73692

Особенности анализа радиосигналов в избирательных цепях

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

При решении задач о прохождении сигналов через электрические цепи основное внимание уделяют изменениям информационных параметров сигналов поскольку это связано с проблемой сохранения информации переносимой сигналами. В случаях когда информация заложена непосредственно в форме сигнала случай простых сигналов задача сохранения информации сводится к задаче сохранения формы или спектра сигнала. В общем случае резонансная частота...

Русский

2014-12-19

118.5 KB

4 чел.

Л 13.

2.4. Особенности анализа радиосигналов в избирательных цепях.

При решении задач о прохождении сигналов через электрические цепи основное внимание уделяют изменениям информационных параметров сигналов, поскольку это связано с проблемой сохранения информации, переносимой сигналами. В случаях, когда информация заложена непосредственно в форме сигнала (случай простых сигналов) задача сохранения информации сводится к задаче сохранения формы (или спектра) сигнала.

Иначе дело обстоит с радиосигналом, в котором информация заключена в одном из нескольких параметров высокочастотного колебания. Не обязательно сохранять полностью структуру этого колебания; достаточно лишь сохранить закон изменения того параметра, в котором заключена информация. Так, в случае амплитудно-модулированного колебания, важно передать огибающую амплитуд, а некоторое изменение частоты или несущее колебание, не имеющее существенного значения, при анализе можно не учитывать. При передаче радиосигналов с угловой модуляцией, наоборот, основное внимание следует уделить точному воспроизведению закона изменения частоты и фазы, а изменением амплитуды можно пренебречь.

Эти особенности радиосигналов открывают путь к некоторому упрощению методов анализа их передачи через линейные цепи. Возможность упрощения особенно существенна, когда радиосигнал представляет собой узкополосный процесс, а цепь - узкополосную систему. Это как раз и характерно для реальных радиосигналов и реальных радиоцепей.

а) Приближенный спектральный метод. Пусть цепь представляет собой избирательную систему, передаточная функция  которой имеет максимум вблизи частот p и (-p). И пусть на ее входе действует высокочастотное модулированное колебание S(t) спектральная характеристика которого имеет два максимума вблизи частот 0 и (-0). В общем случае резонансная частота цепи p не совпадает с центральной частотой сигнала 0, т.е. имеет место расстройка

                                           =0-p                                                     (20)

которая является величиной того же порядка, что и полоса пропускания цепи.

Составим выражение для сигнала на выходе цепи. Если входной сигнал имеет гармоническое заполнение, т.е. S(t)=A(t)cos(0t+(t)), то выкладки значительно упрощаются при использовании понятия аналитического сигнала:

                                                                            (21)

Спектральная функция этого сигнала  существует только в области положительных частот, поэтому при определении аналитического сигнала на выходе цепи следует исходить из выражения:

                                              (22)

Спектральные функции высокочастотного модулированного колебания  и аналитического сигнала  при 0 связаны соотношением , причем при 0 , где спектральная функция огибающей.

Следовательно .

Подставляя это выражение в (22), получаем

                                     (23)

Введем переменную 0. Тогда

                   (24)   

Из сопоставления (24) с (21) видно, что выражение, стоящее в фигурных скобках соответствует комплексной огибающей выходного колебания:

Дальнейшее упрощение анализа вытекает из свойств передаточной функции резонансных цепей, обладающих сильно выраженной частотной избирательностью: Модуль коэффициента передачи  быстро убывает при удалении от резонансной частоты. Поэтому передаточную функцию целесообразно выражать в виде функции расстройки частоты относительно резонансной частоты p :

 (26)  

где постоянный параметр расстройки 0p. Т.к.  при 0 , нижний предел интегрирования в (25) можно заменить на . При этом оно принимает вид :

                             (27)

Это выражение ничем не отличается от обычного интеграла Фурье, определяющего оригинал по заданной спектральной плотности огибающей  и передаточной функции .

