73704

Электростатика проводников

Лекция

Физика

В проводнике заряды могут двигаться при наложении маленьких полей в пределе бесконечно малых. Проводник – это такая среда содержащая свободные заряды которые можно перемещать по объему без совершения работы идеальный проводник. Такие проводники в природе существуют.

Русский

2014-12-19

156.5 KB

0 чел.

Электростатика проводников.

В среде много свободных зарядов, они могут перемещаться на расстояния, значительно большие диаметра атома.

В изоляторе тоже можно переносить заряды. Для этого надо приложить большие поля.

В проводнике заряды могут двигаться при наложении маленьких полей (в пределе бесконечно малых). То есть, нужно потратить очень малую работу для перемещения зарядов.

Проводник – это такая среда, содержащая свободные заряды, которые можно перемещать по объему без совершения работы (идеальный проводник).

Такие проводники в природе существуют. Это сверхпроводники.

Идеальный проводник – это эквипотенциальное тело.

Возьмем проводник и поместим его в поле точечного заряда. Оно неоднородно и не эквипотенциально. Из определения проводника следует, что во всех точках проводника потенциалы одинаковы. Можно взять длинную плоскость такую, что на ее конце напряженность поля равна нулю. Таким образом, как бы близко мы не подносили проводник к заряду, потенциал в каждой его точке будет равен нулю, так как на конце, намного отстоящем от точечного заряда, потенциал равен нулю.

Во всем объеме проводника поле равно нулю.

Рассмотрим проводник на границе с вакуумом. Выберем на поверхности проводника площадку  такую маленькую, чтобы ее можно было считать частью плоскости, и электрическое поле сверху и снизу вблизи нее можно считать постоянным. Напишем граничные условия для вектора  вблизи площадки .

Внутри проводника .

.

Отсутствует тангенциальная компонента вектора  вблизи поверхности проводника. Это означает, что вблизи поверхности вектор  перпендикулярен поверхности.

Что такое ?

  1.  поместим нейтральный проводник в поле, поле растаскивает заряды, они доходят до границы, но за нее выйти не могут, т.е. заряды скапливаются у поверхности диэлектрика, тем самым образуя поверхностную плотность заряда;
  2.  возьмем проводник и внесем туда заряд, заряды будут двигаться без совершения работы, дойдут до границы и опять образуют поверхностную плотность;

  1.  можно совместить два предыдущих примера, тогда .

Всегда, где есть граница есть некая энергия, которая заставляет не переходит эту границу. Проводник – это стакан, в который налита электрическая жидкость. Есть граница, поэтому электрончики выстраиваются, а не улетают за пределы.

Как зависит напряженность поля от рельефа поверхности.

Пусть у нас есть некоторый проводник, имеющий заданный рельеф. На основе его мы смоделировали эквипотенциальное тело.

Относительно бесконечности  по определению проводника.

Поскольку мы говорим о поверхностных зарядах, то наше приближение достаточно точное.

Поле вблизи поверхности проводника определяется только радиусом кривизны.

.

Чем меньше радиус кривизны, тем больше около этой поверхности напряженность поля.

Пояснение к опыту со свечей.

Зарядим проводник, вблизи острия  большое. В воздухе всегда есть электроны или ионы. Они бьются о другие атомы, зарядов становится много

  1.  Острие зарядим положительно. Тогда, образовавшиеся положительные ионы двигаются от острия, они тяжелые и создают ветер, который задувает пламя свечи. Электроны тоже движутся, только к острию, но они легкие и их вклад мало заметен.
  2.  Острие зарядим отрицательно. Тогда к острию будут двигаться электроны, но они легкие и бьются об атомы при своем движении, поэтому до острия их доходит очень мало, они не могут увлечь за собой большое количество зарядов и ветер не образуют. Пламя свечи не гаснет.

Полый проводник.

Пусть у нас имеется проводник с полостью внутри. Помести в нее заряд . Найдем, какой заряд образуется на внутренней поверхности полости. Заряд  создает поле, свободные заряды начинают двигаться и выстраиваются на границе. Выберем поверхность произвольного вида таким образом, чтобы она вся лежала внутри проводника, а полость находилась внутри этой поверхности.

Каким бы не был проводник, какой бы формы не была полость, если внутрь нее внести заряд, то на внутренней стороне этой полости образуется такой же по модулю заряд, но противоположного знака.

Это утверждение сейчас называют теоремой Фарадея.

