7414

Сумматоры с параллельным переносом

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Тема: Сумматоры с параллельным переносом Сумматоры с параллельным переносом - сумматоры, в которых сложение выполняется как поразрядная операция. Применяются в устройствах с высоким быстродействием микроопераций сложения. При этом старают...

Русский

2013-01-23

126.5 KB

36 чел.

Тема: Сумматоры с параллельным переносом

Сумматоры с параллельным переносом – сумматоры, в которых сложение выполняется как поразрядная операция. Применяются в устройствах с высоким быстродействием микроопераций сложения.  При этом стараются перенос вычислять с каждым разрядом сумматора, для этого строят дополнительные комбинационные схемы, вычисляющие перенос.

    Идея построения этих устройств осуществляется на основе уравнений переносов из предыдущих разрядов:

        

  

  

  

  

     Эти уравнения позволяют избавиться от переноса из предыдущих разрядов. Одновременно с подачей чисел вычисляется значение суммы в каждом разряде почти одновременно.

    

       

                                    Рис 10.1

     X=xn xn-1… x1 x0

      Y=yn yn-1… y1 y0

     Сумматоры с параллельным переносом часто используются внутри группы большого сумматора.

     Недостатком этих сумматоров является то, что с увеличением разрядности параллельного переноса возрастает число элементов и при ограниченном числе входов элементов конъюнкции/дизъюнкции вычисляется последовательно. В результате увеличивается задержка на вычисление переноса и быстродействие падает. Поэтому затраты оборудования на построение сумматора такого типа, особенно при большом числе разрядов, настолько велик, что в чистом виде он практически не находит применения.  Принцип параллельного формирования переноса более правильно использовать в сумматорах с групповым переносом.

Тема: Сумматоры с групповым переносом

    Сумматоры с групповым переносом, в которых число групп определяется по формуле  , где n- число разрядов сумматора.

    Принцип работы: сумматор разбивается на несколько групп примерно равной длины. Сигнал переноса, поступающий на вход младшего разряда группы, при наличии условий распространения переноса во всех разрядах данной группы передается на вход младшего разряда соседней, более старшей группы в обход данной группы.

Схема формирования сигнала переноса в младшем разряде каждой группы дополняется для этой цепи схемой И, реализующей булевую функцию

 

где - сигнал ускорения переноса; Pi –сигнал переноса в младший разряд группы, содержащий k разрядов  - условия распространения переноса в разрядах группы ().

В таком сумматоре максимальная задержка распространения переноса определяется задержкой его младшей, старшей группах, и в цепях обхода остальных групп.

Максимальная задержка сигнала может быть уменьшена, если при разбиении сумматора на группы использовать параллельное (одновременное) формирование переноса внутри групп.

Тема: Мультиплексоры

     (коммутаторы)

Мультиплексоры – это цифровое устройство, которое осуществляет коммутацию с нескольких информационных шин  в одну шину.

На рис. 10.2,а показано символическое изображение мультиплексора с четырьмя информационными входами, на рис. 10.2,б приведена его принципиальная схема.

          

                                 а)

                                                  б)

                                             Рис. 10.2

  Мультиплексор имеет четыре информационных входа, каждый из которых представляет собой одноразрядную шину. В определенный момент времени одну из шин требуется коммутировать на выход D. Коммутация осуществляется подачей адреса на входы А0, А1. В зависимости от этого кода дешифратор DD6 формирует управляющий сигнал на выходах 0,1,2,3 и подключает соответствующий элемент И, который передает состояние входной шины на элемент ИЛИ – DD5.

                           Тема: Демультиплексоры

Демультиплексор имеет один информационный вход и несколько выходов и осуществляет коммутацию входа к одному из выходов в зависимости от адреса, подаваемого на адресные входы. На рис. 10.3,а показана структура демультиплексора, а на рис. 10.3,б -  его принципиальная схема.

                                 а)

                                                   б)

                                             Рис. 10.3

 

  Управляет демультиплексором сигнал синхронизации С, с появлением которого срабатывают элементы DD1 - DD4 в зависимости от возбужденного выхода дешифратора DС.

   Схема демультиплексора является комбинационной, в ней отсутствуют элементы памяти, а элементы И (DD1 - DD4) являются электронными ключами.

   Используя мультиплексор и демультиплексор можно осуществлять любую перекоммутацию шин. Этот принцип используется  в, так называемых, мостах для передачи информации с одних системных шин на другие.

