73829

Комплексные числа

Лекция

Математика и математический анализ

Определение комплексного числа. Первая компонента комплексного числа действительное число называется действительной частью числа это обозначается так; вторая компонента действительное число называется мнимой частью числа. Два комплексных числа и равны тогда и только тогда когда равны их действительные и мнимые части.

Русский

2014-12-21

388 KB

0 чел.

Комплексные числа.

Определение комплексного числа.

Опр.9.1.1. Комплексным числом  будем называть упорядоченную пару действительных чисел , записанную в форме , где - новый объект ("мнимая единица"), для которого при вычислениях полагаем .

Первая компонента комплексного числа , действительное число , называется действительной частью числа , это обозначается так: ; вторая компонента, действительное число , называется мнимой частью числа : .

 Опр.9.1.2. Два комплексных числа  и  равны тогда и только тогда, когда равны их действительные и мнимые части: .

Множество комплексных чисел неупорядочено, т.е. для комплексных чисел не вводятся отношения "больше" или "меньше".

Геометрически комплексное число  изображается как точка с координатами  на плоскости. Плоскость, на которой изображаются комплексные числа, называется комплексной плоскостью .

Опр.9.1.3. Суммой двух комплексных чисел  и  называется комплексное число , определяемое соотношением , т.е. , .

Это означает, что геометрически комплексные числа складываются как векторы на плоскости, покоординатно.

Опр.9.1.4. Произведением двух комплексных чисел  и  называется комплексное число , определяемое соотношением , т.е. .

Для двух комплексных чисел с нулевой мнимой частью  и  получим , , т.е. для множества комплексных чисел с нулевой мнимой частью операции сложения и умножения не выводят за пределы этого множества. Отождествим каждое такое число с действительным числом , равным действительной части комплексного числа, т.е. будем считать, что . Теперь действительные числа - подмножество множества комплексных чисел . Далее, числа с нулевой действительной частью, т.е. числа вида  , называются мнимыми числами. Мнимое число с единичной мнимой частью будем записывать просто как : ; квадрат этого числа, по определению умножения, равен , что обосновывает данное в опр.9.1.1 свойство "мнимой единицы".  

Легко убедиться, что операция сложения  на множестве комплексных чисел  имеет свойства, аналогичным аксиомам I.1- I.4, которым удовлетворяет операция сложения действительных чисел (см. раздел 3.1. Аксиомы действительных чисел):

I.1. ;

I.2.  ;

I.3. Существует такой элемент , что  для . Этот элемент - число .

I.4. Для каждого элемента  существует такой элемент , что . Этот элемент - число . Сумма чисел  и  называется разностью чисел  и : .

Прежде, чем определить операцию деления комплексных чисел, введём понятия сопряжённого числа и модуля комплексного числа.

Опр.9.1.5. Число  называется числом, сопряжённым к числу . Часто сопряжённое число обозначается также символом .

Опр.9.1.6. Действительное число  называется модулем комплексного числа .

Найдём произведение сопряжённых чисел:  . Таким образом,  - всегда неотрицательное действительное число, причём .

Для нахождения частного комплексных чисел  домножим числитель и знаменатель на число, сопряжённое знаменателю: .

 Для операции умножения справедливы свойства

II.1. ;

II.2. ;

II.3. Произведение числа  на любое число  равно ;

II.4. Для каждого числа  существует такое число , что , ;

Операции сложения и умножения подчиняется закону дистрибутивности:

III.1. .

Операция сопряжения имеет следующие свойства:

IV. 

.

Примеры выполнения арифметических действий с комплексными числами: пусть , . Тогда ;  ; .

9.1.2. Тригонометрическая форма комплексного числа. Запись комплексного числа в виде называется алгебраической формой комплексного числа. Изобразим число  как точку на плоскости с декартовыми координатами . Если теперь перейти к полярным координатам , то , поэтому . Угол  называется аргументом комплексного числа  и обозначается : . Аргумент комплексного числа определён неоднозначно (с точностью до слагаемых, кратных ): если, например, , то значения , равные   и т.д. тоже будут соответствовать числу , поэтому значение аргумента, удовлетворяющее условиям , будем называть главным;  для обозначения всех значений аргумента комплексного числа  применяется символ : .

Запись комплексного числа в виде  называется тригонометрической формой числа.

Число - единственное число, модуль которого равен нулю; аргумент для этого числа не определён.

Переход от тригонометрической формы к алгебраической очевиден: . Формулы для перехода от алгебраической формы к тригонометрической таковы:

При решении задач на перевод алгебраически заданного комплексного числа в тригонометрическую форму следует изобразить это число на комплексной плоскости  и, таким образом, контролировать полученный результат. Примеры: записать в тригонометрической форме числа , , , , . Решение: , , , , .

