74228

Свойства полупроводников

Лекция

Физика

Дискретные моноэнергетические уровни атомов составляющие твердое тело расщепляются в энергетические зоны. Наибольшее значение для электронных свойств твердых тел имеют верхняя и следующая за ней разрешенные зоны энергий. И наконец если ширина запрещенной зоны Eg лежит в диапазоне...

Русский

2014-12-30

583 KB

6 чел.

Лекция 2  Свойства полупроводников

1.1. Зонная структура полупроводников

Согласно постулатам Бора энергетические уровни для электронов в изолированном атоме имеют дискретные значения. Твердое тело представляет собой ансамбль отдельных атомов, химическая связь между которыми объединяет их в кристаллическую решетку. Если твердое тело состоит из N атомов, то энергетические уровни оказываются Nкратно вырожденными. Электрическое поле ядер, или остовов атомов, выступает как возмущение, снимающее это вырождение. Дискретные моноэнергетические уровни атомов, составляющие твердое тело, расщепляются в энергетические зоны. Решение квантовых уравнений в приближении сильной или слабой связи дает качественно одну и ту же картину для структуры энергетических зон твердых тел. В обоих случаях разрешенные и запрещенные состояния для электронов чередуются и число состояний для электронов в разрешенных зонах равно числу атомов, что позволяет говорить о квазинепрерывном распределении энергетических уровней внутри разрешенных зон [1].

Наибольшее значение для электронных свойств твердых тел имеют верхняя и следующая за ней разрешенные зоны энергий. В том случае, если между ними нет энергетического зазора, то твердое тело с такой зонной структурой является металлом. Если величина энергетической щели между этими зонами (обычно называемой запрещенной зоной) больше 3 эВ, то твердое тело является диэлектриком. И, наконец, если ширина запрещенной зоны Eg лежит в диапазоне (0,1 ÷ 3,0) эВ, то твердое тело принадлежит к классу полупроводников. В зависимости от сорта атомов, составляющих твердое тело, и конфигурации орбит валентных электронов реализуется тот или иной тип кристаллической решетки, а следовательно, и структура энергетических зон. На рисунке 1.1 приведена структура энергетических уровней в изолированном атоме кремния, а также схематическая структура энергетических зон, возникающих при сближении этих атомов и образовании монокристаллического кремния с решеткой так называемого алмазоподобного типа.

Рис. .1. Структура энергетических уровней в изолированном атоме кремния, а также схематическая структура энергетических зон, возникающих при сближении этих атомов и образовании монокристаллического кремния [2]

Верхняя, не полностью заполненная, энергетическая зона в полупроводниках получила название зоны проводимости. Следующая за ней энергетическая зона получила название валентной зоны. Энергетическая щель запрещенных состояний между этими зонами называется запрещенной зоной. На зонных диаграммах положение дна зоны проводимости обозначают значком EC, положение вершины валентной зоны – EV, а ширину запрещенной зоны – Eg.

Поскольку в полупроводниках ширина запрещенной зоны меняется в широком диапазоне, то вследствие этого в значительной мере меняется их удельная проводимость. По этой причине полупроводники классифицируют как вещества, имеющие при комнатной температуре удельную электрическую проводимость от 10-8 до 106 Омсм, которая зависит в сильной степени от вида и количества примесей, структуры вещества и внешних условий: температуры, освещения (радиации), электрических и магнитных полей и т.д.

Для диэлектриков ширина запрещенной зоны Еg > 3 эВ, величина удельной проводимости  < 10-8 Омсм, удельное сопротивление  Омсм. Для металлов величина удельной проводимости  > 106 Омсм.

1.2. Терминология и основные понятия

Полупроводники, или полупроводниковые соединения, бывают собственными и примесными.

Собственные полупроводники  это полупроводники, в которых нет примесей (доноров и акцепторов). Собственная концентрация (ni) – концентрация носителей заряда в собственном полупроводнике (электронов в зоне проводимости n и дырок в валентной зоне p, причем n = p = ni). При Т = 0 в собственном полупроводнике свободные носители отсутствуют (n = p = 0). При Т > 0 часть электронов забрасывается из валентной зоны в зону проводимости. Эти электроны и дырки могут свободно перемещаться по энергетическим зонам. Дырка – это способ описания коллективного движения большого числа электронов (примерно 1023 см-3) в неполностью заполненной валентной зоне. Электрон – это частица, дырка – это квазичастица. Электрон можно инжектировать из полупроводника или металла наружу (например, с помощью фотоэффекта), дырка же может существовать только внутри полупроводника.

