7356

Основы теории Максвелла для электромагнитного поля

Лекция

Физика

Тема: Основы теории Максвелла для электромагнитного поля 1. Общая характеристика теории Максвелла для электромагнитного поля. Ток смещения 2. Закон полного тока по Максвеллу...

Русский

2013-01-21

114.5 KB

138 чел.

Тема: Основы теории Максвелла для электромагнитного поля

1. Общая характеристика теории Максвелла для электромагнитного поля.

Ток смещения      

2. Закон полного тока по Максвеллу           

 

3. Максвелловская трактовка явления электромагнитной индукции

4. Система уравнений Максвелла в интегральной форме для магнитного поля

5. Следствия из уравнений Максвелла

  1.  Общая характеристика теории Максвелла для электромагнитного поля. Ток смещения

 

На предыдущих лекциях мы рассматривали основные законы электрических и магнитных явлений. Эти законы, как мы видели, являются обобщением экспериментальных фактов. При этом они описывали отдельно электрические и магнитные явления. В 60-х годах прошлого столетия Максвелл, основываясь на идеях Фарадея об электрических и магнитных полях, обобщил эти законы и разработал законченную теорию единого электромагнитного поля.

Теория Максвелла является макроскопической теорией. В ней рассматриваются электрические и магнитные поля, создаваемые макроскопическими зарядами и токами без учета внутренних механизмов, связанных с колебаниями атомов или электронов. Поэтому, расстояния от источников полей до рассматриваемых точек пространства предполагается много большими по сравнению с размерами молекул. Кроме того, частота колебаний электрических и магнитных полей в этой теории, принимается много меньшей частоты внутримолекулярных колебаний. В работах Максвелла идея Фарадея о тесной связи электрических и магнитных явлений получила окончательное оформление в виде двух основных положений и была в строгой форме выражена в виде уравнений Максвелла.(1873).

Основные достижения теории Максвелла – обоснования идеи о том, что:

- переменное электрическое поле возбуждает вихревое магнитное поле;

- переменное магнитное поле возбуждает вихревое электрическое поле.

Ток смещения

Анализируя различные электромагнитные процессы, Максвелл пришел к заключению, что всякое изменение электрического поля должно вызывать появление магнитного поля. Это утверждение является одним из основных положений теории Максвелла и выражает важнейшее свойство электромагнитного поля.

Рассмотрим такой опыт: между пластинами плоского конденсатора, заряженного с поверхностной плотностью заряда , поместим диэлектрик.

Электрическое поле внутри конденсатора однородно и вектор электрической индукции равен:

. (1)

Соединим обкладки конденсатора внешним проводником. Так как между обкладками конденсатора существует разность потенциалов, то по проводнику пойдет ток: . У границ пластин линии тока перпендикулярны их поверхности и плотность тока равна:

(2)   если , то .

С учетом формулы (1) получим формулу для плотности тока проводимости

.  (3)

По мере разряда конденсатора электрическое поле в нем ослабевает. Следовательно, производная от индукции  будет иметь отрицательный знак, и вектор  будет направлен противоположно . Т.е. направление вектора  будет совпадать с направлением вектора плотности тока. Поэтому формулу (3) можно записать в векторной  форме:

.   (4)

Левая часть равенства (4) характеризует электрический ток проводимости, а правая часть характеризует скорость изменения электрического поля в диэлектрике. Равенство этих двух векторов на границе металл – диэлектрик показывает, что линии вектора  как бы продолжают линии тока через диэлектрик и замыкают ток. Поэтому производная от электрической индукции по времени  названа Максвеллом плотностью тока смещения

. (5)

Итак, в рассмотренном опыте ток проводимости переходит в диэлектрике в ток смещения (т.е. в изменяющееся электрическое поле).

Если использовать формулу  связи между индукцией , напряженностью  и поляризованностью Р вещества, то для плотности тока смещения можно получить следующую формулу:

. (6)

Первое слагаемое правой части формулы (6) определяет переменное поле свободных зарядов (переменное электрическое поле в вакууме). Второе слагаемое представляет собой быстроту изменения поляризованности диэлектрика со временем, связанное со смещением его зарядов при изменении напряженности поля. Движение зарядов в электрическом поле в пределах молекулярных размеров является упорядоченным и называется поляризационной составляющей тока смещения. Этим объясняется происхождение термина ток смещения – ток, обусловленный смещением зарядов в диэлектрике, помещенном в переменное электрическое поле.

При переполяризации молекулы «поворачиваются»  за изменяющимся полем и сталкиваются с соседними молекулами. Вследствие таких столкновений диэлектрик нагревается. Т.о. ток смещения можно регистрировать по его тепловому действию. Кроме того, как любой ток, ток смещения создает магнитное поле. Непосредственное наблюдение магнитного поля, порождаемого током смещения, было осуществлено Российским ученым  Эйхенвальдом.