Пусть  равно нулю, тогда на внутренней поверхности полости зарядов не образуется, и поле внутри полости равно нулю.

Замечание.

Теорему Фарадея мы доказали, используя теорему Гаусса, а ее, используя закон Кулона. Таким образом, если бы в законе Кулона сила взаимодействия двух зарядов не была обратнопропорциональна второй степени расстояния, то ни одна из этих теорем не выполнялась бы. Поэтому одним из примеров проверки закона Кулона служит опыт с клетками Фарадея, основанный на теореме Фарадея.

Емкость проводников.

Зарядим проводник. Если знать количество зарядов, то какой потенциал будет у проводника.

Между зарядом, который мы поместим и потенциалом имеет место быть коэффициент. Он характеризует проводник. Чем больше , тем больший заряд надо поместить на проводник, его потенциал достиг заданного уровня.

СИ:

Гауссова система:

Этот коэффициент называется емкостью проводника. Он характеризует только проводник и обозначается буквой .

СИ:

Гауссова система:

Емкость определяется только свойствами и геометрией проводника.

Рассмотрим два проводника. Два проводника заряжают одинаковыми по модулю, но разными по знаку зарядами и измеряют разность потенциалов.

   

Такая система из двух и более проводников, возможно разделенных диэлектриком, называется конденсатором.

А величина , определенная таким образом, называется емкостью конденсатора.

Если конденсатор состоит из двух проводников, то все ясно. Если же их больше, то необходимо определить, где обкладки. Наличие третьего проводника влияет на разность потенциалов и на емкость.


 

А также другие работы, которые могут Вас заинтересовать

72872. Круговорот серы в природе 58 KB
  Соединения серы участвуют в биохимических процессах живой клетки в формировании химического состава. Больше всего серы накапливают моллюски. Кругооборот серы в морях происходит с помощью сульфатредуцирующих бактерий которые восстанавливают сульфаты до Н2S...
72873. Круговорот фосфора в природе 59.5 KB
  Фосфаты обладают растворимостью но не образуют газообразной формы т. фосфаты не летучи. Фосфаты потребляются растениями для синтеза органических веществ такие как аминокислоты и ферменты. При разложении растений и Животных организмов бактериями фосфаты возвращаются в почву и затем снова используются растениями и микробами.
72874. Круговорот азота в природе 61 KB
  Приблизительно 78 всего объема атмосферы приходится на долю азота. Растения усваивают ионы аммония NH4 и нитраты NO3 Для того чтобы N преобразовался в легкорастворимые соли необходимо участие азотфиксирующих бактерий или синезеленых водорослей цианобактерии.
72875. Круговорот углерода в природе 64.5 KB
  Каменный уголь содержит до 90 углерода. В форме доксида углерода он входит в состав земной атмосферы в которой на его долю приходится 0046 массы. Из углерода в биосфере создаются миллионы органических соединений.
72876. Пищевые цепи и сети 70.5 KB
  Пищевые цепи и сети. Таким образом пищевые цепи переплетаются образуя пищевые сети. Пищевые сети служат основой для построения экологических пирамид.
72877. Экологические системы. Понятия «биоценоз», «биотоп», «биогеоценоз», «экосистема». Гомеостаз экосистемы (устойчивость и стабильность) 61.5 KB
  Важнейшими показателями динамики экосистем являются устойчивость и стабильность. Иногда понятия устойчивость и стабильность рассматриваются как синонимы но тогда следует различать два вида устойчивости: резидентная устойчивость стабильность способность оставаться в устойчивом...
72878. Экология сообществ. Биоценоз. Видовая, пространственная и экологическая структуры биоценоза 61.5 KB
  Видовая пространственная и экологическая структуры биоценоза. Различают видовую пространственную и экологическую структуру биоценоза. Показателями значимости каждого отдельного вида в видовой структуре биоценоза являются: обилие вида т.
72879. Экология популяций. Ареал. Статические и динамические показатели популяции 62 KB
  Статические и динамические показатели популяции Популяция это элементарная группировка организмов определенного вида обладающая всеми необходимыми условиями для поддержания своей численности необозримо длительное время в постоянно изменяющихся условиях среды.
72880. Экологическая валентность (толерантность, устойчивость, пластичность). Лимитирующий фактор 66.5 KB
  Количественно выражается интенсивностью и диапазоном действия экологических факторов при которых вид сохраняет нормальную жизнедеятельность. Действия факторов характеризуются их дозировкой амплитудой размахом колебаний. при оптимальной интенсивности факторов.