Легирование – введение примеси в полупроводник, в этом случае полупроводник называется примесным. Если в полупроводник, состоящий из элементов 4 группы (например, кремний или германий), ввести в качестве примеси элемент 5 группы, то получим донорный полупроводник (у него будет электронный тип проводимости), или полупроводник n-типа. Если же ввести в качестве примеси элемент 3 группы, то получится акцепторный полупроводник, обладающий дырочной проводимостью (р-тип) (рис. 1.2).

Рис. 1.2. Энергетические схемы полупроводников nтипа (а) и pтипа (б)

Для того, чтобы использовать для описания движения электронов и дырок в полупроводниках классические представления, вводятся понятия эффективных масс электрона и дырки mn* и mp* соответственно. В этом случае уравнения механики , или , будут справедливы, если вместо массы свободного электрона (электрона в вакууме) m0 в эти уравнения подставить эффективную массу электрона mn* (p = mn*·υ). Эффективная масса учитывает влияние периодического потенциала атомов в кристалле полупроводника на движение электронов и дырок и определяется уравнениями дисперсии [3, 4].

1.3. Статистика электронов и дырок в полупроводниках

Равновесные процессы – процессы, происходящие в телах, которые не подвергаются внешним воздействиям. В состоянии термодинамического равновесия для данного образца кристалла при заданной температуре существует определенное распределение электронов и дырок по энергиям, а также значения их концентраций. Вычисление концентраций основных и неосновных носителей заряда составляет главную задачу статистики электронов и дырок в кристаллах.

Рассматриваемая задача распадается на две части: чисто квантово-механическую – нахождение числа возможных квантовых состояний электронов и статистическую – определение фактического распределения электронов по этим квантовым состояниям при термодинамическом равновесии.

1.3.1. Распределение квантовых состояний в зонах

Стационарные состояния электрона в идеальном кристалле характеризуются квазиимпульсом р. Запишем принцип неоднородностей Гейзенберга для квазиимпульсов dpx, dpy и dpz:

,

, (1.1)

.

Перемножим соответственно левые и правые части этих соотношений. Получим

, (1.2)

где  и , то есть dp – это некоторый объем в пространстве квазиимпульсов px, py, pz, то есть внутри зоны Бриллюэна, а dV – некоторый объем внутри полупроводника. При этом объем dV – не обязательно бесконечно малая величина. Он может быть и конечным. Для расчета концентраций носителей заряда (то есть числа носителей в единице объема полупроводника) выделим внутри кристалла единичный объем dV = 1 см3. Тогда из (1.2) получим dp  h3. То есть внутри объема dp = h3 в зоне Бриллюэна может иметь место только одно квантовое состояние, которое как бы размыто по всему этому объему. Итак, h3 – это объем одной “квартирки” в зоне Бриллюэна, в которую можно поместить только два электрона с разными спинами, и не более. Поэтому число квантовых состояний, соответствующее элементу объема dp в зоне Бриллюэна и рассчитанное на единицу объема кристалла, равно  – то есть числу “квартирок” в объеме dp. При заполнении зоны проводимости электронами заполняются вначале самые нижние уровни. Зона проводимости – одномерная относительно энергии (рис. 1.3а). Зона Бриллюэна – трехмерная (px, py, pz) (рис. 1.3б). Заполнение зоны Бриллюэна начинается с самых малых значений квазиимпульса p. Поэтому в качестве dp надо выбрать элемент объема, заключенный между двумя очень близкими изоэнергетическими поверхностями (см. рис. 1.3б). Внутри этого тонкого шарового слоя радиусом p и толщиной dp число квантовых состояний будет равно:

. (1.3)

Рис. 1.3. Диаграмма для расчета плотности квантовых состояний:

а) распределение электронов по энергии в зоне проводимости; б) зона Бриллюэна для расчета плотности состояний

Определим число квантовых состояний в зоне проводимости в узком интервале энергий от Е до Е + dЕ, рассчитанное на единицу объема кристалла. Его можно представить в виде N(E)dE, где N(E) есть плотность состояний.