Заменив j на p, получим выражение в форме обратного преобразования Лапласа :

                                       (28)

Таким образом, анализ передачи узкополосного высокочастотного колебания через избирательную цепь по существу сводится к анализу изменений, претерпеваемых комплексной огибающей входного сигнала. После нахождения Aвых(t) и вых(t) для выходного аналитического сигнала можно будет написать следующее выражение :

                                 Zвых(t)=Aвыхej[0t+вых(t)]                             (29)

откуда                               Sвых(t)=Aвых(t)cos[0t+вых(t)]                   (30)

Вычисления, связанные с определением  по формуле (28), значительно проще, чем при непосредственном определении Sвых(t) с помощью обратного преобразования Лапласа, так как  переход от  к  и от  к  сокращает число особых точек подинтегральной функции.

б) Упрощенный метод интеграла наложения. (Метод огибающей).

Упрощение спектрального метода было достигнуто упрощением передаточной функции избирательной цепи . Аналогично метод интеграла наложения можно упростить укорочением импульсной характеристики h(t), тесно связанной с передаточной функцией .

Основываясь на общем выражении

                                  

и переходя к аналитической функции Zh(t), соответствующей физической функции h(t), находим

                                                          (31)

Заменим переменную 0. Тогда с учетом формулы (26) и после замены нижнего предела  0 на  получим

                       

С другой стороны, представив искомую импульсную характеристику в виде узкополосной функции

                               h(t)=H(t)cos[0t+h(t)]

имеем :

               Zh(t)=H(t)ej[0t+h(t)]=H(t)ejh(t)ej0t=             (33)

Из сравнения (32) и (33) непосредственно вытекает равенство, определяющее комплексную огибающую импульсной характеристики h(t) :

                         (34)

Применение этого выражения упрощает вычисление импульсной характеристики h(t).

Обратимся теперь к (27). Используя правило, согласно которому произведению двух спектров  соответствует функция времени S(t), являющаяся сверткой функций f(t) и g(t) :

, (35)

где y - временной интервал, в течении которого одновременно существуют функции f(t) и g(t), из (27) можем определить  в виде свертки двух функций времени, соответствующих спектральным функциям  и . Первой из этих функций соответствует , а второй, как это следует из (34) - . Следовательно

   (36)

Это выражение является общим, пригодным для любых избирательных цепей и любых узкополосных сигналов. В тех случаях, когда свободные колебания характеризуются постоянной частотой заполнения, как, например, в одиночном колебательном контуре, h(t) вырождается в постоянную фазу и выражение (36) существенно упрощается. То же самое относится и к сигналам с немодулированной частотой заполнения, когда (t) обращается в постоянную величину.

Метод интеграла наложения эффективен в тех случаях, когда временные характеристики сигналов или цепей ( или тех и других) оказываются более простыми , чем спектральные. Такое положение имеет место , например, при анализе прохождения ЧМ сигналов.


 