  

Тема: Шифратор (кодер)

Шифратор является устройством комбинационного типа, осуществляющий кодирование символов и цифр десятичной системы. Пусть в шифраторе имеется m входов, последовательно пронумерованных десятичными числами (0,1,2,…,m-1), и n выходов. Подача сигнала на один из входов приводит к появлению на выходах n-разрядного двоичного числа, соответствующего номеру возбужденного входа.

На рис. 10.4 приведено символическое изображение шифратора, преобразующего десятичные числа 0,1,2,…,9 в двоичное представление. Символ CD образован из букв, входящих в англ. Слово Coder. Слева показаны 10 входов, обозначенных десятичными цифрами 0,1,2,…,9, справа – выходы шифратора; цифрами 1,2,4,8 обозначены весовые коэффициенты двоичных разрядов, соответствующих отдельным выходам.

 

                   Рис. 10.4

   Из приведенного в табл. 10.1 соответствия десятичного и двоичного кодов следует, что переменная х0 на выходе, обозначенном  цифрой 1, равна лог.1, если это значение имеет одна из входных переменных y1, y3, y5, y7, y9.

                       Таблица 10.1

х3

х2

х1

х0

0

0

0

0

0

1

0

0

0

1

2

0

0

1

0

3

0

0

1

1

4

0

1

0

0

5

0

1

0

1

6

0

1

1

0

7

0

1

1

1

8

1

0

0

0

9

1

0

0

1

 Функционирование шифратора определяется системой логических выражений:

 

При представлении шифратора на элементах И- НЕ следует пользоваться следующей системой логических выражений:

   В этом случае предусмотрена подача на выходы инверсных значений, т.е. для получения на выходе двоичного представления некоторой десятичной цифры необходимо на соответствующий вход подать лог.0, на остальные входы – лог.1. Схема шифратора, выполненная на элементах И-НЕ, приведена на рис. 10.5.

    Если число входов увеличить до 255, то можно кодировать любой символ     

(код ASCI).


Z
2

y2

1       SM        S

2                        

Pi-1                                p

x2

 

КС

x1

шина результатов

y1

x0

y0

x1

1       SM        S

2                        

Pi-1                                p

y1

Z1

x0

 

КС

y0

          SM

1                   S

2                        

Pi-1                                p

x0

Z0

y0

 шина чисел х, у

Dо         MS                      

D1

D2

D3                                        D                              

А0           

А1

C

1

1

0

0

0

1

       DC   0 A0                1

                              2 A1                         3

1

0

DD6

&

D1

D2

D3

&

&

&

C

DD1

D0

DD2

DD3

1

DD4

D

DD5

    вход

             DM        Dо                

 D                         D1

А0                                      D2

А1                              D3   

C                                                     

       

                                                                

                                  

  адрес

  управление

       DC   0 0                  1

                   2

1                            3                                         

                               

A0

A1  

DD5

&

D1

D2

D3

&

&

&

C

DD1

D0

DD2

DD3

DD4

D

x0

x3

x2

х1

0         CD  

1

2                        1

3

4                        2

5

6                        4

7

8                       8

9

0

y1

y2

y3

y4

y5

y6

y7

y8 y9

&

x1

x2

x3

&

DD1

x0

DD2

DD3

DD4

&

&


 

А также другие работы, которые могут Вас заинтересовать

32929. Русская философия XVIII века 14.57 KB
  Ломоносов и А. Михаил Васильевич Ломоносов 1711 1765 свое место в истории русской философии определил прежде всего тем что заложил основы материалистической традиции. Согласно этому закону в основе мироздания лежат мельчайшие частицы которые Ломоносов вслед за Лейбницем назвал монадами. Однако в отличие от последнего Ломоносов говорит не о духовных а о материальных монадах и материальных атомах.
32930. Основная специфика философского знания 12.54 KB
  Основная специфика философского знания заключается в его двойственности так как оно: имеет очень много общего с научным знанием предметметоды логикопонятийный аппарат; однако не является научным знанием в чистом виде. Предмет философии шире предмета исследования любой отдельной науки философия обобщает интегрирует иные науки но не поглощает их не включает в себя все научное знание не стоит над ним.; носит предельно общий теоретический характер; содержит базовые основополагающие идеи и понятия которые лежат в основе иных...