Более интересный пример: привести к тригонометрической форме число . Изобразим на комплексной плоскости  вместе с точкой  точку . Из рисунка понятно, что , поэтому .

В тригонометрической форме легко интерпретируются такие действия, как умножение, деление, возведение в степень. Пусть , , . Тогда

.

Вывод: при умножении комплексных чисел их модули перемножаются, аргументы складываются. Очевидно, если , то , т.е. операция сопряжения не меняет модуль числа, и изменяет знак его аргумента, поэтому . Вывод: при делении комплексных чисел их модули делятся друг на друга, аргумент частного равен разности аргументов делимого и делителя.

Введём следующее обозначение: для любого действительного числа  сумму  будем записывать как . Формула  называется формулой Эйлера, она обосновывается в теории функций комплексной переменной; пока будем понимать показательную функцию в левой части этой формулы как краткую форму записи для суммы, находящейся справа. Теперь любое комплексное число  можно представить как ; эта форма записи называется показательной. Введённое обозначение согласовано со свойствами показательной функции:

;

.

Индукцией по показателю степени  легко доказывается формула Муавра: если , то , или, в показательной форме, . С помощью этой формулы легко вычислять высокие степени комплексных чисел и выводить формулы для синусов и косинусов кратных углов:

; в качестве второго примера выведем формулы для  и : если , то, по формуле бинома Ньютона,

. Выпишем степени числа :

и далее значения степеней повторяются (для отрицательных степеней это тоже справедливо:  и т.д.). Итак,

. С другой стороны, , поэтому, приравнивая действительные и мнимые части этих двух представлений пятой степени числа , получим , .

В заключение рассмотрим операцию извлечения корня -ой степени из комплексного числа . По определению, любое число , такое, что  , называется корнем -ой степени из числа . Пусть , . Тогда . Числа равны, если равны их модули и аргументы, поэтому , , откуда , , при этом  различных значения корня -ой степени из числа  получаются при .

Пример: найти все значения . Число  в тригонометрической форме равно . Все пять значений корня даются формулой  при . Они расположены на окружности радиуса . Значение, соответствующее , имеет аргумент , остальные расположены с интервалом по , равным , образуя правильный пятиугольник.


 
 

x

y

z

  Re z

Im z

Z

  

 (Z)

 z 

 x 

 y 

 |z |

  5/6

  /3

  z1

  /3

 (Z)

  z

  /6

  z4

  2

  z2

  -4

  -2

  -2

 (Z)

  2

  z1

  z3

  z5

x

 2

z2

z0

z

 -/3

 -/15

z1

z3

z4

 

y


 

А также другие работы, которые могут Вас заинтересовать

59983. Получение тетрахлороцинката аммония и изучение его свойств 134 KB
  Тетрахлорцинкат аммония ((NH4)2[ZnCl4]) относится к ацидокомплексам и представляет собой блестящие ромбические пластинчатые кристаллы с температурой плавления 150°С.
59984. КРОСВОРДИ НА УРОКАХ АСТРОНОМІЇ 27 KB
  Кросворди можна розподілити за темами і використовувати як окремі завдання при опитуванні чи при повторенні закріпленні матеріалу. Залюбки учні розвязують кросворди на уроках замінах. Кросворди можна креслити тушшю на великих листках кольорового паперу а заповнювати крейдою.
59985. Фінансова оцінка та економічний ефект бізнес-проекту 399.5 KB
  В Україні на даному етапі існує потреба в активізації бізнес-освіти, впровадженні новітніх програм, завданням яких є формування навичок для ефективної діяльності в ринкових умовах.
59987. «Гіркий корінь навчання» має бути солодким 32.5 KB
  Ушинський розглядав мовлення у невідємному звязку з формуванням особистості дитини визначав основні завдання зміст методику навчання мовлення акцентував увагу на вивченні рідної мови. Він зауважував що вивчення мови має три мети.
59988. Вуглеводи 225.5 KB
  Обладнання: мультимедійний проектор; мікроскопи; зразки крохмалю глюкози целюлози фруктози цукрози молока цукрурафінаду соку; чашки Петрі зі зразками картоплі ковбаси сиру цибулі піпетки розчин йоду фільм Вуглеводи.
59989. Вулканізм і вулкани. Джерела, гейзери 81.5 KB
  А девізом нашого уроку нехай будуть слова Михайла Казимирчука: Напружуй нерв напружуй мозок Сприймай збагни і зрозумій А щоб все вдалося як радять психологи треба налаштуватися тільки на успіх тільки на позитив.
59990. Вулканізм і вулкани. Джерела, гейзери. Загальна географія 6 клас 83.5 KB
  Мета: вивчити що таке вулканізм та які його види Завдання: ознайомити з наслідками вулканізму та процесами які його супроводжують; розвивати память увагу логічне мислення уміння встановлювати причинно-наслідкові звязки творчі здібності...