74247

Технические средства ЭВМ

Лекция

Информатика, кибернетика и программирование

В основе функционирования любой ЭВМ лежит архитектура. В современных ЭВМ АЛУ и УУ объединены в общее устройство называемое центральным процессором. Схема архитектуры ЭВМ базирующаяся на принципах фон Неймана.

Русский

2014-12-30

138.49 KB

6 чел.

Технические средства ЭВМ

ЭВМ (персональный компьютер (ПК)) – это универсальная вычислительная диалоговая система, реализованная на базе микропроцессорных средств, компактных внешних запоминающих устройств, способная выполнять последовательность операций над данными с помощью  программы.

В основе функционирования любой ЭВМ лежит архитектура.

в 1945 г., Джон фон Нейман  выделил  пять ключевых компонентов того, что ныне называют «архитектурой фон Неймана»  компьютера. Чтобы компьютер был и эффективным, и универсальным инструментом, он должен включать следующие структуры:

  1.  быть электронным, а не механическим устройством  
  2.  центральное арифметико-логическое устройство (АЛУ), центральное устройство управления (УУ) ( Принцип жесткости архитектуры.) Неизменяемость архитектуры.
  3.  запоминающее устройство, или память а также устройство ввода-вывода информации.
  4.  Принцип адресуемости и однородности памяти. Память, состоящая из пронумерованных ячеек и в ней хранятся как данные так и команды.
  5.  эта система должна работать с двоичными числами, принцип двоичного кодирования.
  6.  выполнять операции последовательно, одну за другой  (принцип последовательности программного управления).

В современных ЭВМ АЛУ и УУ объединены в общее устройство, называемое центральным процессором.

Схема  архитектуры  ЭВМ, базирующаяся на принципах фон Неймана. 

ВК – видеокарта (видеоадаптер, видеоконтроллер) формирует изображение и передает его на монитор;

ИП – источник питания обеспечивает питание всех блоков ЭВМ по системной шине;

КВЗУ – контроллеры внешних запоминающих устройств управляют обменом информацией с ВЗУ;

КК – контроллер клавиатуры содержит буфер, в который помещаются вводимые символы, и обеспечивает передачу этих символов другим компонентам;

КПВВ – контроллеры портов ввода-вывода управляют обменом информацией с периферийными устройствами;

МП – микропроцессор выполняет команды программы, управляет взаимодействием всех компонент ЭВМ;

ОЗУ – оперативное запоминающее устройство хранит исходные данные и результаты обработки информации во время функционирования ЭВМ;

ПЗУ – постоянное запоминающее устройство хранит программы, выполняемые во время загрузки ЭВМ;

ПУ – периферийные устройства различного назначения: принтеры, сканнеры, манипуляторы «мышь» и др.;

СА – сетевой адаптер (карта) обеспечивает обмен информацией с локальными и глобальными компьютерными сетями.

К устройствам ввода информации относят клавиатуру и такие ПУ, как сканнеры, манипуляторы типа «мышь», джойстики, а к устройствам вывода информации – монитор и такие ПУ, как принтеры.

Современную архитектуру ЭВМ определяют следующие принципы.

1. Принцип программного управления. Обеспечивает автоматизацию процесса вычислений на ЭВМ. Согласно этому принципу, для решения каждой задачи составляется программа, которая определяет последовательность действий ЭВМ.

2. Принцип программы, сохраняемой в памяти. Согласно этому принципу, команды программы подаются, как и данные, в виде чисел и обрабатываются так же, как и числа, а сама программа перед выполнением загружается в ОЗУ, что ускоряет процесс ее выполнения.

3. Принцип произвольного доступа к памяти. В соответствии с этим принципом, элементы программ и данных могут записываться в произвольное место ОЗУ, что позволяет обратиться по любому заданному адресу (к конкретному участку памяти) без просмотра предыдущих.

