7356

Основы теории Максвелла для электромагнитного поля

Лекция

Физика

Тема: Основы теории Максвелла для электромагнитного поля 1. Общая характеристика теории Максвелла для электромагнитного поля. Ток смещения 2. Закон полного тока по Максвеллу...

Русский

2013-01-21

114.5 KB

136 чел.

Тема: Основы теории Максвелла для электромагнитного поля

1. Общая характеристика теории Максвелла для электромагнитного поля.

Ток смещения      

2. Закон полного тока по Максвеллу           

 

3. Максвелловская трактовка явления электромагнитной индукции

4. Система уравнений Максвелла в интегральной форме для магнитного поля

5. Следствия из уравнений Максвелла

  1.  Общая характеристика теории Максвелла для электромагнитного поля. Ток смещения

 

На предыдущих лекциях мы рассматривали основные законы электрических и магнитных явлений. Эти законы, как мы видели, являются обобщением экспериментальных фактов. При этом они описывали отдельно электрические и магнитные явления. В 60-х годах прошлого столетия Максвелл, основываясь на идеях Фарадея об электрических и магнитных полях, обобщил эти законы и разработал законченную теорию единого электромагнитного поля.

Теория Максвелла является макроскопической теорией. В ней рассматриваются электрические и магнитные поля, создаваемые макроскопическими зарядами и токами без учета внутренних механизмов, связанных с колебаниями атомов или электронов. Поэтому, расстояния от источников полей до рассматриваемых точек пространства предполагается много большими по сравнению с размерами молекул. Кроме того, частота колебаний электрических и магнитных полей в этой теории, принимается много меньшей частоты внутримолекулярных колебаний. В работах Максвелла идея Фарадея о тесной связи электрических и магнитных явлений получила окончательное оформление в виде двух основных положений и была в строгой форме выражена в виде уравнений Максвелла.(1873).

Основные достижения теории Максвелла – обоснования идеи о том, что:

- переменное электрическое поле возбуждает вихревое магнитное поле;

- переменное магнитное поле возбуждает вихревое электрическое поле.

Ток смещения

Анализируя различные электромагнитные процессы, Максвелл пришел к заключению, что всякое изменение электрического поля должно вызывать появление магнитного поля. Это утверждение является одним из основных положений теории Максвелла и выражает важнейшее свойство электромагнитного поля.

Рассмотрим такой опыт: между пластинами плоского конденсатора, заряженного с поверхностной плотностью заряда , поместим диэлектрик.

Электрическое поле внутри конденсатора однородно и вектор электрической индукции равен:

. (1)

Соединим обкладки конденсатора внешним проводником. Так как между обкладками конденсатора существует разность потенциалов, то по проводнику пойдет ток: . У границ пластин линии тока перпендикулярны их поверхности и плотность тока равна:

(2)   если , то .

С учетом формулы (1) получим формулу для плотности тока проводимости

.  (3)

По мере разряда конденсатора электрическое поле в нем ослабевает. Следовательно, производная от индукции  будет иметь отрицательный знак, и вектор  будет направлен противоположно . Т.е. направление вектора  будет совпадать с направлением вектора плотности тока. Поэтому формулу (3) можно записать в векторной  форме:

.   (4)

Левая часть равенства (4) характеризует электрический ток проводимости, а правая часть характеризует скорость изменения электрического поля в диэлектрике. Равенство этих двух векторов на границе металл – диэлектрик показывает, что линии вектора  как бы продолжают линии тока через диэлектрик и замыкают ток. Поэтому производная от электрической индукции по времени  названа Максвеллом плотностью тока смещения

. (5)

Итак, в рассмотренном опыте ток проводимости переходит в диэлектрике в ток смещения (т.е. в изменяющееся электрическое поле).

Если использовать формулу  связи между индукцией , напряженностью  и поляризованностью Р вещества, то для плотности тока смещения можно получить следующую формулу:

. (6)

Первое слагаемое правой части формулы (6) определяет переменное поле свободных зарядов (переменное электрическое поле в вакууме). Второе слагаемое представляет собой быстроту изменения поляризованности диэлектрика со временем, связанное со смещением его зарядов при изменении напряженности поля. Движение зарядов в электрическом поле в пределах молекулярных размеров является упорядоченным и называется поляризационной составляющей тока смещения. Этим объясняется происхождение термина ток смещения – ток, обусловленный смещением зарядов в диэлектрике, помещенном в переменное электрическое поле.

При переполяризации молекулы «поворачиваются»  за изменяющимся полем и сталкиваются с соседними молекулами. Вследствие таких столкновений диэлектрик нагревается. Т.о. ток смещения можно регистрировать по его тепловому действию. Кроме того, как любой ток, ток смещения создает магнитное поле. Непосредственное наблюдение магнитного поля, порождаемого током смещения, было осуществлено Российским ученым  Эйхенвальдом.

