74132

Внутренняя архитектура операционных систем реального времени

Доклад

Информатика, кибернетика и программирование

Определяется как набор модулей взаимодействующих между собой внутри ядра системы и предоставляющих прикладному программному обеспечению входные интерфейсы для обращений к аппаратуре. Переход из пользовательского режима в режим ядра осуществляется через системные вызовы интерфейс ядра операционной системы. Альтернативой является построение операционной системы на основе микроядра рис. Тогда как функции операционной системы более высокого уровня выполняют специализированные компоненты серверы работающие в пользовательском режиме.

Русский

2014-12-26

47.63 KB

8 чел.

9. Внутренняя архитектура операционных систем реального времени.

По своей внутренней архитектуре ОСРВ можно условно разделить на монолитные, ОС на основе микроядра и объектно-ориентированные ОС.

ОС c монолитной архитектуры (рис. 2) определяется как набор модулей, взаимодействующих между собой внутри ядра системы и предоставляющих прикладному программному обеспечению входные интерфейсы для обращений к аппаратуре. Переход из пользовательского режима в режим ядра осуществляется через системные вызовы – интерфейс ядра операционной системы.

Основные недостатки этого принципа построения ОС: плохая предсказуемость её поведения, вызванная сложным взаимодействием модулей между собой; плохая переносимость; сложность расширения.Преимуществом таких систем является их высокое быстродействие.

Альтернативой является построение операционной системы на основе микроядра (рис. 3), работающего также в привилегированном режиме и выполняющего только минимум функций по управлению аппаратурой. Тогда как функции операционной системы более высокого уровня выполняют специализированные компоненты – серверы, работающие в пользовательском режиме. Управление и обмен данными при этом осуществляется через передачу сообщений, доставка которых является одной из основных функций микроядра, работающего в привилегированном режиме.Микроядро играет роль регулировщика. Оно проверяет сообщения, пересылает их между серверами и клиентами, и предоставляет доступ к аппаратуре. В результате микроядро обеспечивает только пять различных типов сервисов: управление виртуальной памятью; поддержка заданий и потоков; взаимодействие между процессами (Inter-Process Communication, IPC); управление поддержкой ввода-вывода и прерываниями;  сервисы хоста (host) и процессора. При таком построении операционная система работает значительно более медленно, так как часто выполняются переходы между привилегированным и пользовательским режимом. Зато система получается более гибкой – её функции можно наращивать или модифицировать, добавляя, изменяя или исключая серверы пользовательского режима. Примеры – операционные системы QNX, VxWorks.

Рис. 4. Объектно-ориентированная ОСРВ

Объектно-ориентированные операционные системы (рис. 4), в которых каждый программный компонент является функционально изолированным от других.

Основным понятием этого подхода является "объект". Объект может быть представлением как некоторых конкретных вещей – прикладной программы или документа, так и некоторых абстракций – процесса, события.

Внутренняя структура данных объекта скрыта от наблюдения. Нельзя произвольно изменять данные объекта. Для того, чтобы получить данные из объекта или поместить данные в объект, необходимо вызывать соответствующие объектные функции. Это изолирует объект от того кода, который использует его. Разработчик может обращаться к функциям других объектов, или строить новые объекты путём наследования свойств других объектов, ничего не зная о том, как они сконструированы. Это свойство называется инкапсуляцией.

Таким образом, объект предстаёт для внешнего мира в виде "чёрного ящика" с хорошо определённым интерфейсом. С точки зрения разработчика, использующего объект, пока внешняя реакция объекта остаётся без изменений, не имеют значения никакие изменения во внутренней реализации. Это даёт возможность легко заменять одну реализацию объекта другой, например, в случае смены аппаратных средств; при этом сложное программное окружение, в котором находятся заменяемые объекты, не потребует никаких изменений.

Примеры: OS-9, Taligent, WorkPlace, Cairo.