Микропроцессор

Микропроцессор (МП; CPUCentral Processing Unit (центральный обрабатывающий модуль)) – центральный блок ЭВМ, управляющий работой всех компонент ЭВМ и выполняющий операции над информацией. Операции производятся в регистрах, составляющих микропроцессорную память.

Основные функции МП:

выполнение команд программы, расположенной в ОЗУ; команда состоит из кода, определяющего, что эта команда делает, и операндов, над которыми эта команда осуществляется;

управление пересылкой информации между микропроцессорной памятью, ОЗУ и периферийными устройствами;

обработка прерываний;

управление компонентами ЭВМ.

Микропроцессор состоит из следующих блоков:

АЛУ – арифметико-логическое устройство;

ДБ – другие блоки (математический сопроцессор, модуль предсказания ветвлений);

ДК – дешифратор команд;

ИМП – интерфейс микропроцессора;

Кэш L1 – кэш-память первого уровня;

Кэш L2 – кэш-память второго уровня;

МПП – микропроцессорная память;

РОН – регистры общего назначения;

РС – регистры смещений;

РФ – регистр флагов;

СР – сегментные регистры;

УС – устройство синхронизации;

УУ – устройство управления.

Рассмотрим назначение этих блоков МП.

Устройство управления (УУ) выполняет команды, поступающие в МП в следующей последовательности:

1) выборка из регистра-счетчика адреса ячейки ОЗУ, где хранится очередная команда программы;

Структура микропроцессора

2) выборка из ячеек ОЗУ кода очередной команды и приема считанной команды в регистр команд;

3) расшифровка кода команды дешифратором команды (ДК);

4) формирование полных адресов операндов;

5) выборка операндов из ОЗУ или МПП и выполнение заданной команды обработки этих операндов;

6) запись результатов команды в память;

7) формирование адреса следующей команды программы.

Для ускорения работы перечисленные действия выполняются параллельно: один блок выбирает команду, второй дешифрует, третий выполняет и т. д., образуя конвейер команд.

Команды, поступающие в УУ, временно хранятся в кэш-памяти первого уровня, освобождая шину для выполнения других операций. Размер кэш-памяти первого уровня 8-32 Кбайт.

Арифметико-логическое устройство (АЛУ) выполняет все арифметические (сложение, вычитание, умножение, деление) и логические (конъюнкция, дизъюнкция и др.) операции над целыми двоичными числами и символьной информацией.

Устройство синхронизации (УС) определяет дискретные интервалы времени – такты работы МП между выборками очередной команды. Частота, с которой осуществляется выборка команд, называется тактовой частотой.

Интерфейс МП (ИМП) предназначен для связи и согласования МП с системной шиной ЭВМ. Принятые команды и данные временно помещаются в кэш-память второго уровня. Размер кэш-памяти второго уровня – 256-2048 Кбайт. Ранее кэш-память второго уровня размещалась на материнской плате.

Микропроцессорная память (МПП) включает 14 основных двухбайтовых запоминающих регистров и множество (до 256) дополнительных регистров. Регистры – это быстродействующие ячейки памяти различного размера.

Основные регистры можно разделить на 4 группы. (дополнительная информация)

1. Регистры общего назначения (РОН, универсальные регистры)

X

1. Универсальные регистры имеют свое предназначение:

- осуществляется ввод-вывод данных в МП, а при выполнении операций умножения и деления АХ используется для хранения первого числа, участвующего в операции (множимого, делимого) и результата операций (произведения, частного) после ее завершения;

- используется для хранения адреса базы в сегменте данных и начального адреса поля памяти при работе с массивами;

-используется как счетчик числа повторений при циклических операциях;

2. Сегментные регистры используются для хранения начальных адресов полей памяти (сегментов), отведенных в программах для хранения команд кода (регистр CS), данных (DS), стека (SS), дополнительной области памяти данных при обмене между сегментами (ES).

3. Регистры смещений предназначены для хранения относительных адресов ячеек памяти внутри сегментов (смещений относительно начала сегментов).

