73816

Анализ устройств цифровой электроники на структурном уровне представления в системах моделирования VLSI-SIM и MODELSIM

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Как видно из результатов моделирования схемы в VLSI-SIM и ModelSim, временные диаграммы совпадают. За исключением небольших скачков, которые наблюдались в VLSI-SIM, а в ModelSim они пропали.

Русский

2014-12-20

2.26 MB

1 чел.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ  БЕЛАРУСЬ

БЕЛОРУССКИЙ  ГОСУДАРСТВЕННЫЙ  УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет компьютерных технологий и систем

Кафедра ЭВМ

 

 

 

ПАНАРАД СЕРГЕЙ ВЛАДИМИРОВИЧ

ВМИС

Анализ устройств цифровой электроники на структурном уровне представления в системах моделирования VLSI-SIM и MODELSIM

Отчёт по лабораторной работе №4

(вариант 17)

студента 3 курса 221902 группы

 

Преподаватель

  

Воронов Александр Анатольевич,

доцент кафедры ЭВМ

 

Минск 2014

1) Приведем структурную схему моделируемого объекта с учетом

представления логических элементов в соответствии с ГОСТом:

Рис. 1. Структурная схема моделируемого объекта

    2.1) Опишем цифровое устройство на языке системы VLSI-SIM:

circuit lab4;

    inputs x1(1), x2(1), x3(1), x4(1);

    outputs c1(1), y2(1), y3(1), y4(1);

gates

    a1 'not' (1) x3(1);

    a2 'not' (1) y3(1);

    b1 'not' (1) a2(1);

    b2 'noa2' (1) x1(1), a1(1), x2(1);

    b3 'nmx2' (1) a1(1), x1(1), x2(1);

    b4 'not' (1) x1(1);

    b5 'not' (1) y2(1);

    b6 'not' (1) x2(1);

    c1 'no3' (1) b2(1), x4(1), b1(1);

    c2 'na2' (1) x1(1), b6(1);

    c3 'not' (1) a2(1);

    c4 'na3' (1) b3(1), x4(1), b5(1);

    c5 'na3o2' (1) x3(1), b4(1), b6(1), x4(1);

    y4 'nao22' (1) x3(1), c3(1), c1(1), c2(1);

    y3 'nao3' (1) c4(1), b4(1), x3(1), x4(1);

    y2 'not' (1) c5(1);

endgates

end

2.2) Выполним трансляцию описания схемы

Рис. 2. Трансляция описания схемы

2.3) Выполним 3 попытки построения теста контроля объекта случайным образом

2.4) Проведем моделирование объекта на лучшем из полученных тестов

Рис. 3. Временная диаграмма

3) Опишем цифровое устройство на структурном уровне на языке VHDL

na3o2.vhd

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

ENTITY na3o2 IS

  port (A,B,C,D: in STD_LOGIC; Y: out STD_LOGIC);

END na3o2;

ARCHITECTURE arc_na3o2 OF na3o2 IS

BEGIN

  Y <= not (A and B and (C or D)) after 4 ns;

END arc_na3o2;

noa2.vhd

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

ENTITY noa2 IS

  port (A,B,C: in STD_LOGIC; Y: out STD_LOGIC);

END noa2;

ARCHITECTURE arc_noa2 OF noa2 IS

BEGIN

  Y <= not (A or (B and C)) after 3 ns;

END arc_noa2;

no3.vhd

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

ENTITY no3 IS

  port (A,B,C: in STD_LOGIC; Y: out STD_LOGIC);

END no3;

ARCHITECTURE arc_no3 OF no3 IS

BEGIN

  Y <= not (A or B or C) after 4 ns;

END arc_no3;

nmx2.vhd

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

ENTITY nmx2 IS

  port (A,B,V: in STD_LOGIC; Y: out STD_LOGIC);

END nmx2;

ARCHITECTURE arc_nmx2 OF nmx2 IS

BEGIN

  Y <= not ((A or not V) and (B or V)) after 6 ns;

END arc_nmx2;

nao3.vhd

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

ENTITY nao3 IS

  port (A,B,C,D: in STD_LOGIC; Y: out STD_LOGIC);

END nao3;

ARCHITECTURE arc_nao3 OF nao3 IS

BEGIN

  Y <= not (A and (B or C or D)) after 5 ns;

END arc_nao3;

na2.vhd

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

ENTITY na2 IS

  port (A,B: in STD_LOGIC; Y: out STD_LOGIC);