В его опыте диск из диэлектрика помещался между обкладками двух плоских конденсаторов, и вращался вокруг оси . Обкладки конденсаторов соединялись с источником напряжения так, что половины диэлектрика поляризовались в противоположных направлениях. При каждом обороте диска направление поляризации  каждой из частей изменяется на противоположное. В результате такой переполяризации диэлектрика при его вращении в нем возникает поляризационный ток, направленный параллельно оси вращения. Магнитное поле этого тока обнаруживалось по отклонению магнитной стрелки, помещенной вблизи оси диска.

2. Закон полного тока для магнитного поля по Максвеллу

В общем случае токи проводимости и ток смещения не разделены в пространстве, как это имеет место в конденсаторе. Все типы токов могут существовать в одном и том же объеме и можно говорить о полном токе , равном сумме токов проводимости (макротоков) и тока смещения .  В интегральной форме для полного тока можно записать

. (7)

В зависимости от электропроводности среды и частоты колебаний электрического поля оба слагаемых в формуле (7) вносят разный вклад в значение полного тока. В хорошо проводящих веществах (металлах) и при низких частотах током смещения можно пренебречь по сравнению с током проводимости. В проводниках ток смещения проявляется при высоких частотах. Напротив, в плохо проводящих средах (диэлектриках) ток смещения играет основную роль. Здесь следует отметить практическое использование тока смещения для индукционной закалки материалов.

Оба слагаемых в формуле (7) могут иметь, как одинаковые, так и противоположные знаки. Так, что полный ток может быть как больше, так и меньше тока проводимости.

С учетом наличия в среде тока смещения, закон полного тока для магнитного поля в веществе по Максвеллу записывается в следующем виде

. (8)

Формула (8) закона полного тока по Максвеллу отличается от полученных ранее формул тем, что позволяет перейти к описанию переменных электрических и магнитных полей.

 

3. Фарадеевская и Максвелловская трактовки явления электромагнитной индукции

Если проводящий контур поместить в переменное магнитное поле, то в нем возникнет э.д.с. Это явление называется электромагнитной индукцией и описывается законом Фарадея

. (9)

Учитывая, что и  запишем закон электромагнитной индукции в другой форме

, или  . (10)

Объясняя явление электромагнитной индукции, Фарадей предполагал, что переменное магнитное поле создает в проводящем контуре вихревое электрическое поле.

Максвелл обобщил этот результат и дал свою трактовку электромагнитной индукции:  

переменное магнитное поле создает в любой точке пространства вихревое электрическое поле независимо от наличия в нем проводника.

 

4. Уравнения Максвелла для электромагнитного поля в интегральной форме

Обобщив полученные ранее соотношения на случай переменных полей, Максвелл получил систему уравнений

-закон электромагнитной индукции

- закон полного тока

- теорема Гаусса для электрического поля

- теорема Гаусса для магнитного поля

  - связь электрической индукции с напряженностью

- связь магнитной индукции с напряженностью

       - закон Ома в дифференциальной форме

5. Следствия из уравнений Максвелла

Из уравнений Максвелла вытекает ряд важных следствий.

1. Из первого уравнения следует, что источником электрического поля могут быть не только электрические заряды, но и переменное магнитное поле.

Переменное магнитное поле может порождать вихревое электрическое поле не только в проводнике, но и в вакууме.

2. Из второго уравнения следует, что магнитное поле может быть возбуждено как макротоком (электрическим током проводимости), так и током смещения. Возбуждение происходит по одному и тому же закону. Поэтому эти два фактора неразличимы. При этом в области поля, где нет макротоков, уравнение имеет вид

Т.е. магнитное поле может порождаться только током смещения. Причем,  в отсутствие поляризационной составляющей тока смещения магнитное поле может порождаться переменным электрическим полем в вакууме. Последнее является одним из важнейших следствий теории  Максвелла. Основываясь на этом, Максвелл теоретически предсказал существование электромагнитных волн. Качественно возникновение волны можно пояснить с помощью рисунка. Переменное электрическое поле, возникшее в одном месте, порождает магнитное поле, которое в свою очередь порождает электрическое поле и т.д. Так возникает переменное электромагнитное поле, которое  распространяется в пространстве в виде электромагнитной волны со скоростью света. Дальнейшие теоретические исследования свойств электромагнитных волн привели Максвелла к созданию электромагнитной теории света. В электромагнитной волне векторы Е и Н колеблются в одинаковой фазе.

Вопросы для самопроверки:

  1.  Что называется током смещения? В чем проявляется ток смещения?
  2.  Какой вид имеет закон полного тока для магнитного поля по Максвеллу?
  3.  В чем состоит отличие максвелловской трактовки явления электромагнитной индукции от трактовки Фарадея?
  4.  Перечислить основные следствия из уравнений Максвелла.


