73586

Ручной расчет интенсивностей магнитных рефлексов для образца с простой коллинеарной антиферромагнитной структурой

Лекция

Физика

Другими словами рассчитанная нами нейтронограмма должна содержать два типа рефлексов ядерные и магнитные рефлексы. Интенсивности и угловые положения ядерных рефлексов для нашего образца мы рассчитали на Лекции. Поэтому сейчас рассчитаем только интенсивности магнитных рефлексов.

Русский

2014-12-18

294 KB

1 чел.

Лекция 4

Ручной расчет интенсивностей магнитных рефлексов для образца с простой коллинеарной антиферромагнитной структурой

Сегодня мы проведем расчет порошковой нейтронограммы антиферромагнетика, используя выражения для интенсивностей рефлексов, которые были приведены на прошлой лекции. При расчете мы не будем пользоваться компьютерными программами, т.е. мы выполним, так называемый ручной расчет нейтронограммы.

Пусть сплав с формулой   AB имеет объемноцентрированную кубическую решетку, в которой вершины куба заняты атомами сорта А, а позиция в центре куба занята атомами сорта В. Пусть далее, магнитные моменты атомов А и В упорядочены антипараллельно друг другу, т.е. образуют коллинеарную антиферромагнитную структуру (см. рис.)  

                                      

                                           Рис. 1.

В этой структуре координаты атомов А есть (0, 0, 0), а координаты атомов В есть  (½, ½, ½). Параметр решетки AB равен a = 4 Ǻ, пусть для определенности амплитуда ядерного когерентного рассеяния bA = 1·10-12 cм, а  bB = 1·10-12 cм для атомов сорта A и B, соответственно. Модули магнитных моментов атомов A и B равны 1 B.

Длина волны нейтронов в падающем на образец пучке равна = 2 Ǻ, образец имеет форму пластины, полностью перекрывающей пучок.

Рассматривая упругое когерентное рассеяние нейтронов на нашем образце, мы должны различать два вида рассеяния: ядерное и магнитное. Другими словами, рассчитанная нами нейтронограмма должна содержать два типа рефлексов – ядерные и магнитные рефлексы. Интенсивности и угловые положения ядерных рефлексов для нашего образца мы рассчитали на Лекции  2. Поэтому сейчас рассчитаем только интенсивности магнитных рефлексов.

На первом шаге мы должны определить, какие магнитные рефлексы (имеется в виду индексы hkl) появятся на нейтронограмме. Для этого найдем волновой вектор магнитной структуры. По определению волнового вектора имеем:

       Snj = S0j·exp(iktn),                                                                              (4.1)

где, S0j и Snj – спины атома сорта j в нулевой и n- ячейке, tn – вектор трансляции, k – волновой вектор:

                 k = k1b1 + k2b2 +k3b3,                                                               (4.2)

где, k1, k2, и k3 - коэффициенты, b1, b2 и b3 – векторы обратной решетки. Обозначим левый нижний атом как j- атом, а три соседних как 1, 2 and 3; трансляции в направлении этих атомов обозначим как t1, t2 и t3. Вектора трансляций в прямой и обратной ячейках связаны соотношением:

                      bi·tk = 2ik                                                          (4.3)

Тогда получаем :

                 S1j = S0j·exp(ikt1) = S0j·exp(ik1b1·t1),                                               (4.4)

                 S2j = S0j·exp(ikt2) = S0j·exp(ik2b2·t2),                                               (4.5)

                 S3j = S0j·exp(ikt3) = S0j·exp(ik3b3·t3),                                               (4.6)

Такие же уравнения нетрудно получить и для спинов атомов В.

Из рис.1 видно, что S11 = S2j = S3j = S0j, следовательно, k1, k2, и k3 равны нулю или целому числу. Принято выбирать вектор k в первой зоне Бриллюэна.

        

  Соответствие между буквенными обозначениями волнового вектора и его выражением через векторы обратной решетки:

Γ = 0,

M = ½b1 + ½b2,  

R = ½b1 + ½b2 + ½b3,

T = ½b1 + ½b2 + νb3,

Σ = νb1 + νb2,

Λ = νb1 + νb2 + νb3.

В прошлой лекции мы видели, что в случае антиферромагнетика имеет место соотношение:

                                       q = k + b,                                                             (4.7)

которое связывает индексы магнитных рефлексов с индексами ядерных рефлексов:

                           (hkl)mag = k + (hkl)nucl,                                                       (4.8)

Итак, индексы магнитных рефлексов, или совпадают с индексами ядерных рефлексов или отличаются от них на целые числа.                                                                                                                                                      

Тогда, возможны следующие рефлексы: (100), (110), (111), (200), (210), и т.д..