END na2;

ARCHITECTURE arc_na2 OF na2 IS

BEGIN

  Y <= not (A and B) after 2 ns;

END arc_na2;

invertor.vhd

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

ENTITY invertor IS

  port (A: in STD_LOGIC; Y: out STD_LOGIC);

END invertor;

ARCHITECTURE arc_invertor OF invertor IS

BEGIN

  Y <= not A after 1 ns;

END arc_invertor;

nao22.vhd

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

ENTITY nao22 IS

  port (A,B,C,D: in STD_LOGIC; Y: out STD_LOGIC);

END nao22;

ARCHITECTURE arc_nao22 OF nao22 IS

BEGIN

  Y <= not ((A or B)and (C or D)) after 3 ns;

END arc_nao22;

na3.vhd

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

ENTITY na3 IS

  port (A,B,C: in STD_LOGIC; Y: out STD_LOGIC);

END na3;

ARCHITECTURE arc_na3 OF na3 IS

BEGIN

  Y <= not (A and B and C) after 3 ns;

END arc_na3;

circuit.vhd

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

ENTITY circuit IS

  PORT (x1, x2, x3, x4: in std_logic;

  y1, y2, y3: inout std_logic;

  y4: out std_logic);

END circuit ;

ARCHITECTURE arc_circuit OF circuit IS

  component invertor

     port (A: in std_logic;

     Y: out std_logic);

  end component;

  component noa2

     port (A,B,C: in std_logic;

     Y: out std_logic);

  end component;

  component nmx2

     port (A,B,V: in std_logic;

     Y: out std_logic);

  end component;

  component no3

     port (A,B,C: in std_logic;

     Y: out std_logic);

  end component;

  component na2

     port (A,B: in std_logic;

     Y: out std_logic);

  end component;

  component na3

     port (A,B,C: in std_logic;

     Y: out std_logic);

  end component;

  component na3o2

     port (A,B,C,D: in std_logic;

     Y: out std_logic);

  end component;

  component nao22

     port (A,B,C,D: in std_logic;

     Y: out std_logic);

  end component;

  component nao3

     port (A,B,C,D: in std_logic;

     Y: out std_logic);

  end component;

signal a1, a2, b1, b2, b3, b4, b5, b6, c2, c3, c4, c5: std_logic;

BEGIN

  g1: invertor port map(x3, a1);

  g2: invertor port map(y3, a2);

  g3: invertor port map(a2, b1);

  g4: noa2 port map(x1, a1, x2, b2);

  g5: nmx2 port map(a1, x1, x2, b3);

  g6: invertor port map(x1, b4);

  g7: invertor port map(y2, b5);

  g8: invertor port map(x2, b6);

  g9: no3 port map(b2, x4, b1, y1);

  g10: na2 port map(x1, b6, c2);

  g11: invertor port map(a2, c3);

  g12: na3 port map(b3, x4, b5, c4);

  g13: na3o2 port map(x3, b4, b6, x4, c5);

  g14: nao22 port map(x3, c3, y1, c2, y4);

  g15: nao3 port map(c4, b4, x3, x4, y3);

  g16: invertor port map(c5,y2);

END arc_circuit;

3.1) Подготовим блок Testbench для отладки объекта, при этом

используя тест, полученный в части 1 задания

LIBRARY IEEE;

USE IEEE.std_logic_1164.all;

ENTITY circuit_test is  

END circuit_test;

ARCHITECTURE  bench OF circuit_test IS

  component circuit

     port(x1, x2, x3, x4: in std_logic;

     y4: out std_logic; y1, y2, y3:inout std_logic);

  end component;

signal x1, x2, x3, x4, y1, y2, y3, y4: std_logic;

BEGIN

x1 <= '1','0' after 100 ns,'1' after 300 ns,'0' after 400 ns,'1' after 800 ns,'0' after 1000 ns, '1' after 1100 ns;

x2 <= '0','1' after 100 ns,'0' after 200 ns,'1' after 300 ns, '0' after 400 ns, '1' after 600 ns, '0' after 800 ns;

x3 <= '0','1' after 300 ns,'0' after 400 ns,'1' after 500 ns,'0' after 600 ns, '1' after 700 ns, '0' after 1100 ns;

x4 <= '1','0' after 200 ns,'1' after 300 ns,'0' after 600 ns,'1' after 700 ns,'0' after 900 ns;

M:circuit port map(x1, x2, x3, x4, y4, y1, y2, y3);      

END bench;

3.2) Выполним компиляцию описания

Рис. 4. Компиляция описания

3.3) Выполним моделирование объекта на заданном тесте

3.4) Сравним результаты моделирования объекта в двух системах моделирования

Вывод:

Как видно из результатов моделирования схемы в VLSI-SIM и ModelSim,  временные диаграммы совпадают. За исключением небольших скачков, которые наблюдались в VLSI-SIM, а в ModelSim они пропали. Это происходит из-за того, что в ModelSim мы проводили моделирование с учетом внутренних задержек элементов.