А также другие работы, которые могут Вас заинтересовать

78469. Тяжелое течение острой дыхательной недостаточности: кардиогенный отек легких. Патогенетические и клинико-функциональные различия кардиогенного и некардиогенного отека легких 82.5 KB
  Патогенетические и клинико-функциональные различия кардиогенного и некардиогенного отека легких. Причины кардиогенного отека легких. Отек легких это острое состояние в основе которого лежит патологическое накопление внесосудистой жидкости в легочной ткани и альвеолах приводящее к снижению функциональных способностей легких.
78470. Клинико-рентгенологические признаки легочного инфильтрата. Наиболее частые причины легочного инфильтрата. Тактика ведения больных с легочным инфильтратом 102 KB
  Легочной инфильтрат - клинико-рентгенологический признак воспалительного изменения легочной паренхимы за счет экссудативно-пролиферативных процессов, сопровождающихся потерей воздушности, эластичности и уплотнением структур легочной ткани.
78471. Классификация пневмоний. Критерии для постановки диагноза «пневмония». Оценка тяжести и прогноза исхода пневмонии по шкале CURB-65 97 KB
  Критерии для постановки диагноза пневмония. Классификация пневмоний Американского торакального общества 1993 г: Внебольничная пневмония ВП; Нозокомиальная внутригоспитальная пневмония НП; Аспирационная пневмония АП; Пневмония у лиц с тяжелым дефектом иммунитета; Типичные вызываются пневмотропными микробами; Атипичные вызываются внутриклеточными облигантами такими как вирусы хламидии микоплазмы клебсиеллы легионеллы и др.; Вторичные пневмонии: Застойная гипостатическая пневмония декомпенсация ХСН; Инфарктная...
78472. Внебольничная пневмония: принципы диагностики на амбулаторном и стационарном этапах ведения. Принципы выбора эмпирической антимикробной терапии в зависимости от группы риска и вероятной этиологии пневмонии 133 KB
  Лечение ВП в амбулаторных условиях: возбудители и препараты выбора: S. influenz: Препараты выбора: Амоксициллин или макролиды внутрь; Альтернативные препараты: Респираторные фторхинолоны левофлоксацин моксифлоксацин Доксициклин внутрь; S.ureus Enterobctericee: Препараты выбора: Амоксициллин Клавуланат или цефуроксим аксетил внутрь; Альтернативные препараты: Респираторные фторхинолоны левофлоксацин моксифлоксацин внутрь; Лечение ВП в стационарных условиях: возбудители и препараты выбора: S.ureus Enterobctericee: Препараты...
78473. Критерии пневмонии тяжелого течения. Инфекционно-токсический шок. Сепсис. Тактика ведения больных с тяжелой пневмонией 93.5 KB
  и ниже; Большие: Необходимость проведения ИВЛ; Увеличение объема инфильтрата в легких на 50 и более в течении 48 часов от начала терапии; Острая почечная недостаточность диурез менее 80 мл за 4 часа или сывороточный креатинин более 2 мг дл при отсутствии анамнестических указаний на наличие ХПН; Септический шок или потребность в вазопрессорах более 4 часов; Оценка тяжести и прогноза исхода пневмонии по шкале CURB65 по 1 баллу за признак: Спутанное сознание; Мочевина 7 ммоль л; ЧДД = 30 в мин; АД = 90 60 мм. Клиника: резкая...
78474. Нозокомиальная пневмония, как разновидность внутрибольничной инфекции. Наиболее частые причины нозокомиальных пневмоний 137.5 KB
  Классификация: Ранняя НП возникающая в течение первых 5 дней с момента госпитализации для которой характерны определенные возбудители чаще чувствительные к традиционно используемым антимикробным препаратам имеющую более благоприятный прогноз; Поздняя НП развивающаяся не ранее 6 дня госпитализации которая характеризуется более высоким риском наличия полирезистентных возбудителей и менее благоприятным прогнозом; Пути попадания инфекции в легочную ткань: аспирация секрета ротоглотки содержащего потенциальные возбудители НП;...
78475. Вентилятор-ассоциированная пневмония (ВАП): причины возникновения, клинико-рентгенологические и лабораторные критерии 97.5 KB
  Вентиляторассоциированная пневмония ВАП это частный случай ГП развивающейся у больных которым требуется протезирование функции внешнего дыхания т. Возникновение ВАП возможно и ранее 48 часов особенно у больных находящихся в критическом состоянии. Наиболее часто с ВАП ассоциируются такие микроорганизмы как кишечные грамотрицательные бактерии грибы и Stphylococcus ureus но есть данные о полимикробной инфекции.
78476. Аспирационная пневмония (АП) или синдром Мендельсона: причины возникновения, особенности микробного фона. Группы риска возникновения АП. Клинико-рентгенологические, эндоскопические и лабораторные критерии для диагноза АП 85 KB
  Патогенез: аспирация пищевых масс приводит большей частью к закупорке преимущественно средних бронхиол и возникновению острой гипоксии; аспирация желудочного сока нередко возникающая у больных и натощак означает распространенный химический ожог слизистой оболочки трахеи бронхов и бронхиол и как правило обусловливает крайне тяжелое течение возникающей острой ДН; истинный химический ожог бронхов происходит тогда когда рН аспирируемой жидкости менее 25; наиболее выраженное повреждение легких возникает при рН желудочного сока около...
78477. Легочные и внелегочные осложнения бактериальных пневмоний. Принципы профилактики, диагностики и лечения осложнений 92.5 KB
  Массивное действие токсина на сосудистую стенку приводит к выраженной дилатации венозных сосудов и депонированию крови преимущественно в органах брюшной полости, в результате чего уменьшается приток к правым отделам сердца, падает ударный объем, сердечный выброс и нарушается перфузия периферических органов (развивается гиповолемический шок).