7356

Основы теории Максвелла для электромагнитного поля

Лекция

Физика

Тема: Основы теории Максвелла для электромагнитного поля 1. Общая характеристика теории Максвелла для электромагнитного поля. Ток смещения 2. Закон полного тока по Максвеллу...

Русский

2013-01-21

114.5 KB

136 чел.

Тема: Основы теории Максвелла для электромагнитного поля

1. Общая характеристика теории Максвелла для электромагнитного поля.

Ток смещения      

2. Закон полного тока по Максвеллу           

 

3. Максвелловская трактовка явления электромагнитной индукции

4. Система уравнений Максвелла в интегральной форме для магнитного поля

5. Следствия из уравнений Максвелла

  1.  Общая характеристика теории Максвелла для электромагнитного поля. Ток смещения

 

На предыдущих лекциях мы рассматривали основные законы электрических и магнитных явлений. Эти законы, как мы видели, являются обобщением экспериментальных фактов. При этом они описывали отдельно электрические и магнитные явления. В 60-х годах прошлого столетия Максвелл, основываясь на идеях Фарадея об электрических и магнитных полях, обобщил эти законы и разработал законченную теорию единого электромагнитного поля.

Теория Максвелла является макроскопической теорией. В ней рассматриваются электрические и магнитные поля, создаваемые макроскопическими зарядами и токами без учета внутренних механизмов, связанных с колебаниями атомов или электронов. Поэтому, расстояния от источников полей до рассматриваемых точек пространства предполагается много большими по сравнению с размерами молекул. Кроме того, частота колебаний электрических и магнитных полей в этой теории, принимается много меньшей частоты внутримолекулярных колебаний. В работах Максвелла идея Фарадея о тесной связи электрических и магнитных явлений получила окончательное оформление в виде двух основных положений и была в строгой форме выражена в виде уравнений Максвелла.(1873).

Основные достижения теории Максвелла – обоснования идеи о том, что:

- переменное электрическое поле возбуждает вихревое магнитное поле;

- переменное магнитное поле возбуждает вихревое электрическое поле.

Ток смещения

Анализируя различные электромагнитные процессы, Максвелл пришел к заключению, что всякое изменение электрического поля должно вызывать появление магнитного поля. Это утверждение является одним из основных положений теории Максвелла и выражает важнейшее свойство электромагнитного поля.

Рассмотрим такой опыт: между пластинами плоского конденсатора, заряженного с поверхностной плотностью заряда , поместим диэлектрик.

Электрическое поле внутри конденсатора однородно и вектор электрической индукции равен:

. (1)

Соединим обкладки конденсатора внешним проводником. Так как между обкладками конденсатора существует разность потенциалов, то по проводнику пойдет ток: . У границ пластин линии тока перпендикулярны их поверхности и плотность тока равна:

(2)   если , то .

С учетом формулы (1) получим формулу для плотности тока проводимости

.  (3)

По мере разряда конденсатора электрическое поле в нем ослабевает. Следовательно, производная от индукции  будет иметь отрицательный знак, и вектор  будет направлен противоположно . Т.е. направление вектора  будет совпадать с направлением вектора плотности тока. Поэтому формулу (3) можно записать в векторной  форме:

.   (4)

Левая часть равенства (4) характеризует электрический ток проводимости, а правая часть характеризует скорость изменения электрического поля в диэлектрике. Равенство этих двух векторов на границе металл – диэлектрик показывает, что линии вектора  как бы продолжают линии тока через диэлектрик и замыкают ток. Поэтому производная от электрической индукции по времени  названа Максвеллом плотностью тока смещения

. (5)

Итак, в рассмотренном опыте ток проводимости переходит в диэлектрике в ток смещения (т.е. в изменяющееся электрическое поле).

Если использовать формулу  связи между индукцией , напряженностью  и поляризованностью Р вещества, то для плотности тока смещения можно получить следующую формулу:

. (6)

Первое слагаемое правой части формулы (6) определяет переменное поле свободных зарядов (переменное электрическое поле в вакууме). Второе слагаемое представляет собой быстроту изменения поляризованности диэлектрика со временем, связанное со смещением его зарядов при изменении напряженности поля. Движение зарядов в электрическом поле в пределах молекулярных размеров является упорядоченным и называется поляризационной составляющей тока смещения. Этим объясняется происхождение термина ток смещения – ток, обусловленный смещением зарядов в диэлектрике, помещенном в переменное электрическое поле.

При переполяризации молекулы «поворачиваются»  за изменяющимся полем и сталкиваются с соседними молекулами. Вследствие таких столкновений диэлектрик нагревается. Т.о. ток смещения можно регистрировать по его тепловому действию. Кроме того, как любой ток, ток смещения создает магнитное поле. Непосредственное наблюдение магнитного поля, порождаемого током смещения, было осуществлено Российским ученым  Эйхенвальдом.