В его опыте диск из диэлектрика помещался между обкладками двух плоских конденсаторов, и вращался вокруг оси . Обкладки конденсаторов соединялись с источником напряжения так, что половины диэлектрика поляризовались в противоположных направлениях. При каждом обороте диска направление поляризации  каждой из частей изменяется на противоположное. В результате такой переполяризации диэлектрика при его вращении в нем возникает поляризационный ток, направленный параллельно оси вращения. Магнитное поле этого тока обнаруживалось по отклонению магнитной стрелки, помещенной вблизи оси диска.

2. Закон полного тока для магнитного поля по Максвеллу

В общем случае токи проводимости и ток смещения не разделены в пространстве, как это имеет место в конденсаторе. Все типы токов могут существовать в одном и том же объеме и можно говорить о полном токе , равном сумме токов проводимости (макротоков) и тока смещения .  В интегральной форме для полного тока можно записать

. (7)

В зависимости от электропроводности среды и частоты колебаний электрического поля оба слагаемых в формуле (7) вносят разный вклад в значение полного тока. В хорошо проводящих веществах (металлах) и при низких частотах током смещения можно пренебречь по сравнению с током проводимости. В проводниках ток смещения проявляется при высоких частотах. Напротив, в плохо проводящих средах (диэлектриках) ток смещения играет основную роль. Здесь следует отметить практическое использование тока смещения для индукционной закалки материалов.

Оба слагаемых в формуле (7) могут иметь, как одинаковые, так и противоположные знаки. Так, что полный ток может быть как больше, так и меньше тока проводимости.

С учетом наличия в среде тока смещения, закон полного тока для магнитного поля в веществе по Максвеллу записывается в следующем виде

. (8)

Формула (8) закона полного тока по Максвеллу отличается от полученных ранее формул тем, что позволяет перейти к описанию переменных электрических и магнитных полей.

 

3. Фарадеевская и Максвелловская трактовки явления электромагнитной индукции

Если проводящий контур поместить в переменное магнитное поле, то в нем возникнет э.д.с. Это явление называется электромагнитной индукцией и описывается законом Фарадея

. (9)

Учитывая, что и  запишем закон электромагнитной индукции в другой форме

, или  . (10)

Объясняя явление электромагнитной индукции, Фарадей предполагал, что переменное магнитное поле создает в проводящем контуре вихревое электрическое поле.

Максвелл обобщил этот результат и дал свою трактовку электромагнитной индукции:  

переменное магнитное поле создает в любой точке пространства вихревое электрическое поле независимо от наличия в нем проводника.

 

4. Уравнения Максвелла для электромагнитного поля в интегральной форме

Обобщив полученные ранее соотношения на случай переменных полей, Максвелл получил систему уравнений

-закон электромагнитной индукции

- закон полного тока

- теорема Гаусса для электрического поля

- теорема Гаусса для магнитного поля

  - связь электрической индукции с напряженностью

- связь магнитной индукции с напряженностью

       - закон Ома в дифференциальной форме

5. Следствия из уравнений Максвелла

Из уравнений Максвелла вытекает ряд важных следствий.

1. Из первого уравнения следует, что источником электрического поля могут быть не только электрические заряды, но и переменное магнитное поле.

Переменное магнитное поле может порождать вихревое электрическое поле не только в проводнике, но и в вакууме.

2. Из второго уравнения следует, что магнитное поле может быть возбуждено как макротоком (электрическим током проводимости), так и током смещения. Возбуждение происходит по одному и тому же закону. Поэтому эти два фактора неразличимы. При этом в области поля, где нет макротоков, уравнение имеет вид

Т.е. магнитное поле может порождаться только током смещения. Причем,  в отсутствие поляризационной составляющей тока смещения магнитное поле может порождаться переменным электрическим полем в вакууме. Последнее является одним из важнейших следствий теории  Максвелла. Основываясь на этом, Максвелл теоретически предсказал существование электромагнитных волн. Качественно возникновение волны можно пояснить с помощью рисунка. Переменное электрическое поле, возникшее в одном месте, порождает магнитное поле, которое в свою очередь порождает электрическое поле и т.д. Так возникает переменное электромагнитное поле, которое  распространяется в пространстве в виде электромагнитной волны со скоростью света. Дальнейшие теоретические исследования свойств электромагнитных волн привели Максвелла к созданию электромагнитной теории света. В электромагнитной волне векторы Е и Н колеблются в одинаковой фазе.

Вопросы для самопроверки:

  1.  Что называется током смещения? В чем проявляется ток смещения?
  2.  Какой вид имеет закон полного тока для магнитного поля по Максвеллу?
  3.  В чем состоит отличие максвелловской трактовки явления электромагнитной индукции от трактовки Фарадея?
  4.  Перечислить основные следствия из уравнений Максвелла.