 

А также другие работы, которые могут Вас заинтересовать

48646. Расчет структуры электромагнитных полей 508 KB
  Цель работы – расчет структуры полей внутри и вне цилиндра, а также в волноводе для приведенных в задании геометрических и электрических параметров
48647. Расчет структуры электромагнитных полей. Общее задание 210 KB
  Решение проводится в цилиндрической системе координат связанных с центром основания цилиндра где r радиусвектор точки наблюдения ось x направлена вдоль приложенного магнитного поля рис.1 методом разделения переменных в соответствии с которым решение  будем искать в виде произведения двух функций каждая из которых зависит только от одной координаты:...
48648. Расчет структуры электромагнитных полей 575 KB
  Метод исследования – метод разделения переменных при интегрировании дифференциальных уравнений для получения аналитических выражений потенциалов и напряженностей полей с последующим построением на ЭВМ структуры этих полей
48649. Расчет структуры электромагнитных полей 209.5 KB
  Параметры задачи Бесконечный проводящий цилиндр в магнитной среде R=8см=008м H0=20 і=5102 е=8 Координаты точки M: r=7см=007м =90 Решение Решение проводится в цилиндрических координатах связанных с центром основания цилиндра r радиусвектор точки наблюдения ось x направлена вдоль приложенного магнитного поля рис.1 в методом разделения переменных в соответствии с которым решение  будем искать в виде произведения двух функций каждая из которых зависит только от одной координаты:...
48650. Расчет структуры осесимметричных стационарных электромагнитных полей 203 KB
  Решение производится в цилиндрических координатах связанных с центром основания цилиндра r радиусвектор точки наблюдения ось x направлена вдоль приложенного магнитного поля рис.1 методом разделения переменных методом Фурьев соответствии с которым решение будем искать в виде произведения двух функций каждая из которых зависит только от одной координаты: 1.4 Этим самым решение уравнения 1.
48651. ПСИХОЛОГІЧНІ ВАЖЕЛІ ЗАБЕЗПЕЧЕННЯ БЕЗПЕКИ ЛЮДИНИ. МОДЕЛІ ФОРМУВАННЯ ЗДОРОВ’Я 278 KB
  Фактично люди мають дві нервові системи: центральну і вегетативну. Центральна нервова система керує відносинами людини із зовнішнім світом. Вона включає: спинний мозок, великі півкулі головного мозку, які зв’язані з проміжним мозком, середній мозок, задній мозок, довгастий мозок, мозочок. Вегетативна нервова система керує діяльністю внутрішніх органів.
48652. Расчет структуры электромагнитных полей 780 KB
  Задача настоящей работы – теоретическое исследование электромагнитного поля, основывающееся на классических представлениях о нём, и численное нахождение его характеристик.
48653. Перспективы и состояние разработок распределительных трансформаторов массовых серий 384.5 KB
  Распределительные трансформаторы мощностью 25 630 кВ А напряжением 6 10 кВ наиболее массовая серия ид производимых и эксплуатируемых трансформаторов в СССР. Производство и эксплуатация этих трансформаторов требует значительных материальных и трудовых затрат любое снижение затрат дает существенную экономию в народном хозяйстве. Снижение затрат на производство и эксплуатацию трансформаторов является основной задачей изготовителей для решения которой необходимо: снизить расход активных материалов при использовании...
48654. МЕХОВЫЕ ТОВАРЫ 13.31 MB
  Топография и химический состав шкурки стр. Меховые товары – это пушно-меховые и овчинно-шубное сырье шкурки выделанные меховые и овчинно-шубные изделия. Меховые товары невыделанные шкурки пушно-меховое сырьё и выделанные шкурки пушно-меховой полуфабрикат объединяются в группу пушно-меховые товары. Ценность меховых товаров определяется четырьмя основными свойствами которыми обладают пушно-меховые шкурки: высокими теплозащитными...