73884

Тензор механічної напруги

Доклад

Физика

Однорідний протяжний пружний стрижень одновимірний кристал на який діє механічне напруження показано на рис. Механічне напруження не вектор і тому позначається парою стрілок однакових за величиною і протилежних за напрямом.

Украинкский

2014-12-21

30.65 KB

0 чел.

Тензор механічної напруги

пружні властивості для п'єзослеюриків так само значущі, як і слеюриЧИІ. Вивчаючи пружні властивості, можна не враховуваrn атомної (дискретноі) струюури кристала, обмежившись розглядом кристала як суцільного одиорідного середовища (контuнуальне наблu:жеНIІ.я). Цей підхід цілком виправданий до частот 1012 Гц, які набагато вищі від частот п'єзоелекrpичних пристроїв, застосовуваних переважно в елеюроніці (до 5 . 1010 Гц).

Уявлення про mензор механічних напружень для структур різної розмірності можна отримати з розгляду рис. 7.3. Спочатку доцільно розглянути одновимірну структуру, потім двовимірну і, нарешті, тривимірну. Однорідний протяжний пружний стрижень (одновимірний кристал), на який діє механічне напруження, показано на рис. 7'з, а. Механічне напруження - не вектор і тому позначається парою стрілок, однакових за величиною і протилежних за напрямом. Тому механічне llапРУ:JlСешlЯ, на відміиу від вектора-сили, не спонукає до механічного руху, і стрижень залишається нерухомим. Напруження прагне або розтягнути стрижень > 0), або стиснути його < 0). Однак одиниця виміру одновимірного напруження пов'язана з одиницею сили: Х= НJM2 (ньютон).

другого рашу Х",п (як і теизор діелектричної проникності). Однак цей тензор за своєю фізичною суттю відрізняється від тензорів Е",", f.!"" і атп, структура яких узгоджується із внутрішньою cuмeтpiєlO кристала. Тензори діелектричної і магнітної проникностей, як іпровідностей це .матерішlыli тетори, у той час, як тензор механічних напружень польовий тетор, що фактично характеризує структуру сил, прикладених до кристала ззовні.

Оскільки зсувні напруження не створюють механічних моментів, то Х = Х",", тoбro тензор напружень, можна виразити симе:гричною матрицею

ХІІ X12 ХВ]  

Хтп = . X2i Х22 Х' Х Х32 ХЗЗ 

як і тензор Emп, цей тензор харшcrepизуєrьcя поверхнею другого порядку Хll х2+ Х22 у2+ хззz2 = 1,

де Xll, Х22 і Хзз -компоненти матриці, зведеної до діагонального ВШJJЯДy.

Однак залежно від знаків Х"," ця поверхня може бути не тільки еліпсоїдом, але й уявним еліпсоїдом або гіперболоїдом, у той час, як характеристична поверхня матеріальних тензорів Е",", f.!тп та атп- завжди еліпсоїди.

Якщо всі компоненти теизора Xij зведено до головних осей, слід розглянути важливі і прості приклади (рис. 7.4):

Лі1lійно-напружений стан (оДНоосьове напруження), матрицю якого зображено на рис. 7.4, а. Прикладом може служити також рис. 7.4, а, на якому показано розтягування однорідного стрижня.

Плоско-напружений стан (двохосьове напруження). Приклад і відповідну матрицю показано на рис. 7.4, б.

Об'ємно-напружений стан (тривісне напруження). МаТРИЦЮХтп і приклад показано на рис. 7.4, в.

Гідростатичний тиск, за якого ХН = Х22 = Хзз = - р, де р - питомий тиск. Приклад цього випадку й відповідна матриця аналогічні рис. 7.4, в, але напрями Хтп У разі гідростатичноro впливу протилежні показаним на цьому рисунку й усі компоненти напруження однакові.

Напруження чистого зсуву показано на рис. 7.4, г; вісь зсуву перпендикулярна до площини цього рисунка.