Вблизи дна зоны проводимости для случая изотропного параболического закона дисперсии энергия электрона

 (1.4)

где ЕC – энергия, соответствующая дну зоны проводимости. Для удобства эффективную массу электрона mn будем писать без звездочки. Из (1.4) получим , то есть и . Подставляем в (1.3), имеем

. (1.5)

Отсюда

. (1.6)

Аналогичная формула получается и для валентной зоны, но только вместо (Е  ЕC) напишем (ЕV  Е), а вместо mn – эффективную массу дырки mp.

Как видно из (1.6), плотность квантовых состояний возрастает по мере удаления от дна зоны проводимости.

1.3.2. Концентрация носителей заряда и положение уровня Ферми

Электроны, как частицы, обладающие полуцелым спином, подчиняются статистике Ферми – Дирака. Вероятность того, что электрон будет находиться в квантовом состоянии с энергией Е, выражается функцией Ферми – Дирака:

. (1.7)

Здесь F – электрохимический потенциал, или уровень Ферми. Из (1.7) видно, что уровень Ферми можно определить как энергию такого квантового состояния, вероятность заполнения которого равна ½.

Вид функции Ферми – Дирака схематически показан на рисунке 1.4. При Т = 0 она имеет вид разрывной функции. Для E < F она равна 1, а значит, все квантовые состояния при < F заполнены электронами. Для > F функция f = 0 и соответствующие квантовые состояния совершенно не заполнены. При Т > 0 функция Ферми изображается непрерывной кривой и в узкой области энергий, порядка нескольких kT, в окрестности точки = F быстро изменяется от 1 до 0. Размытие функции Ферми тем больше, чем выше температура.

Вычисление различных статистических величин значительно упрощается, если уровень Ферми F лежит в запрещенной зоне энергий и удален от края зоны ЕC хотя бы на 2kT (в некоторых учебниках пишут ЕC  Е > kT). Тогда в распределении (1.7) единицей в знаменателе можно пренебречь и оно переходит в распределение Максвелла – Больцмана классической статистики. Это случай невырожденного полупроводника:

. (1.8)

Концентрация электронов в зоне проводимости равна:

. (1.9)

Рис. 1.4. Функция распределения плотности состояний в зоне проводимости N(E), функции Ферми – Дирака f и Больцмана fБ

Отметим, что в качестве верхнего предела в написанном интеграле мы должны были бы взять энергию верхнего края зоны проводимости. Но так как функция f для энергий > F экспоненциально быстро убывает с увеличением E, то замена верхнего предела на бесконечность не меняет значения интеграла. Подставляем в (1.9) выражения (1.6) и (1.8). Расчет интеграла несложен. Получим:

 (1.10)

где

. (1.11)

Величина NC получила название эффективной плотности состояний в зоне проводимости.

В случае невырожденного полупроводника, когда уровень Ферми лежит выше потолка валентной зоны хотя бы на 2kT, то есть  EC > 2kT (в некоторых учебниках пишут  EC > kT), функция Ферми – Дирака для дырок fp имеет вид:

, (1.12)

а концентрация дырок в валентной зоне

, (1.13)

где EV – энергия, соответствующая потолку валентной зоны, а NV рассчитывается по уравнению (1.11), если вместо mn взять эффективную массу дырки mp. Величина NV – эффективная плотность состояний в валентной зоне.

Отметим, что в (1.9) перед интегралом появился множитель 2, что связано с тем, что на каждом уровне энергии могут находиться два электрона с противоположными спинами (принцип Паули).

Для расчета n и p по уравнениям (1.10) и (1.13) необходимо знать положение уровня Ферми F. Однако произведение концентраций электронов и дырок для невырожденного полупроводника не зависит от уровня Ферми, хотя зависит от температуры:

. (1.14)

Это уравнение используется для расчета p при известном n или, наоборот, для расчета n при известном p. Величина ni при некоторых температурах для конкретных полупроводников приводится в справочниках.