Начнем наш расчет с семейства рефлекса (100).

В начале определим величину вектора магнитного взаимодействия M, который определяется проекцией магнитного момента на плоскость (100). Из

рис.1 видно, что магнитные моменты атомов А и В имеют максимальную проекцию на 4 плоскости - (100), (010), (-100) and (0-10) и нулевые проекции на плоскости (001) и (00-1). Следовательно, магнитное рассеяние возможно только от плоскостей (100), (010), (-100) and (0-10).

Рассчитаем структурный фактор для плоскости (100) :

          F2hkl = 0.26952(A2hkl + B2hkl),                                                                   (4.9)

         Ahkl = hxj + kyj + lzj),                                           (4.10)

        Bhkl = hxj + kyj + lzj).                                             (4.11)

A100 = A·fA100·MA100·cos2(0 + 0 + 0)

       + B·fB100·MB100·cos2(½ + ½ + ½) =

       = A·fA100·(1)·(1) + B·fB100·(1)·(1)

       = A·fA100+ B·fB100.  

B100 = 0.  

So,

                F2100 = 0.26952·( A·fA100+ B·fB100)2.                                          (4.12)

Сейчас мы должны определить значения форм-факторов для магнитного рассеяния на атомах A и B (смю рис. 2 и 3).

                   

                                                       Рис. 3

                      

                                                    

Угловое положение рефлекса (100) можно взять из Лекции 2:

100 = 14.5. Тогда, sin100/ = sin14.5/2 = 0.127. Than,

       fA(0.127) =  0.98.

       fB(0.127) = 0.47.

Тогда, получаем структурный фактор для отражения (100)

                           F2100 = 0,26952·{(1·0.98) + (1·0.47)}2 = 0.153.               (4.13)

Итак, интенсивность рефлекса (100) равна

             I100 = F2hkl·Lhkl = F2100·L100,                                                            (4.14)

где Lhkl = 1/sin22hkl  - фактор Лоренца, определенный нами в Лекции 2. Для отражения (100) этот фактор равен

L100  : 100 = 14.5 and  L100 = 4.255.

Подставляя в (4.13) получаем

           I100 = 0.153·4.255 = 0.651 (барн).                                                    (4.15)

Принимая во внимание, что четыре рефлекса из семейства (100) имеют одинаковое значение вектора магнитного взаимодействия MA100, получаем, что общая интенсивность от магнитного рефлекса (100) на порошковой нейтронограмме равна

           I(100) = 4·0.651 = 2.6 (барн).                                                              (4.16)

Подобным образом рассчитаем вектор магнитного взаимодействия и структурный фактор для отражения (110).

(110) отражение

Из рис. 1 видно, что Mj(110) = 1.0 для 4 плоскостей типа (110) Mj(110) = 1/√2 = 0.707 для 8 плоскостей типа (101).

Структурный фактор рассчитывается из

                       F2110 = 0.26952(A2110 + B2110).                                                (4.17)

    A110 = A·fA110·MA110·cos2(0 + 0 + 0)

           + B·fB110·MB110·cos2(½ + ½ + ½) =

           = A·fA110·(1)·(1) + B·fB110·(1)·( 1)                                                 (4.18)

значения форм-факторов fA110· и  fB110 определим из рис. 3 и 4.

Для этого определим величину sin110/.

Как мы уже знаем, в случае кубической решетки, угловое положение рефлекса можно определить по формуле:

                  sin110 = /2a = 2.0/24 = 0.353.        (4.19)

тогда, sin110/ = 0.353/2.0 = 0.176, и = 20.7.

Из рис.3 и 4 получаем

                             fA110 = 0.975 and  fB110 = 0.592.                                        (4.20)

Подставляя в  (4.17)  находим A110:

       A110 = 1·0.975·(1)·(1) + 1·0.592·(1)·( 1) = 0.383                                  

Тогда A2110 = 0.147                                                                                          (4.21)

B2110 = 0.                                                                                                          

Подставляя в  (4.18) имеем

                 F2110 = 0.269520.147= 0.011.                                                       (4.22)

Итак, интенсивность магнитного рассеяния от плоскости (110) :

         I110 = F2110·L110 ,  

где 

           L110 = 1/sin22hkl = 1/sin2(220.7) = 2.29,                                        (4.23)

тогда,

      I110 = 0.011·2.29 = 0.025 (барн).

Учитывая, что имеется 4 таких отражения, получаем

        4 I110 = 0.1 (барн).                                                                               (4.24)                                                                                   

Кроме того, есть еще 8 рефлексов с Mj101 = 0.707.

Подставляя Mj101 = 0.707 в (4.18) имеем :

        A101 = 1·0.975·(0.707)·(1) + 1·0.592·(0.707)·( 1) = 0.27.

