однак виявляється що метод розмірностей може бути використаний не тільки і не скільки для перевірки правильності розв’язку поставленої задачі але й для виведення з точністю до константи невідомих співвідношень між фізичними величинами. 1 Основним фундаментальним підходом методу розмірностей є те що будьяку таку функцію ми можемо представити у вигляді наступного виразу y = C x1α x2β x3γ xnω 2 де C – безрозмірна константа;...
54181. Як вчити школярів V-V1 класів розв’язувати задачі 101.5 KB
  Звичайно мова йде не про вправи тренувального характеру а про нестандартні завдання пошук рішення яких складає важливий компонент доступної дітям математичної творчості. Перш за все слід врахувати що навчитися вирішувати завдання школярі зможуть лише вирішуючи їх. Якщо ви хочете навчитися плавати то сміливо входите в воду а якщо хочете навчитися вирішувати завдання то вирішуйте їх пише Д. Рішення будьякого досить складного завдання вимагає від учня напруженої праці волі й наполегливості які найбільш сильно проявляються тоді...
54182. Становление элементов культуры в эпоху верхнего палеолита 37 KB
  Координаты вектора Чтобы найти координаты вектора нужно из координат конца вычесть соответственные координаты начала. Абсолютная величина вектора модуль вектора длина вектора Длина вектора равна корню квадратному из суммы квадратов его координат. Равные вектора Векторы равны если равны их соответственные координаты и наоборот. б Условие коллинеарности векторов Если два вектора коллинеарны то их соответственные координаты пропорциональны и наоборот.
54183. Теоретические аспекты коррекционно-воспитательной работы на уроках математики 122 KB
  Коррекционно-воспитательная работа это система комплексных мер педагогического воздействия на различные особенности аномального развития личности ей подчинены все формы и виды классной и внеклассной работы в процессе формирования у школьников общеобразовательных знаний умений и навыков. Описание опыта Для изучения причин неуспеваемости и планировании коррекционной работы с учащимися предлагаю использовать аналитическую схему которую заполняют учителя медсестра психолог классный руководитель в процессе бесед с учащимися на каждого...
54184. ПРОГРАМА факультативного курсу з математики для учнів 10-11 класів універсального профілю ЗНЗ «Довузівська підготовка з математики» 170.5 KB
  Поглиблення реалізується на базі вивчення методів і прийомів розвязування математичних задач які потребують застосування високої логічної та операційної культури розвиваючих науковотеоретичне і алгоритмічне міркування учнів. МЕТА КУРСУ: розвиток математичних здібностей учнів; формування алгоритмічного мислення та високої логічної культури; вироблення навичок самостійної роботи при розв’язуванні задач; перенесення засвоєних знань на розв’язування складних та нестандартних задач; якісна підготовка до незалежного зовнішнього...
54185. Развитие логического мышления на уроках математики 139.5 KB
  Упражнение Добавь слово Первый ученик называет слово второй называет слово первого и добавляет своё слово третий называет слова первого и второго и добавляет своё слово и т. изначальное умение обеспечивающее сознательное отношение к письму мотивирующее обращение к правилу к словарю.
54186. Обобщение и систематизация знаний по теме «Квадратичная функция» 316 KB
  Способствовать формированию навыков применения алгоритмов построения графиков квадратичной функции решения неравенств второй степени графическим способом методом интервалов c помощью программы dvnced Grpher. Учитель сообщает что цель урока – систематизация знаний по теме Квадратичная функция формирование умений построения графиков квадратичной функции и решения неравенств второй степени графическим способом и методом интервалов. Домашнее задание 1Построить график квадратичной функции Y= x 2x – 3 Решение DY:x R EY:...
54187. Геометричні фігури (математична народна казка) 1.41 MB
  Козак Мамарига ведучий і різні геометричні фігури жителі казкового села: Точки Відрізок Пряма Промінь хазяйка казкового палацу Геометрія Кути гострий прямий і тупий Бісектриса Трикутник. Квадрат і трикутник. Трикутник показує своє зображення і продовжує. Я найпростіший з багатокутників.
54188. Решение неравенств второй степени с одной переменной.(9 класс) 5.3 MB
  Ввести понятие неравенства второй степени с одной переменной, дать определение. Познакомить с алгоритмом решения неравенств на основе свойств квадратичной функции. Сформировать умения решать неравенства данного вида.