У плоскій (планарній) моделі одиниця механічних напружень залишається такою ж: Х = н/м2. Розгляд двовимірного кристала або текстури, як і одновимірного, важливий не тільки для теорії, але й для практики, оскільки відповідає уявленням про реальні п'єзоелектричні елементи - плівкu. П'єзоелектричні плівки застосовують для збудження гіперзвукових надвисокочастотних хвиль у кристалах, а також у численних технічних пристроях на поверхневих акустичних хвилях. П' єзоелектричні плівки отримують здебільшого методами термічного осадження на підкладки (звичайно на силі цій, захищений оксидом силіцію) за досить висОІШХ температур. У ре .. зультаті плівки, охолодившись до робочих температур, стають .механічно напруженими, оскільки температурні коефіцієнти підкладки й п'єзоелектрика розрізняються. Проте ці

На практиці найчастіше використовують об'ємні (тривимірні) п'єзоелектричні кристали й текстури. Механічне напруження й у цьому разі визначається силою, прикладеною до одиночної площі, і має розмірність Х= Н/м2 = Па (паскаль). Теоретичний розгляд припускає, що напруження однорідні (однакові в будь-якій точці кристала). Компоненти цих напружень (сили, що діють на протилежні грані куба) зрівноважують одна одну. Нормальні компоненти механічних напружень rюзначають однаковими індексами: ХІІ, Х22, Х33Вони діють уздовж нормалі до поверхні грані куба. Очевидно, що й на протилежні грані діють такі самі напруження (на рис. 7.3, в їх не показано). Наприклад, якщо напруження типу ХЗ3 прагне розтягнути куб уздовж осі 3, то й на протилежні грані куба діє таке напруження І хззl , яке спрямовано протилежно


 

А также другие работы, которые могут Вас заинтересовать

51222. Моделювання BPMN структури підприємства 1.41 MB
  Виділяють чотири основні категорії елементів: Обєкти потоку управління: події дії і логічні оператори Зєднуючі обєкти: потік управління потік повідомлень та асоціації Ролі: пули і доріжки Артефакти: дані групи і текстові анотації. Опис технологічних процесів і функційОбєкти що описують процеси і функції поділяються на три основних типи: Події events Дії ctivities Логічні оператори gtewys. ПодіїПодії зображуються колом. Згідно розташуванню в процесі події можуть бути класифіковані на початкові strt проміжні...
51223. МОДЕЛИРОВАНИЕ БИЗНЕС-ПРОЦЕССА ПРЕДПРИЯТИЯ В НОТАЦИИ BPMN 767 KB
  Графическое представение Наименование None Ничто Conditionl event Условные события Messege event Сообщение события Multiple event Несколько событий Prllel multiple event Параллельные множественные события Signl event Знаковые события Timer event Событие таймера None Никто Compenstion event Компенсация события Conditionl event Условные события Escltion event Расширение наращивание постепенное усиление события Link event Ссылка событий Messege event Сообщение события Multiple event Несколько...
51227. Дослідження процесів теплообміну та порівняння потоків теплоти через різні поверхні термодинамічної системи 470 KB
  Основною метою роботи є визначення коефіцієнта співвідношення теплових потоків що виходять з заданої термодинамічної системи через дві поверхні – відкриту поверхню води та стінки сосуду тобто оцінка ефективності теплоізолюючих параметрів стінок сосуду. Порядок виконання роботи Залити в сосуди визначену кількість гарячої води з температурою t1. Визначити початкові дані температуру води і зовнішнього середовища tзс і занести в таблицю 3. де c – питома теплоємкість рідини теплоємність води с = 4187 Дж кг˚С; m – маса води у сосуді...
51228. ИССЛЕДОВАНИЕ ОСНОВНЫХ МЕТРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК ЭЛЕКТРОМЕХАНИЧЕСКИХ ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ 644.81 KB
  Определить основную погрешность и вариацию показаний поверяемого миллиамперметра или вольтметра на постоянном токе. Погрешность и вариация определяются для 6 – 8 точек шкалы с обязательным включением в число поверяемых точек всех числовых отметок. Определить основную погрешность поверяемого прибора длячего: а указатель поверяемого прибора последовательно установить наповеряемые отметки шкалы сначала при плавном увеличении измеряемой величины а затем на те же отметки при плавном уменьшенииизмеряемой величины; б для всех поверяемых отметок...
51229. ИЗМЕРЕНИЕ ПАРАМЕТРОВ СИГНАЛОВ В ЭЛЕКТРОННЫХ СХЕМАХ 305.66 KB
  Поскольку в практике встречаются сигналы различной формы то важно учитывать тип детектора и в каких значениях напряжения проградуирована шкала вольтметра. Прежде чем приступить к измерению напряжения необходимо на основании предварительного анализа сигнала форма частота возможный порядок напряжения и участка цепи к которому будет подключаться вольтметра характер цепи эквивалентное сопротивление цепи а также с учетом требований к точности результата измерений выбрать тип вольтметра. При этом следует использовать сведения о MX...