73586

Ручной расчет интенсивностей магнитных рефлексов для образца с простой коллинеарной антиферромагнитной структурой

Лекция

Физика

Другими словами рассчитанная нами нейтронограмма должна содержать два типа рефлексов – ядерные и магнитные рефлексы. Интенсивности и угловые положения ядерных рефлексов для нашего образца мы рассчитали на Лекции. Поэтому сейчас рассчитаем только интенсивности магнитных рефлексов.

Русский

2014-12-18

294 KB

1 чел.

Лекция 4

Ручной расчет интенсивностей магнитных рефлексов для образца с простой коллинеарной антиферромагнитной структурой

Сегодня мы проведем расчет порошковой нейтронограммы антиферромагнетика, используя выражения для интенсивностей рефлексов, которые были приведены на прошлой лекции. При расчете мы не будем пользоваться компьютерными программами, т.е. мы выполним, так называемый ручной расчет нейтронограммы.

Пусть сплав с формулой   AB имеет объемноцентрированную кубическую решетку, в которой вершины куба заняты атомами сорта А, а позиция в центре куба занята атомами сорта В. Пусть далее, магнитные моменты атомов А и В упорядочены антипараллельно друг другу, т.е. образуют коллинеарную антиферромагнитную структуру (см. рис.)  

                                      

                                           Рис. 1.

В этой структуре координаты атомов А есть (0, 0, 0), а координаты атомов В есть  (½, ½, ½). Параметр решетки AB равен a = 4 Ǻ, пусть для определенности амплитуда ядерного когерентного рассеяния bA = 1·10-12 cм, а  bB = 1·10-12 cм для атомов сорта A и B, соответственно. Модули магнитных моментов атомов A и B равны 1 B.

Длина волны нейтронов в падающем на образец пучке равна = 2 Ǻ, образец имеет форму пластины, полностью перекрывающей пучок.

Рассматривая упругое когерентное рассеяние нейтронов на нашем образце, мы должны различать два вида рассеяния: ядерное и магнитное. Другими словами, рассчитанная нами нейтронограмма должна содержать два типа рефлексов – ядерные и магнитные рефлексы. Интенсивности и угловые положения ядерных рефлексов для нашего образца мы рассчитали на Лекции  2. Поэтому сейчас рассчитаем только интенсивности магнитных рефлексов.

На первом шаге мы должны определить, какие магнитные рефлексы (имеется в виду индексы hkl) появятся на нейтронограмме. Для этого найдем волновой вектор магнитной структуры. По определению волнового вектора имеем:

       Snj = S0j·exp(iktn),                                                                              (4.1)

где, S0j и Snj – спины атома сорта j в нулевой и n- ячейке, tn – вектор трансляции, k – волновой вектор:

                 k = k1b1 + k2b2 +k3b3,                                                               (4.2)

где, k1, k2, и k3 - коэффициенты, b1, b2 и b3 – векторы обратной решетки. Обозначим левый нижний атом как j- атом, а три соседних как 1, 2 and 3; трансляции в направлении этих атомов обозначим как t1, t2 и t3. Вектора трансляций в прямой и обратной ячейках связаны соотношением:

                      bi·tk = 2ik                                                          (4.3)

Тогда получаем :

                 S1j = S0j·exp(ikt1) = S0j·exp(ik1b1·t1),                                               (4.4)

                 S2j = S0j·exp(ikt2) = S0j·exp(ik2b2·t2),                                               (4.5)

                 S3j = S0j·exp(ikt3) = S0j·exp(ik3b3·t3),                                               (4.6)

Такие же уравнения нетрудно получить и для спинов атомов В.

Из рис.1 видно, что S11 = S2j = S3j = S0j, следовательно, k1, k2, и k3 равны нулю или целому числу. Принято выбирать вектор k в первой зоне Бриллюэна.

        

  Соответствие между буквенными обозначениями волнового вектора и его выражением через векторы обратной решетки:

Γ = 0,

M = ½b1 + ½b2,  

R = ½b1 + ½b2 + ½b3,

T = ½b1 + ½b2 + νb3,

Σ = νb1 + νb2,

Λ = νb1 + νb2 + νb3.

В прошлой лекции мы видели, что в случае антиферромагнетика имеет место соотношение:

                                       q = k + b,                                                             (4.7)

которое связывает индексы магнитных рефлексов с индексами ядерных рефлексов:

                           (hkl)mag = k + (hkl)nucl,                                                       (4.8)

Итак, индексы магнитных рефлексов, или совпадают с индексами ядерных рефлексов или отличаются от них на целые числа.                                                                                                                                                      

Тогда, возможны следующие рефлексы: (100), (110), (111), (200), (210), и т.д..

Начнем наш расчет с семейства рефлекса (100).

В начале определим величину вектора магнитного взаимодействия M, который определяется проекцией магнитного момента на плоскость (100). Из

рис.1 видно, что магнитные моменты атомов А и В имеют максимальную проекцию на 4 плоскости - (100), (010), (-100) and (0-10) и нулевые проекции на плоскости (001) и (00-1). Следовательно, магнитное рассеяние возможно только от плоскостей (100), (010), (-100) and (0-10).