 

А также другие работы, которые могут Вас заинтересовать

20609. Простой генератор кода 37 KB
  Данные вычисленные результаты находятся в регистрах как можно дальше и перенос их в память осуществляется только при необходимости использовать этот регистр. a:= bc b в регистр Ri c в регистр Rj. 2 b в регистр Ri c в памяти ADD Ri с.
20610. Распределение и назначение регистров. Счетчики использования регистров 52.5 KB
  Пример: Переменная Регистр b R0 d R1 a R2 e R3 B0: MOV R0b MOV R1d MOV R2a MOV R3e B1: MOV R2 R0 ADD R2c SUB R1 R0 MOV R3 R2 ADD R3f B2: SUB R2 R1 MOV f R2 B3: MOV R0 R1 ADD R0f MOV R3 R2 SUB R3c B4: MOV R0 R1 ADD R0c.
20611. Оптимизация базовых блоков c помощью дагов 88 KB
  1 t1:=4i t2:=a[t1] t3:=4i t4:=b[t3] t5:=t2t4 t6:=prodt5 prod:=t6 t7:=i1 i:=t7 i =20 goto1 Поочередно рассматривается каждая инструкция блока. e:=ab f:=ec g:=fd n:=ab i:=ic j:=ig = e:=ab f:=ec g:=fd i:=ic j:=ig Локальная оптимизация устранение лишних инструкций MOV R0a MOV a R0 устранение недостижимого кода if а = 1 goto L1 goto L2 L1: L2: = if а = 1 goto L2 goto L1 L1: goto L2 = goto L2 3.
20612. Использование динамического программирования при генерации кода 137.5 KB
  Пример: Пусть дана инструкция вида: add R1 R0 она может быть представлена в виде: R1:= R1 R0 Алгоритм динамического программирования разделяет задачу генерации оптимального кода для некоторого выражения на подзадачи генерации оптимального кода для подвыражений из которых состоит выражение Ei. Если E:=E1 E2 то генерация кода E разбивается на генерацию кода E1 и генерацию кода E2. Композиция получаемых элементов кода осуществляется в зависимости от типа вхождения подвыражений в основное выражение.
20613. Устранение общих подвыражений 92 KB
  2 Удаление бесполезного кода Допустим имеем следующую последовательность инструкций 3 Оптимизация циклов Пример 1: Пусть имеем цикл while i n2 Возможно модернизировать в следующую последовательность инструкций t:=n2 while i t Пример 2: while i t a:=b2 при условии что b не изменяется в теле цикла данную последовательность инструкций можно заменить на: a:=b2 while i t Метод перемещения кода заключается в выносе перед циклом выражений не изменяющихся в процессе его выполнения. 4 Переменные индукции и снижение стоимости 5 Оптимизация...
20614. Разработка компилятора 208.5 KB
  Параметры: S исходный язык I язык реализации компилятора на котором написан T целевой язык генерация кода для целевой машины Т. Если взять связку 3х компиляторов то получим еще один компилятор: Использование возможностей языка для компиляции его самого называется раскруткой. Кросскомпилятор LSN создан для нового языка Lна языке реализации S с генерацией кода для машины N.
20615. Анализ потока 121.5 KB
  Управление распределением памяти и сборка мусора Задачи решаемые компиляторами: выделение памяти инициализация выделенной памяти некоторыми начальными значениями предоставление возможности программисту использования этой памяти при прекращении использования памяти ее освобождение обеспечение повторного использования освобождающей памяти. Проблемы управления памятью: ограниченность памяти ошибки явного управления памятью особенности возникновения ошибок при работе с памятью труднонаходимость проблема освобождения ресурсов...
20616. Фазы трансляции 328 KB
  Группы символов соответствующие элементам языка называются токенами. Контекстносвободная грамматика имеет 4 компоненты: множество токенов терминальных символов множество нетерминальных символов множество продукций где слева всегда нетерминал а справа последовательность терминалов нетерминалов указание одного из нетерминалов в качестве стартового символа грамматики. На вход лексического анализатора поступает цепочка символов. Каждый шаг переключение автомата состоит в том что при нахождении в определенном состоянии при...
20617. Магазинные автоматы 86.5 KB
  I входная строка I текущий символ входной строки M стек M символ в вершине стека pushM операция записи в стек popM операция выталкивания из стека M=0 проверка стека на пустоту I=0 проверка на пустоту входной строки nextI переход к следующему символу в строке {Si} множество состояний конечного автомата Текущее состояние автомата описывается тремя системами: Si M I При переводе автомата в новое состояние получим Si M ISj . Если текущий символ строки совпадает с символом в вершине...