В его опыте диск из диэлектрика помещался между обкладками двух плоских конденсаторов, и вращался вокруг оси . Обкладки конденсаторов соединялись с источником напряжения так, что половины диэлектрика поляризовались в противоположных направлениях. При каждом обороте диска направление поляризации  каждой из частей изменяется на противоположное. В результате такой переполяризации диэлектрика при его вращении в нем возникает поляризационный ток, направленный параллельно оси вращения. Магнитное поле этого тока обнаруживалось по отклонению магнитной стрелки, помещенной вблизи оси диска.

2. Закон полного тока для магнитного поля по Максвеллу

В общем случае токи проводимости и ток смещения не разделены в пространстве, как это имеет место в конденсаторе. Все типы токов могут существовать в одном и том же объеме и можно говорить о полном токе , равном сумме токов проводимости (макротоков) и тока смещения .  В интегральной форме для полного тока можно записать

. (7)

В зависимости от электропроводности среды и частоты колебаний электрического поля оба слагаемых в формуле (7) вносят разный вклад в значение полного тока. В хорошо проводящих веществах (металлах) и при низких частотах током смещения можно пренебречь по сравнению с током проводимости. В проводниках ток смещения проявляется при высоких частотах. Напротив, в плохо проводящих средах (диэлектриках) ток смещения играет основную роль. Здесь следует отметить практическое использование тока смещения для индукционной закалки материалов.

Оба слагаемых в формуле (7) могут иметь, как одинаковые, так и противоположные знаки. Так, что полный ток может быть как больше, так и меньше тока проводимости.

С учетом наличия в среде тока смещения, закон полного тока для магнитного поля в веществе по Максвеллу записывается в следующем виде

. (8)

Формула (8) закона полного тока по Максвеллу отличается от полученных ранее формул тем, что позволяет перейти к описанию переменных электрических и магнитных полей.

 

3. Фарадеевская и Максвелловская трактовки явления электромагнитной индукции

Если проводящий контур поместить в переменное магнитное поле, то в нем возникнет э.д.с. Это явление называется электромагнитной индукцией и описывается законом Фарадея

. (9)

Учитывая, что и  запишем закон электромагнитной индукции в другой форме

, или  . (10)

Объясняя явление электромагнитной индукции, Фарадей предполагал, что переменное магнитное поле создает в проводящем контуре вихревое электрическое поле.

Максвелл обобщил этот результат и дал свою трактовку электромагнитной индукции:  

переменное магнитное поле создает в любой точке пространства вихревое электрическое поле независимо от наличия в нем проводника.

 

4. Уравнения Максвелла для электромагнитного поля в интегральной форме

Обобщив полученные ранее соотношения на случай переменных полей, Максвелл получил систему уравнений

-закон электромагнитной индукции

- закон полного тока

- теорема Гаусса для электрического поля

- теорема Гаусса для магнитного поля

  - связь электрической индукции с напряженностью

- связь магнитной индукции с напряженностью

       - закон Ома в дифференциальной форме

5. Следствия из уравнений Максвелла

Из уравнений Максвелла вытекает ряд важных следствий.

1. Из первого уравнения следует, что источником электрического поля могут быть не только электрические заряды, но и переменное магнитное поле.

Переменное магнитное поле может порождать вихревое электрическое поле не только в проводнике, но и в вакууме.

2. Из второго уравнения следует, что магнитное поле может быть возбуждено как макротоком (электрическим током проводимости), так и током смещения. Возбуждение происходит по одному и тому же закону. Поэтому эти два фактора неразличимы. При этом в области поля, где нет макротоков, уравнение имеет вид

Т.е. магнитное поле может порождаться только током смещения. Причем,  в отсутствие поляризационной составляющей тока смещения магнитное поле может порождаться переменным электрическим полем в вакууме. Последнее является одним из важнейших следствий теории  Максвелла. Основываясь на этом, Максвелл теоретически предсказал существование электромагнитных волн. Качественно возникновение волны можно пояснить с помощью рисунка. Переменное электрическое поле, возникшее в одном месте, порождает магнитное поле, которое в свою очередь порождает электрическое поле и т.д. Так возникает переменное электромагнитное поле, которое  распространяется в пространстве в виде электромагнитной волны со скоростью света. Дальнейшие теоретические исследования свойств электромагнитных волн привели Максвелла к созданию электромагнитной теории света. В электромагнитной волне векторы Е и Н колеблются в одинаковой фазе.

Вопросы для самопроверки:

  1.  Что называется током смещения? В чем проявляется ток смещения?
  2.  Какой вид имеет закон полного тока для магнитного поля по Максвеллу?
  3.  В чем состоит отличие максвелловской трактовки явления электромагнитной индукции от трактовки Фарадея?
  4.  Перечислить основные следствия из уравнений Максвелла.


-σ

+

+

+

-

-

G

Е

Е

+

е

е

+

Характер движения   электронов

+

+

_

_

+

_

+

+

_

_

_

_

+

+

а

с

в

d

O

_

_

+

+

Е

Направления векторов соответствуют правилу

Ленца

Н

Н

Е

Е

Е

  1.  