 

А также другие работы, которые могут Вас заинтересовать

84494. Рухові рефлекси середнього мозку, їх фізіологічне значення 44.55 KB
  Середній мозок СрМ за участі сітчастої речовини опрацьовує аферентну інформацію яка поступає в спинний та задній мозок. Нова інформація поступає в СрМ від зорових та слухових рецепторів. На основі опрацьовання інформації від усіх цих рецепторів СрМ здійснює контроль за станом зовнішнього та внутрішнього середовища організма. Важливими надсегментарними руховими ядрами СрМ є: 1 червоні ядра від них інформація від нейронів спинного мозку передається по шляхах що перехрещуються руброспінальні шляхи елемент ЛНС; 2 ретикулярна формація;...
84495. Мозочок, його функції, симптоми ураження 44.3 KB
  Від вестибулорецепторів через вестибулярні ядра контроль за збереженням рівноваги при русі. Від всіх рухових ядер стовбуру ретикулярна формація краєві ядра. З руховими ядрами стовбуру ретикулярна формація вестибулярні ядра червоні ядра через які Мз здійснює вплив на мотонейрони і на мязи. З базальними ядрами.
84496. Таламус, його функції 43.44 KB
  Сенсорні перемикаючі специфічні ядра вони отримують інформацію від специфічних сенсорних шляхів переробляють її і передають в сенсорні зони КГМ. Неспецифічні вони отримують інформацію від ретикулярної формації стовбура мозку по шляхах больової чутливості. Вони передають інформацію до всіх зон КГМ здійснюючи на неї неспецифічний активуючий вплив. Асоціативні отримують інформацію від специфічних сенсорних перемикаючих ядер і від неспецифічних ядер таламуса.
84497. Базальні ядра, їх функції, симптоми ураження 43.36 KB
  Базальні ядра знаходяться в глибині кінцевого мозку. Як єдине ціле з базальними ядрами функціонують чорна субстанція та субталамічне ядро. Ці ядра обєднані між собою двосторонніми звязками отримують інформацію від кори асоціативних та рухових зон та мозочка.
84498. Сенсорні, асоціативні і моторні зони кори головного мозку, їх функції 44.36 KB
  Сенсорні асоціативні моторні зони кори формують нову кору неокортекс. Сенсорні зони кори відповідають представництву окремих сенсорних систем аналізаторів у різних ділянках кори. Так кіркове представництво зорового аналізатора локалізується у потиличній зоні кори шпорна закрутка слухового у висковій зоні соматосенсорного у постцентральній закрутці.
84499. Загальна характеристика системи крові. Склад і функції крові. Поняття про гомеостаз 56.9 KB
  Склад і функції крові. СИСТЕМА КРОВІ ВИКОНАВЧІ ОРГАНИ ТКАНИНИ МЕХАНІЗМИ РЕГУЛЯЦІЇ Кров циркулююча Нервові Гуморальні Кров депонована Органи кровотворення 1. Забезпечення оптимальної кількості складових частин крові як одиниць транспорту в одиниці обєму крові.
84500. Електроліти плазми крові. Осмотичний тиск крові і його регуляція 44.63 KB
  Осмотичний тиск Росм. Загальний осмотичний тиск плазми крові повязаний в основному з розчиненими в ній йонами 80 Росм. Певну роль в утворені Росм. Осмотичний тиск є силою що змушує розчинник рухатись через напівпроникну мембрану з розчину де концентрація осмотично активних речовин Росм.
84501. Білки плазми крові, їх функціональне значення ШОЕ 43.84 KB
  Вміст білків в плазмі крові складає близько 70г л. Більша частина білків плазми крові представлена низькомолекулярними альбумінами близько 40г л менша високомолекулярними глобулінами близько 30г л. Джерелом білків плазми крові є перш за все печінка.
84502. Онкотичний тиск плазми крові і його значення 43.64 KB
  Напівпроникною мембраною для онкотичного тиску є стінка капілярів вона вільно пропускає розчинник вода але не пропускає білки що створюють онкотичний тиск Білки є осмотично активними речовинами вони гідрофільні та утримують при собі достатньо велику кількість води. Оскільки стінка капілярів не пропускає білки в міжклітинну рідину то це сприятиме затримці води в капілярах. Впливає на обмін води між кровю та інтерстеціальною рідиною. На обмін води між кровю та тканинами за механізмом фільтраціїрезорбції впливають: Ронк.