73709

Закон Джоуля-Ленца для участка цепи

Лекция

Физика

Проводимость шариков много больше проводимости земного шара. Будем считать что в среде выполняется закон Ома в дифференциальной форме где проводимость среды в данной точке. Проводимость анизотропных сред. линейная проводимость квадратичная проводимость.

Русский

2014-12-19

387 KB

0 чел.

Лекция №12.

Рассмотрим закон Джоуля - Ленца для участка цепи, когда на нем действуют электрические и сторонние силы напряженностью  и  соответственно. Мы хотим найти удельную мощность, которая выделяется в бесконечно маленьком объемчике вблизи выбранной точки.

Известно, что мощность можно записать как скалярное произведение силы на скорость . Учитывая, что  и  коллинеарные с , мощность, выделяемую при движении одного носителя заряда можно записать так .

А теперь запишем мощность , выделяемую в объеме , заряд в котором равен :  . Величину, равную  будем называть плотностью мощности, где  - модуль вектора плотности тока.

Формула  была получена для маленького объема в среде, а теперь представим обозримый проводник – тонкую проволоку.

Найдем работу, которую совершают электрические и сторонние силы по перемещению заряда в проволоке . Здесь  - работа электрических сил по перемещению единичного положительного заряда, а  - работа сторониих сил по перемещению единичного положительного заряда. По определению мощности найдем .

Токи в массивных проводниках.

Приведем общие примеры.

Имеется бесконечная поводящая седа, н.р. земной шар. В ней есть два хороших проводника в виде шариков, расположенных на расстоянии  друг от друга, известен их радиус . Проводимость шариков много больше проводимости земного шара. Проводники соединены с источником эдс . Найдем сопротивление между шариками. Для этого опишем ток, который показал бы амперметр.

Ток – поток вектора  через некоторую поверхность . Поскольку ток потечет во всех направлениях, то выберем замкнутую поверхность  в виде концентрической сферы вокруг одного из шариков. Будем считать, что в среде выполняется закон Ома в дифференциальной форме , где  - проводимость среды в данной точке.

Итак, с одной стороны .

С другой стороны:

Шарики – это хорошие проводники, помещенные в плохой диэлектрик, значит их можно рассматривать как конденсатор с “утечкой”, тогда  - заряд на конденсаторе .  

Теперь в выражении  посчитаем емкость.

Среду можно охарактеризовать диэлектрической проницаемостью  - в диэлектрике поля в  раз ослабляются .

Сделаем оценки:

Пусть , найдем емкость двух шариков на расстоянии, без диэлектрика:   Если шарики далеко, то потенциал в любой точке поверхности  создается полями обоих шариков, причем поле дальнего шарики много меньше поля, создаваемого шариком, окруженным поверхностью . Поэтому в вакууме приближенно  .

В диэлектрике емкость возрастает в  раз .

, тогда  - сюда не вошло расстояние между шариками, значит, как бы далеко не были воткнуты проводники в землю – сопротивление будет одно и тоже!

Теперь мы доказали, что если требуется передать напряжение, в качестве одного из двух проводов можно использовать землю.

Проводимость анизотропных сред.

Если записать закон Ома в дифференциальной форме в некоторой точке , то в общем  случае функция  имеет довольно сложный вид.

  1.   Будем считать вектор  коллинеарным с вектором , тогда  . Разложим функцию  в ряд Тейлора в близи нуля, считая, что  мало  

Пусть рассматриваемый нами материал не сверхпроводник, тогда слагаемое . Введем следующие обозначения ,   , тогда для не сверхпроводника имеет быть место равенство  

Числа и для каждого проводника свои, но их можно измерить.  - линейная проводимость, - квадратичная проводимость.

Если  , то проводник линейный. Если  и  сравнимы, то проводник нелинейный.

Для линейного проводника закон Ома в дифференциальной форме выглядит следующим образом .

  1.  Рассмотрим проводимость анизотропных сред (кристаллы).

.

Возьмем какой-нибудь кристалл и померим его проводимость в разных направлениях:

Подключим прибор последовательно и померим проводимость между гранями, перпендикулярными , , . Полученные значения будут не обязательно одинаковы.

Померим проводимость в направлении телесной диагонали,  - компоненты одинаковы. В таком случае компоненты регистрируемого тока можно записать следующим образом:  Поскольку  то  , значит ток потечет не в направлении вектора , а в сторону.

Запишем закон Ома в случае, когда вектор  неколлинеарный с вектором .

 

разложим  в ряд Тейлора в близи нуля как функцию трех переменных:

Пусть мы исследуем не сверхпроводник, и нет токов при отсутствии полей, тогда слагаемые  равны нулю.

Введем обозначения  и  , тогда  

- тензор линейной проводимости (тензор II ранга)

- тензор нелинейной проводимости (тензор III ранга)

Если проводник линейный , то закон Ома для анизотропной среды имеет вид: .

Процессы при разрядке и зарядке конденсаторов.

Разрядка конденсатора

Пусть у нас есть конденсатор емкостью  на котором заряд .

Соберем цепь  

И посмотрим как будет меняться сила тока  от времени.

Выберем сечение проводника и посмотрим, как соотносятся заряд на конденсаторе и заряд, который проходит через данное сечение в единицу времени (сила тока). Сколько протекло заряда в единицу времени, на столько же и уменьшился заряд на конденсаторе:   .

Знак минус, потому что убыль заряда на конденсаторе.

Запишем соотношение между емкостью  и разностью потенциалов : . Теперь запишем закон Ома, таким образом свяжем ток в проводнике и разность потенциалов: .