-σ

+

+

+

-

-

G

Е

Е

+

е

е

+

Характер движения   электронов

+

+

_

_

+

_

+

+

_

_

_

_

+

+

а

с

в

d

O

_

_

+

+

Е

Направления векторов соответствуют правилу

Ленца

Н

Н

Е

Е

Е

  1.  

 

А также другие работы, которые могут Вас заинтересовать

41309. Численные методы и компьютерные технологии решения нелинейных уравнений 471 KB
  За приближенное значение корня принимается точка пересечения хорды АВ с осью абсцисс. Координата этой точки находится из уравнения этой хорды АВ рис. В точке пересечения хорды АВ с осью абсцисс . К уравнению хорды Далее сравниваются значения функции на левой границе и в точке пересечения хорды АВ с осью абсцисс по знаку.
41310. Численные методы и компьютерные технологии вычисления определенных интегралов 337.09 KB
  Вычисление определенного интеграла методом трапеций Текст программы progrm lb6; uses crt; vr bhyffbjj1xe:rel; in:integer; begin clrscr; writeln' = пи 6'; :=pi 6; writeln'b = Пи 3'; b:=pi 3; writeln'Введите n'; redn; h:=b n; y:=0; x:=h; for i:=1 to n1 do begin y:=ysqrsinx cosXsqrcosx sinx;x:=xh; end; f:=sqrsin cossqrcos sin; fb:=sqrsinb cosbsqrcosb sinb ; y:=yffb 2; J:=yh; writeln'J='J:5:2; writeln'Метод НьютонаЛейбница'; j1:= sinb cosbcosb...
41311. Программирование МК серии МС68 на языке АSM 2.84 MB
  В состав служебных модулей входят: генератор тактовых импульсов CGM08 модуль системной интеграции SIM08 модуль контроля напряжения питания LVI08 модуль прерывания в контрольной точке BREK08 модуль управления внешним прерыванием IRQ08 сторожевой таймер COP08 базовый таймер TBM08. Модуль генератора импульсов CGM08 генерирует импульсные сигналы на базе которых модуль системной интеграции SIM08 формирует тактовые импульсы. Модуль системной интеграции SIM08 выполняет ряд функций...
41312. Отладка ППО МК серии МС68 5.11 MB
  Б окне 2 на передний план выходит вкладка Brekpoints nd Trcepoints где теперь будут отображаться все точки останова. 2 Практическая часть Применение точек останова Пошаговый метод отладки удобен для отладки небольших несложных программ или отдельных участков большой программы. Для того чтобы проверить правильность выполнения всего этого цикла в пошаговом режиме пришлось бы очень долго щелкать мышкой В подобных случаях применяются точки останова Brekpoint. Точка останова это специальная метка...
41313. Изучение процесса ввода информации с датчиков 3.74 MB
  Такую характеристику внешней среды как температура приходится измерять довольно часто.Если говорить высоким стилем, то датчики создают «окно», сквозь которое микропроцессорные системы наблюдают за внешним миром. В этой рабрте рассматриваются различные типы датчиков, их применение и возможность сопряжения с микропроцессорами.
41314. Вывод управляющих сигналов 356.5 KB
  Соответствующий фрагмент программы написанной на Psclе будет выглядеть следующим образом: Создание проекта см. Если уже есть файл с текстом программы на Ассемблере и просто необходимо создать проект а затем подключить туда готовый программный файл снимите соответствующую галочку. Оно должно содержать имя файла куда будет записываться текст программы. При выборе этого элемента диалог создания проекта будет автоматически запускаться каждый раз при запуске программы...
41315. Использование средств ИС РПО для отладки взаимодействия с объектами управления 1.14 MB
  В качестве схемы сопряжения с линией связи ССЛС в интерфейсе RS232С удобно использовать интегральную схему типа MX232 Перечисленные последовательные интерфейсы реализуют радиальную стру-ктуру подключения. Это означает, что для подключения к каждому МПУ не-обходимо реализовать свой последовательный интерфейс:
41316. Изучение принципов организации аппаратного интерфейса USB. 987 KB
  Практически исследовать принципы организации аппаратного интерфейса USB Время: 2 часа Оборудование: ПК ПО. Методические материалы и литература: Методические указания по выполнению практических работ; Иллюстративный материал: принципы организации аппаратного интерфейса USB Методические указания по выполнению практической работы: Последовательность выполнения работы: Изучить и законспектировать основные теоретические...
41317. Изучение команд SSE и SSE2 1.24 MB
  Практически изучить команды SSE и SSE2 для МП. Методические материалы и литература: Методические указания по выполнению практических работ; Иллюстративный материал: команды управления на языке SM для МП. При этом использовать описание работы лабораторный блок ПК иллюстрационный материал; В практической части отработать следующие подразделы: Рассмотреть примеры использования команд ХММрасширения Выполнить пример формирования кода операции и порядок следования операндов команд ХММрасширения...