Рассчитаем структурный фактор для плоскости (100) :

          F2hkl = 0.26952(A2hkl + B2hkl),                                                                   (4.9)

         Ahkl = hxj + kyj + lzj),                                           (4.10)

        Bhkl = hxj + kyj + lzj).                                             (4.11)

A100 = A·fA100·MA100·cos2(0 + 0 + 0)

       + B·fB100·MB100·cos2(½ + ½ + ½) =

       = A·fA100·(1)·(1) + B·fB100·(1)·(1)

       = A·fA100+ B·fB100.  

B100 = 0.  

So,

                F2100 = 0.26952·( A·fA100+ B·fB100)2.                                          (4.12)

Сейчас мы должны определить значения форм-факторов для магнитного рассеяния на атомах A и B (смю рис. 2 и 3).

                   

                                                       Рис. 3

                      

                                                    

Угловое положение рефлекса (100) можно взять из Лекции 2:

100 = 14.5. Тогда, sin100/ = sin14.5/2 = 0.127. Than,

       fA(0.127) =  0.98.

       fB(0.127) = 0.47.

Тогда, получаем структурный фактор для отражения (100)

                           F2100 = 0,26952·{(1·0.98) + (1·0.47)}2 = 0.153.               (4.13)

Итак, интенсивность рефлекса (100) равна

             I100 = F2hkl·Lhkl = F2100·L100,                                                            (4.14)

где Lhkl = 1/sin22hkl  - фактор Лоренца, определенный нами в Лекции 2. Для отражения (100) этот фактор равен

L100  : 100 = 14.5 and  L100 = 4.255.

Подставляя в (4.13) получаем

           I100 = 0.153·4.255 = 0.651 (барн).                                                    (4.15)

Принимая во внимание, что четыре рефлекса из семейства (100) имеют одинаковое значение вектора магнитного взаимодействия MA100, получаем, что общая интенсивность от магнитного рефлекса (100) на порошковой нейтронограмме равна

           I(100) = 4·0.651 = 2.6 (барн).                                                              (4.16)

Подобным образом рассчитаем вектор магнитного взаимодействия и структурный фактор для отражения (110).

(110) отражение

Из рис. 1 видно, что Mj(110) = 1.0 для 4 плоскостей типа (110) Mj(110) = 1/√2 = 0.707 для 8 плоскостей типа (101).

Структурный фактор рассчитывается из

                       F2110 = 0.26952(A2110 + B2110).                                                (4.17)

    A110 = A·fA110·MA110·cos2(0 + 0 + 0)

           + B·fB110·MB110·cos2(½ + ½ + ½) =

           = A·fA110·(1)·(1) + B·fB110·(1)·( 1)                                                 (4.18)

значения форм-факторов fA110· и  fB110 определим из рис. 3 и 4.

Для этого определим величину sin110/.

Как мы уже знаем, в случае кубической решетки, угловое положение рефлекса можно определить по формуле:

                  sin110 = /2a = 2.0/24 = 0.353.        (4.19)

тогда, sin110/ = 0.353/2.0 = 0.176, и = 20.7.

Из рис.3 и 4 получаем

                             fA110 = 0.975 and  fB110 = 0.592.                                        (4.20)

Подставляя в  (4.17)  находим A110:

       A110 = 1·0.975·(1)·(1) + 1·0.592·(1)·( 1) = 0.383                                  

Тогда A2110 = 0.147                                                                                          (4.21)

B2110 = 0.                                                                                                          

Подставляя в  (4.18) имеем

                 F2110 = 0.269520.147= 0.011.                                                       (4.22)

Итак, интенсивность магнитного рассеяния от плоскости (110) :

         I110 = F2110·L110 ,  

где 

           L110 = 1/sin22hkl = 1/sin2(220.7) = 2.29,                                        (4.23)

тогда,

      I110 = 0.011·2.29 = 0.025 (барн).

Учитывая, что имеется 4 таких отражения, получаем

        4 I110 = 0.1 (барн).                                                                               (4.24)                                                                                   

Кроме того, есть еще 8 рефлексов с Mj101 = 0.707.

Подставляя Mj101 = 0.707 в (4.18) имеем :

        A101 = 1·0.975·(0.707)·(1) + 1·0.592·(0.707)·( 1) = 0.27.

        B101 = 0.

Тогда,

                F2101 = 0.26952A2101= 0.269520.272 = 0.005 (барн).                   (4.25)

Интенсивность магнитного рассеяния от этих плоскостей типа (101) есть:

               I101 = F2101·L101 = 0.005·2.29 = 0.011,

Учитывая, что имеется 8 таких отражений, получаем

         8 I101 = 8 0.011 = 0.088 (барн).                                                     (4.26)

Тогда, суммируя (4.24) and (4.26) получаем полную интенсивность магнитного рассеяния от плоскости  (101) на порошковой нейтронограмме :

         I(101) = 0.1 + 0.088 0.2 (барн).