Теперь решим дифференциальное уравнение:

 .

При  , значит , .

Величина  - постоянная времени. Предположим, что в данный момент времени ток во всех точках цепи одинаков – такие токи называются квазистационарными. 


 

А также другие работы, которые могут Вас заинтересовать

81498. Метилирование ДНК. Представление о метилировании чужеродных и лекарственных соединений 108.02 KB
  Метилирование ДНК это модификация молекулы ДНК без изменения самой нуклеотидной последовательности ДНК что можно рассматривать как часть эпигенетическойсоставляющей генома. Метилирование ДНК заключается в присоединении метильной группы к цитозину в позиции С5 цитозинового кольца. У человека за процесс метилирования ДНК отвечают три фермента называемые ДНКметилтрансферазами 1 3 и 3b DNMT1 DNMT3 DNMT3b соответственно.
81499. Источники и образование одноуглеродных групп. Тетрагидрофолиевая кислота и цианкобаламин и их роль в процессах трансметилирования 168.87 KB
  Образование и использование одноуглеродных фрагментов. Ещё один источник формального и формиминофрагментов гистидин. Все образующиеся производные Н4фолата играют роль промежуточных переносчиков и служат донорами одноуглеродных фрагментов при синтезе некоторых соединений: пуриновых оснований и тимидиловой кислоты необходимых для синтеза ДНК и РНК регенерации метионина синтезе различных формиминопроизводных формиминоглицина и т. Перенос одноуглеродных фрагментов к акцептору необходим не только для синтеза ряда соединений но и для...
81500. Антивитамины фолиевой кислоты. Механизм действия сульфаниламидных препаратов 104.02 KB
  В медицинской практике в частности в онкологии нашли применение некоторые синтетические аналоги антагонисты фолиевой кислоты. Аминоптерин является наиболее активным цитостатикомантагонистом фолиевой кислоты; отличается высокой токсичностью вследствие чего показан лишь при тяжёлых формах псориаза. ПАБК необходима микроорганизмам для синтеза фолиевой кислоты которая превращается в фолиниевую кислоту участвующую в синтезе нуклеиновых кислот.
81501. Обмен фенилаланина и тирозина. Фенилкетонурия; биохимический дефект, проявление болезни, методы предупреждения, диагностика и лечение 261.77 KB
  Тирозин условно заменимая аминокислота поскольку образуется из фенилаланина. Метаболизм феиилаланина Основное количество фенилаланина расходуется по 2 путям: включается в белки; превращается в тирозин. Превращение фенилаланина в тирозин прежде всего необходимо для удаления избытка фенилаланина так как высокие концентрации его токсичны для клеток.
81502. Алкаптонурия и альбинизм: биохимические дефекты, при которых они развиваются. Нарушение синтеза дофамина, паркинсонизм 403.53 KB
  Нарушение синтеза дофамина паркинсонизм. Заболевание развивается при недостаточности дофамина в чёрной субстанции мозга. Для лечения паркинсонизма предлагаются следующие принципы: заместительная терапия препаратамипредшественниками дофамина производными ДОФА леводопа мадопар наком и др. подавление инактивации дофамина ингибиторами МАО депренил ниаламид пиразидол и др.
81503. Декарбоксилирование аминокислот. Структура биогенных аминов (гистамин, серотонин, γ-аминомасляная кислота, катехоламины). Функции биогенных аминов 239.46 KB
  Процесс отщепления карбоксильной группы аминокислот в виде СО2 получил название декарбоксилирования. В живых организмах открыты 4 типа декарбоксилирования аминокислот. αДекарбоксилирование характерное для тканей животных при котором от аминокислот отщепляется карбоксильная группа стоящая по соседству с αуглеродным атомом.
81504. Дезаминирование и гидроксилирование биогеных аминов (как реакции обезвреживания этих соединений) 168.64 KB
  Инактивация биогенных аминов происходит двумя путями: 1 метилированием с участием SM под действием метилтрансфераз. Таким образом могут инактивироваться различные биогенные амины но чаще всего происходит инактивация гастамина и адреналина. Так инактивация адреналина происходит путём метилирования гидроксильной группы в ортоположении . Реакция инактивации гистамина также преимущественно происходит путём метилирования 2 окислением ферментами моноаминооксидазами МАО с коферментом FD таким путем.
81505. Нуклеиновые кислоты, химический состав, строение. Первичная структура ДНК и РНК, связи, формирующие первичную структуру 107.11 KB
  Первичная структура ДНК и РНК связи формирующие первичную структуру Нуклеи́новые кисло́ты высокомолекулярные органические соединения биополимеры полинуклеотиды образованные остатками нуклеотидов. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению передаче и реализации наследственной информации. Поскольку в нуклеотидах существует только два типа гетероциклических молекул рибоза и дезоксирибоза то и имеется лишь два вида нуклеиновых кислот дезоксирибонуклеиновая ДНК...
81506. Вторичная и третичная структура ДНК. Денатурация, ренативация ДНК. Гибридизация, видовые различия первичной структуры ДНК 108.02 KB
  Вторичная структура ДНК. В 1953 г. Дж. Уотсоном и Ф. Криком была предложена модель пространственной структуры ДНК. Согласно этой модели, молекула ДНК имеет форму спирали, образованную двумя полинуклеотидными цепями, закрученными относительно друг друга и вокруг общей оси. Двойная спираль правозакрученная, полинуклеотидньхе цепи в ней антипараллельны