73541

Параллельный колебательный контур и резонанс токов

Лекция

Физика

Параллельный колебательный контур с потерями и векторные диаграммы Комплексная входная проводимость такого контура: комплексные проводимости ветвей с индуктивностью и емкостью соответственно...

Русский

2014-12-17

193.5 KB

3 чел.

2.3.1 Параллельный колебательный контур и резонанс токов

Простейший параллельный колебательный контур с потерями в ветвях R1 и R2 имеет вид, изображенный на рисунке 9.1а. 

Рисунок 9.1 - Параллельный колебательный контур с потерями и векторные диаграммы

Комплексная входная проводимость такого контура:

Y =  +  = G1 + G2 - j(B1 - B2) = G - jB,                                                    (1)

где = G1 - jB1;  = G2 - jB2 - комплексные проводимости ветвей с индуктивностью и емкостью соответственно.

Проводимости G1, G2, B1, B2 можно найти из формул преобразования:

G1 = R1/Z21;  G2 = R2/Z22;  B1 = wL/Z21;  B2 = (1/wC)/Z22,                          (2)

где Z1 = ; Z2 = .  

Из условия резонанса токов имеем j = arctg(B/G) = 0. Отсюда следует:

B = B1 - B2 = {wL/[R12 + (wL)2]} - {(1/wC)/[R22 + (1/wC)2]} = 0.                  (3)

Решив (3) относительно w , получим уравнение резонансной частоты

w p =     .                                            (4)

Резонанс в параллельном контуре возможен лишь в случае неотрицательности подкоренного выражения (т. е. при R1 < r и R2 < r или R1 > r и R2 > r ).

Реактивные составляющие токов в ветвях при резонансе равны друг другу:

Ip1 = UB1 = Ip2 = UB2.                                                                                         (5)

При этом ток в неразветвленной части цепи определяется из уравнения:

i0 = U/R ,                                                                                             (6)

где активное сопротивление R называют эквивалентным резонансным сопротивлением параллельного контура.

Входной ток контура совпадает по фазе с приложенным напряжением. Величину R можно найти из условия резонанса токов. Так как при резонансе токов В = 0, то полная эквивалентная проводимость контура:

G = G1 + G2 = .                             (7)

Подставив значение wр, получим G = (r1 + R2)/(r2 + R1R2), откуда:

R = (r 2 + R1R2)/(R1 + R2) .                                                                 (8)

Наибольший теоретический и практический интерес представляют резонанс токов в контурах без потерь и с малыми потерями.

Контур без потерь. Для контура без потерь (R1 = R2 = 0) уравнение резонансной частоты принимает вид:

wр = w0 = 1/,                                                                                               (9)

т. е. совпадает с выражением для последовательного контура.

Эквивалентное сопротивление контура без потерь R = µ и входной ток равен нулю, а добротность обращается в бесконечность.

Сумма энергий электрического и магнитного полей для параллельного контура без потерь, как и для последовательного контура, остается неизменной.

Контур с малыми потерями. (R1 << r ; R2 << r ). Резонансная частота для этого случая будет приближенно совпадать с частотой w0. Для контура с малыми потерями можно принять, что r2 >> R1R2, тогда:

R » r 2/(R1 + R2) = r 2/R = Q2R,                                                                     (10)

где R = R1 + R2. 

Ток в неразветвленной части цепи: I0 = U/R = U/(Q2R), а действующие значения токов в ветвях:

I1 = I2 = U/r = U/(QR).                                                                                     (11)

То есть, отношение токов в ветвях к току в неразветвленной части цепи равно добротности контура: I1/I0 = I2/I0 = Q, т. е. ток в реактивных элементах L и С при резонансе в Q раз больше тока на входе контура (отсюда термин “резонанс токов”). На рисунке 9.1в изображена векторная диаграмма токов для этого случая. В контуре с потерями сумма энергий электрического и магнитного полей не остается постоянной.

При R1 = R2 = r для wр получаем неопределенность, при этом входное сопротивление контура будет носить чисто активный характер на любой частоте (случай безразличного резонанса).

2.3.2 Частотные характеристики параллельного контура 

Контур без потерь. Частотные зависимости параметров параллельного контура от частоты имеют вид:

BL(w) = 1/(wL);   BC(w) = wC;  B(w) = (1/wL) - wC;  X(w) = 1/B(w) .          (12)

На рисунке 9.2 изображены графики этих зависимостей. Из рисунка следует: при w < w0 входное сопротивление контура Х носит индуктивный, а при w > w0 ёмкостной характер, причём вследствие отсутствия потерь при переходе через частоту w = w0 ФЧХ контура изменяется скачком от -p/2 до p/2, а входное реактивное сопротивление контура претерпевает разрыв (|Х| = µ ). 

Частотная зависимость входного тока определяется уравнением I(w) = U|B(w)|, т. е. является зеркальным отображением модуля реактивной проводимости В(w) (на рисунке 9.2 показано штриховой линией).

Рисунок 9.2 - Частотные зависимости параллельного контура без потерь

Контур с малыми потерями. Комплексное эквивалентное сопротивление контура можно определить уравнением:

.                                                                      (13)

Выделяя активную RЭ и реактивную XЭ составляющие, получим уравнения частотных характеристик:

;    ;    ;    .                            (14-17)

На рисунке 9.3 изображены нормированные относительно R частотные характеристики Rэ/R, Xэ/R и Zэ/R как функции обобщенной расстройки x. 