-σ

+

+

+

-

-

G

Е

Е

+

е

е

+

Характер движения   электронов

+

+

_

_

+

_

+

+

_

_

_

_

+

+

а

с

в

d

O

_

_

+

+

Е

Направления векторов соответствуют правилу

Ленца

Н

Н

Е

Е

Е

  1.  

 

А также другие работы, которые могут Вас заинтересовать

21143. Защита конструкций от внешних воздействий 52.5 KB
  Для защиты от вибрации и ударов применяют амортизаторы или демпферы. Амортизаторы от линейных перегрузок не защищают. Амортизаторы резинометаллические просты в изготовления защищают от вибрации в любом направлении. Амортизаторы пружинные защищают от вибрации только в основном направлении.
21144. Защита покрытиями 31.5 KB
  Негальванические покрытия. К металлическим покрытиям относятся: вакуумное испарение практически любым металлом и почти на любые подложки толщина слоя зависит от скорости и времени испарения вещества; катодное распыление перенос металла с катода на анод при тлеющем разряде в газах; горячее распыление расплавленный металл распыляется сжатым газом толщина пленки от 30 мкм до нескольких миллиметров которым можно нанести любое металлическое покрытие на поверхность любого материала. К неметаллическим покрытиям относятся лакокрасочные...
21145. Звуки BIOS 141 KB
  ru Дата: 20:13:17 14 11 01 BIOS Beep Sound core list AWARD BIOS Beep Sound Massage 1 short System booting is normally. 2 short CMOS setting error 1 long1 short DRAM ERROR 1 long2 short Display card or monitor connected error 1 long3 short Keyboard Error 1 long9 short ROM Error Long continuous DRAM hasn't inset correctly. Short continuous POWER supply has problem. AMI BIOS 1 short DRAM Flash Error 2 short DRAM ECC Check Error 3 short DRAM Detect Fail 5 short CPU Error 6 short Keyboard...
21146. Виды политических систем в современном мире 49 KB
  Для демократических политических систем характерно наличие государственных органов в центре и на местах, легальное существование на ряду с правящими партиями и оппозиционных...
21147. Методы обеспечения и повышения надежности 26.5 KB
  Общие методы реализуются на стадиях проектирования и производства и осуществляются следующими путями: максимальным упрощением принципиальной схемы с одновременным уменьшением числа элементов с невысокой надежностью; ослаблением влияния внешних воздействий герметизацией амортизацией охлаждением и т. Специальные методы реализуются путем облегчения режима работы элементов схем и конструкции предварительной тренировкой элементов резервированием и др. Облегчение режима работы схемных элементов снижает интенсивность отказов. Для учета нагрузки...
21148. МЕТОДЫ ОБРАБОТКИ ИЗДЕЛИЙ ЭВМ 124 KB
  Для всех методов обработки кроме ультразвуковых производительность не зависит от твердости и вязкости обрабатываемого материала. Электроэрозионные методы обработки Электроэрозионные методы обработки это совокупность электрических химических воздействий на обрабатываемую деталь для придания ей заданной формы и размеров. Основными методами электроэрозионной обработки являются электроискровая и анодномеханическая.
21149. МЕХАНИЧЕСКИЕ ВОЗДЕЙСТВИЯ НА КОНСТРУКЦИИ СВТ 38.5 KB
  Наибольшее разрушающее воздействие на конструкцию СВТ оказывают вибрации. Он в свою очередь приводит к увеличению амплитуды колебаний СВТ. Введение амортизаторов между СВТ и объектом в качестве среды уменьшающей амплитуду передаваемых колебаний и ударов снижает действующие на СВТ механические силы но не уничтожают их полностью.
21150. Основные характеристики МПП общего применения на фольгированном диэлектрике 855.5 KB
  Основные характеристики МПП общего применения на фольгированном диэлектрике Показатель Характеристика Область применения Спецтехника вычислительная техника средства связи Класс точности 1;2; 3 Группа жесткости I IV Рекомендуемые максимальные размеры мм 360 х 420 γ = 033 Материал основания Стеклотекстолит фольгированный например СТФ1 СТФ2 стеклоткань СТП1 Минимальный диаметр отверстия мм Переходное 04 Сквозное 06 Минимальная ширина проводника мм 025 Тип производства Мелкосерийное серийное крупносерийное Методы...
21151. Культура українських земель XIX ст. Національно-культурне відродження 870.53 KB
  У XIX ст. розвиток української культури обумовлювався підпорядкуванням українських земель двом імперіям – Російській та Австро-Угорській. Обидві імперії були багатонаціональними, з титульною (панівною) нацією. І Росія, і Австро-Угорщина проводили колонізаторську політику, підтримували антиукраїнські сили