В Лекции 3 мы нашли, что ядерный пик (101) имеет нулевую интенсивность. Следовательно, на нашей нейтронограмме будут присутствовать чисто магнитные рефлексы.

Суммируя результаты расчета ядерных и магнитных рефлексов, мы получим следующую порошковую нейтронограмму соединения АВ.

Для наглядности интенсивность рефлекса (101) увеличена в 10 раз.   

                          

                                      Рис.5     

Задание: Рассчитать интенсивность магнитного рассеяния для отражения (111).

  

 


 

А также другие работы, которые могут Вас заинтересовать

29656. Монизм, дуализм, плюрализм 41.5 KB
  Структурная организация методологического знания прямо связана с теми функциями которые оно выполняет в процесс е научного познания. Рефлексия над процессом научного познания не является совершенно необходимым его компонентом. Рефлексия и осознание нужны тогда когда ставится задача построения нового научного знания или формирования принципиально нового поведенческого акта. Чем же здесь может помочь методология каковы ее функции в процессе конкретнонаучного познания Анализируя различные ответы на этот вопрос можно встретиться как с...
29657. Психологическая наука в противоположность метафизике 41 KB
  Однако масштаб абстракций и обобщений существенно ниже уже и конкретнее в эмпирической психологии чем в философской метафизике или основанной на ней априорной психологии. Примерами метафизических вопросов в психологии могут быть следующие. Номотетический и идиографический подходы в эмпирической психологии Номотетический подход Эмпирическая психология производит эмпирическое знание в рамках прежде всего номотетического подхода связанного с позитивистской и постпозитивистской философией. Идиографическое познание применяется в ряде отраслей...
29658. Эмпирическая и априорная психологии 29 KB
  Ситуация множественности методологических подходов и соответственно средств методологического анализа которые одновременно являются и истинными если это понятие вообще применимо к методологическому знанию адекватными и ложными неадекватными в зависимости от множества привходящих условий провоцирует самые разные установки исследователей и практиков относительно роли методологического знания и целесообразности его использования в конкретном исследовании а также разные методологические эмоции. Сторонники методологического...
29659. Парадигмы, аномалии, кризисы, научные революции 71.5 KB
  Это было время господства ассоцианизма взаимопроникновения идей физиологической психологии и психологии сознания но также и время после выхода основополагающих трудов Г. Эббингауза 1850 – 1909 когда появилась надежда на разработку объективного метода исследования в области психологии. То есть для него в первую очередь неприемлема именно эта характеристика естественнонаучного познания – путь выдвижения гипотез а не собственно экспериментальный метод как это иногда сегодня представляют сторонники описательной психологии функционирующей...
29660. Психология теоретическая и эмпирическая 243.5 KB
  Особая дисциплина описывающая и изучающая конкретные явления психической жизни в отличие от рациональной психологии выводящей явления из природы и сущности души. опытная школа в психологии соединила установку на эмпирическое наблюдение конкретный анализ и индуктивное познание психических явлений с учением об особой сущности этих явлений постигаемых только посредством самонаблюдения. Теоретическая психология Теоретическая психология наука предметом которой является саморефлексия психологии выявляющая и исследующая...
29661. Психология естественно-научная и гуманитарная 62.5 KB
  В первую очередь это отказ от культа эмпирических методов и связывания признака научности только с верифицируемостью знания т. Построение научного знания только на основе индуктивной логики – неприемлемый для психологического наблюдения критерий построения теории против которого выступают сторонники гуманитарной парадигмы добавим что именно против этого выступал и К. Как мы показали ранее этот метод действительно с одной стороны предполагал построение психологического знания по классическому образцу науки Нового времени с его...
29662. Априорное знание, метафизика и объективность 49.5 KB
  Когда психолог обнаруживает статистически значимую связь между креативностью и рефлективностью как параметром когнитивного стиля {Дорфман Ковалева 2000а это не значит что чем выше креативность тем выше рефлективность у каждого человека в отдельности. некие общие представления об устройстве мира и человека. В свою очередь это предполагает что методы естественных наук которые изучают мироздание используются также при изучении психики и поведения человека. Культурно–историческая парадигма напротив подчеркивает своеобразие человека...
29663. Понятие категории как узлового пункта познания 57.5 KB
  В общей методологии понятие системы является чрезвычайно широким. Различают материальные системы Солнечная система среди них – системы организм – среда; идеальные системы например знаковые; социальные системы. Берталанфи Общая теория систем категория системы из философскометодологической перешла в иной статус – названия объяснительного принципа конкретизируемого различным образом в научном познании. Кеннон утверждал принцип системности как принцип гомеостаза обеспечивающего динамическое постоянство свойств системы в ее...
29664. Категория активность 53 KB
  Леонтьев указывает на явления активности составляющие как бы внутреннюю предпосылку самодвижения деятельности и ее самовыражения [Леонтьев А. Поэтому описание явлений активности обычно ведется в терминах автономности спонтанности самопроизвольности инициативности и т. Однако любое проявление активности имеет место в некотором окружении. Невозможность роста активности без отражения а также не возможность отражения без активности самого отражающего объекта делает эти понятия изначально взаимосвязанными.