Рисунок 9.3 - Нормированные частотные характеристики параллельного контура

Фазочастотная характеристика цепи определится уравнением:

j = -arctg(Xэ/Rэ) = -arctgx .                                                                             (18)

Анализ полученных зависимостей показывает, что по своему виду частотные характеристики контура с потерями существенно отличаются от характеристик контура без потерь. Это отличие касается, прежде всего, зависимости реактивного сопротивления контура от частоты: для контура с потерями при резонансе оно оказывается равным нулю, а в контуре без потерь терпит разрыв (см. рисунок 9.2).

Частотная зависимость токов I1(w) и I2(w) в ветвях определяется согласно закону Ома:

;      ,      (19, 20)

т. e. I1 с увеличением w уменьшается, а I2 растет, причем в пределе I1(µ ) = 0; I2(µ ) = U/R2.

Колебательный контур подключается обычно к источнику с задающим напряжением  и определённым внутренним сопротивлением RГ. При этом напряжение на контуре определяется:

.                                                                             (21)

При резонансе токов:  .                                     (22)

Определяя частотную зависимость и вводя понятие эквивалентной добротности контура

,                                                                                                  (23)

могут быть получены АЧХ и ФЧХ относительно напряжения на контуре, нормированного к напряжению UКР :

;            .                         (24, 25)

На рисунке 9.4 показан характер этих зависимостей при различных сопротивлениях RГ источника.

Рисунок 9.4 - Частотные характеристики параллельного контура

Полоса пропускания параллельного контура определяется как полоса частот, на границах которой напряжение на контуре уменьшается в раз относительно UКР. Отсюда уравнения граничных частот полосы пропускания:

;                                                                                 (26)

(абсолютная полоса)                                                  (27)

 Параллельный контур в общем случае имеет более широкую полосу, чем последовательный. И только при Rг = ¥ (см. рисунок 9.4) их полосы пропускания будут равны. Так образом, для улучшения избирательных свойств параллелью контура его необходимо возбуждать источником тока. Параллельный контур нельзя использовать для усиления напряжения, так как всегда Uк.р < Uг.

Электрические фильтры. Общие положения


 

А также другие работы, которые могут Вас заинтересовать

85421. Совершенствование технологии производства пшеничного хлеба с добавлением кукурузной муки на ОАО «Глазовский хлебокомбинат» Удмуртской Республики 652 KB
  За счет потребления хлеба человек почти на половину удовлетворяет потребность организма в углеводах, на треть – в белках растительного происхождения. Хлеб из пшеничной обойной или ржаной муки практически полностью удовлетворяет потребность в пищевых волокнах и большинстве витаминов группы В...
85422. Психологическая помощь слабовидящим детям старшего дошкольного возраста в условиях специализированного ДОУ 262 KB
  Особенности развития мелкой моторики у слабовидящих детей. Использование развивающих методов в формировании моторных навыков у детей с нарушениями зрения в специализированном ДОУ как способ психологической помощи при подготовке к овладению навыками школьной готовности.
85423. Анализ и пути укрепления финансового состояния ООО ”Люмакс” 1.11 MB
  Финансовый анализ позволяет проконтролировать правильность движения финансовых потоков денежных средств организации и проверить соблюдение норм и нормативов расходования финансовых, материальных ресурсов и целесообразность осуществления затрат.
85424. Методическое пособие: Менеджмент организации 271 KB
  Примерная тематика выпускных квалификационных работ разрабатывается преподавателями кафедры экономики и управления и рекомендуется студентам, которые вправе самостоятельно сделать свой выбор. Перечень тем, предлагаемых кафедрой вниманию студентов, не является исчерпывающим.
85425. Проектирование электрической части КЭС мощностью 2400 МВт 836.02 KB
  Для выработки электроэнергии на КЭС используют синхронные турбогенераторы трехфазного переменного тока. Номинальная мощность турбогенераторов выбирается в соответствии с номинальной мощностью турбин, исходя из условия: На проектируемой КЭС установлено 8 турбин...
85426. ПРАВОВОЙ РЕЖИМ И МЕХАНИЗМЫ ЗАЩИТЫ КУЛЬТУРНЫХ ЦЕННОСТЕЙ В РОССИИ ВО ВТОРОЙ ПОЛОВИНЕ XX-НАЧАЛЕ XXI ВЕКА 387.5 KB
  Целью работы является анализ действующего законодательства о культурных ценностях через усвоение предпосылок его формирования, в том числе исторических, установленный правовой режим в целом для выработки понимания закономерностей развития и перспектив повышения эффективности регулирования рассматриваемых отношений.
85427. ИДЕИ ЛИБЕРАЛИЗМА В ПОЛИТИЧЕСКОМ ПРОЦЕССЕ СОВРЕМЕННОЙ РОССИИ 503.5 KB
  Актуальность темы. Анализируя содержание и тенденции политических процессов в России, в историческом движении которой сталкивались противоречия собственного развития, традиции и новаторство, можно утверждать, что политические процессы явились ключевыми факторами в развитии и организации общества.
85428. ПОСЛЕДОВАТЕЛЬНОСТЬ И СОДЕРЖАНИЕ РАБОТЫ КОМАНДИРА МСВ НА ФОНЕ ТАКТИЧЕСКОЙ ОБСТАНОВКИ 4.16 MB
  Кроме того, в настоящее время поле боя помимо ширины и глубины стало характеризоваться и третьим параметром — воздушным пространством, т. е. приобрело объемный характер, поскольку действия не только соединений и частей, но подразделений поддерживаются авиацией, а батальоны и роты к тому же мог применяться в качестве воздушных десантов.