 

А также другие работы, которые могут Вас заинтересовать

83914. Известные отечественные хирурги: Шевкуненко, Оппель, Греков и другие. Их вклад в развитие хирургии 53.31 KB
  Их вклад в развитие хирургии. Автор 50 научных трудов в том числе первого отечественного капитального руководства по оперативной хирургии в трех томах и руководства по топографической анатомии. Под его редакцией вышел Краткий курс оперативной хирургии с топографической анатомией 1951 переведённый на многие иностранные языки. Греков добился благодаря своим научным работам в области абдоминальной хирургии.
83915. Известные зарубежные хирурги: Бильрот, Кохер и другие. Развитие хирургии путём совершенствования оперативной хирургии 50.61 KB
  Развитие хирургии путём совершенствования оперативной хирургии. Бильрота связан ряд важных достижений хирургии в частности: первая эзофагэктомия первая ларингэктомия и что особо значимо первая успешная гастрэктомия по поводу рака желудка. Кроме того разработал ряд хирургических инструментов применяемых в хирургии в наши дни. Им опубликованы работы посвященные вопросам клинической хирургии в том числе костному туберкулезу и другим заболеваниям костей разработаны новые методы хирургических операций артротомия по Фолькману клиновидная...
83916. Н.И. Пирогов - вклад в развитие хирургии и топографической анатомии 46.6 KB
  Пирогов вклад в развитие хирургии и топографической анатомии. Пирогов основоположник топографической анатомии. Пирогов занял место профессора госпитальной хирургической клиники Медико хирургической академии СПб где с первых же дней стал читать знаменитый курс лекций по топографической анатомии он организовал анатомический институт в котором объединил практическую описательную и патологическую анатомию. Пирогов оформил все основные положения созданной им науки топографической анатомии в монументальном труде Полный курс анатомии...
83917. В.Н. Шевкуненко – создатель современного учения топографической анатомии на основе изменчивости 50.3 KB
  Геселевичем ввёл понятие типовой анатомии человека которая исследует распределение тканевых и системных масс в организме и расположение органов и частей тела с точки зрениях их развития. Типовая анатомия отмечает крайние типы строения и положения органов наблюдаемые у людей определённого телосложения. Шевкуненко исходными побуждающими моментами к таким исследованиям были: частое несоответствие формы и положения органов видимых во время операции с нормой описываемой в руководствах; несовершенство многих хирургических доступов при...
83918. Шовные материалы. Капрон, пролен, дексон, викрил и другие 50.37 KB
  Основные требования к шовному материалу: Биосовместимость отсутствие токсического аллергенного и тератогенного влияния шовной нити на ткани организма. Прочность нити и сохранение её свойств до образования рубца. Необходимо учитывать прочность нити в узле Атравматичность зависит от структуры и вида нити её манипуляционных свойств эластичности и гибкости. Понятие атравматичности включает несколько свойств присущих шовным материалам: Поверхностные свойства нити: кручёные и плетёные нити имеют шероховатую поверхность и при прохождении...
83919. Современные хирургические инструменты для высоких технологий. Ультразвуковые, плазменные СВЧ – инструменты, сшивающие аппараты, лазеры в хирургии 53.42 KB
  Ультразвуковые приборы для разъединения тканей Такие приборы в большинстве случаев основаны на преобразовании электрического тока в ультразвуковую волну магнитострикционное или пьезоэлектрическое явление. Механизм воздействия ультразвука на ткани основан на том что высокочастотная вибрация приводит к механическому разрушению межклеточных связей; и на кавитационном эффекте создание за короткий промежуток времени в тканях отрицательного давления что приводит к закипанию внутри и межклеточной жидкости при температуре тела; образующийся пар...
83920. Выбор способа операции, хирургический риск, операции по стандарту и протоколу. Паллиативные и радикальные операции 48.39 KB
  Паллиативные и радикальные операции. Выбор способа операции зависит от органа на котором будет проводиться оперативное вмешательство от локализации нервных стволов и сосудов по отношению к данному органу и т. Хирургический операционный риск опасность для пациента во время операции представляют как сама оперативная травма и связанные с ней осложнения кровотечения перитонит и т.
83921. Топографическая анатомия подключичной вены и подключичной артерии. Техника пункции подключичной вены. Подключичная артерия, хирургическая тактика при ранении 195.94 KB
  Топография подключичной вены: Подключичная вена начинается от нижней границы 1 ребра огибает его сверху отклоняется кнутри вниз и немного вперёд у места прикрепления к 1 ребру передней лестничной мышцы и входит в грудную полость. Медиально за веной имеются пучки передней лестничной мышцы подключичная артерия и затем купол плевры который возвышается над грудинным концом ключицы. При надключичном доступе точку Иоффе определяют в углу образованном наружным краем латеральной головки грудинноключичнососцевидной мышцы и верхним краем...
83922. Плечевое сплетение. Техника анестезии плечевого сплетения 54.05 KB
  Техника анестезии плечевого сплетения. Короткие ветви отходят в различных местах сплетения в надключичной его части и снабжают отчасти мышцы шеи а также мышцы пояса верхней конечности за исключением m. musculocutneus мышечнокожный нерв отходит от латерального пучка плечевого сплетения из C5 С7 прободает m. cutneus brchii medilis происходит из медиального пучка сплетения из С8 Th1 идет по подмышечной ямке медиально от .