        B101 = 0.

Тогда,

                F2101 = 0.26952A2101= 0.269520.272 = 0.005 (барн).                   (4.25)

Интенсивность магнитного рассеяния от этих плоскостей типа (101) есть:

               I101 = F2101·L101 = 0.005·2.29 = 0.011,

Учитывая, что имеется 8 таких отражений, получаем

         8 I101 = 8 0.011 = 0.088 (барн).                                                     (4.26)

Тогда, суммируя (4.24) and (4.26) получаем полную интенсивность магнитного рассеяния от плоскости  (101) на порошковой нейтронограмме :

         I(101) = 0.1 + 0.088 0.2 (барн).

В Лекции 3 мы нашли, что ядерный пик (101) имеет нулевую интенсивность. Следовательно, на нашей нейтронограмме будут присутствовать чисто магнитные рефлексы.

Суммируя результаты расчета ядерных и магнитных рефлексов, мы получим следующую порошковую нейтронограмму соединения АВ.

Для наглядности интенсивность рефлекса (101) увеличена в 10 раз.   

                          

                                      Рис.5     

Задание: Рассчитать интенсивность магнитного рассеяния для отражения (111).

  

 


 

А также другие работы, которые могут Вас заинтересовать

43634. КУЛЬТУРОЛОГИЯ И.Г. Малкова 627.5 KB
  Понятие культура, по крайней мере, трехаспектное. Культура - это 1) система материальных и духовных ценностей человечества; 2) деятельность человека по созданию этих ценностей; 3) потребление этих ценностей, означающих изменение, развитие человека, усвоение того социокультурного опыта, который был накоплен предшествующими поколениями.
43635. Реконструкция системы водоснабжения с. Исмаилово Дюртюлинского района Республики Башкортостан 275.5 KB
  Вся жизнедеятельность человека связана с использованием воды потребность в которой все возрастает. Кроме того потребители воды люди животные машины при выполнении многих производственных операций пахота уборка пастьба животных и др. Все это усложняет водоснабжение увеличивает дальность транспортирования воды затрудняет эксплуатацию систем. Это обусловливает цикличное чередование сельскохозяйственных работ а следовательно неравномерность потребления воды.
43636. Организация технологического процесса производства сополимеризации этилена, пропилена и третьего мономера 345.35 KB
  Внутри цеховых электрических сетей наибольшее применение имеет напряжение 380 220В основным преимуществом которого является возможность совместного питания силового и осветительных электроприемников получающих питание от системы напряжений 380 220 В как правило не должно превышать 200 500 кВт допускающих применение коммутирующих аппаратов на 630 А.д передачи 09÷098 Давление развиваемое насосом рассчитывается по формуле: P = ρHq...
43637. Расчет комплексной электрификации коровника на 400 голов боксового содержания 391.21 KB
  Аэродинамический расчёт воздуха и выбор вентилятора. Высокая концентрация поголовья в крупных животноводческих помещениях приводит к резкому увеличению накопления в воздушной среде продуктов обмена веществ в организме животных вредных газов водяных паров а также к увеличению пылевой и бактериальной загрязненности воздуха что отрицательно влияет на физиологическое состояние организма и продуктивность животных. Относительная влажность воздуха...
43638. Укрепление основ политики, в центре которой находятся интересы людей 106.49 KB
  Насыщенность 20го века событиями две мировые и холодная войны создание оружия массового поражения и т. Реалисты рассматривают государства в качестве единиц анализа и видят международные отношения как хаотичное взаимодействие государств на мировой арене выступающей в виде поля острого противоборства. Самым эффективным средством сохранения мира является по мнению реалистов баланс сил возникающий не только из столкновения национальных интересов но и из единства культур взаимного уважения прав друг друга и согласия относительно...
43640. Свободное программное обеспечение 32.92 KB
  Термин «Свободное программное обеспечение» (СПО) пришел в русский язык из английского. В оригинале термин «Freesoft» обозначает свободный или бесплатный софт, так как английском языке «free» означает как «свободный», так и «бесплатный».
43641. Расчет переходных процессов в электрических цепях 537.46 KB
  В данной работе я научился рассчитывать переходные процессы в цепи 1-го и 2-го порядка, а также рассчитывать формы и спектры сигналов при нелинейных преобразованиях.
43642. Разработка и внедрение комплексной системы защиты информации в медицинское учреждение 891 KB
  Комплексная система защиты информации (КСЗИ) - совокупность нормативно-правовых, организационных и инженерно-технических мероприятий, которые направлены на обеспечение защиты информации от разглашения, утечки и несанкционированного доступа.