4. Регистр флагов (РФ) FL содержит одноразрядные флаги, управляющие выполнением программы в ЭВМ. Флаги принимают значения 0 или 1. Значения флагов устанавливаются независимо друг от друга. Всего в регистре 9 флагов: 6 – статусные, отражающие результаты операций (флаги переноса, нуля, переполнения и др.); 3 – управляющие, определяющие режим выполнения программы (флаги пошагового выполнения программы, прерываний и направления обработки данных).

МПП – это память с самым меньшим временем доступа в ЭВМ.

Другие блоки (ДБ) – это блоки, ускоряющие работу МП. АЛУ производит действия только над двоичными целыми числами. Операции над числами с плавающей точкой выполняет математический сопроцессор, освобождая МП от выполнения этих операций. Блок предсказания ветвлений программы просматривает программу на несколько шагов вперед, чтобы определить дальнейшее направление выполнения программы. Вероятность предсказания 80-90%.

Работа МП состоит в выборке очередной команды и ее выполнения. В некоторых случаях выполнение программы необходимо прервать, например, в случае ошибки вычисления. Такие случаи называются прерываниями.

Выделяют два типа прерываний:

1) внутри процессорные прерывания, возникающие из-за непреодолимого препятствия в выполнении программы, например, запись данных в запрещенную для записи область ОЗУ или переполнение результата при вычислениях;

2) прерывания от внешних устройств не являются фатальными или ошибочными; прерывания второго типа возникают, когда требует обмен данными с внешним устройством, например, приводом компакт-дисков, а он не готов.

Основными характеристиками МПр, определяющими его производительность, являются:

  1.  тактовая частота;
  2.  степень интеграции (технологические нормы);
  3.  разрядность обрабатываемых данных;
  4.  рабочее напряжение;
  5.  технология обработки

Тактовая частота - это частота, с которой МПр выполняет все операции. Эти сигналы задаются электронным устройством, называемым тактовым генератором. Главным элементом этого устройства является кристалл кварца, который при подаче на него электрического напряжения вырабатывает импульсы строго определенной частоты. Обработка информации тем быстрее, чем выше тактовая частота. Применение технологии умножения частоты позволяет повысить скорость работы внутренних блоков МПр. В этом случае говорят о внутренней и внешней тактовой частоте. Первая характеризует скорость обработки данных внутри МПр, а вторая - скорость выполнения операций обмена.

  1.  Быстродействие

MIPS (Mega Instruction Per Second мил оп сек для чисел с фик. Точкой)

МФЛОПС (MFLOPS - Mega Floating Operation Per Second - мил оп сек для чисел с плавающей  Точкой) 10^6

GFLOPS- Giga Floating Operation Per Second - миллиард оп сек для чисел с плавающей  Точкой) 10^9

ТFLOPS-   Floating Operation Per Second - триллион оп сек для чисел с плавающей  Точкой)  10^12

Pflops  10^15 петафлопс

тактовая частота характеризует производительность подсистемы (процессора, памяти и пр.), то есть количество выполняемых операций в секунду. Каждая операция выполняется за определенное количество тактов – электрических импульсов. Примеры

Тактовая частота  - 33 МГц соответствует 7 млн оп сек.

Частота ядра 3,2 ГГц  5ГГц

  1.  Степень интеграции определяется размером кристалла и количеством реализованных в нем транзисторов, или, как говорят, технологическими нормами, под которыми понимают минимальные размеры транзисторов.

Повышение степени интеграции позволяет  МПр работать на более высокой внутренней тактовой частоте за счет более высокой синхронизации сигналов между его функциональными узлами, так как при сокращении расстояния между транзисторами уменьшается задержка передачи сигналов, проходящих по ним. Кроме этого, переход  на более “компактную” структуру позволяет снизить энергопотребление и тепловыделение МПр.

В настоящее время используется технологии 90, 65, 45, 22, 14  нм.

45 нм- размер одного транзистора. Нм-   единица измерения длины в метрической системе, равная одной миллиардной части метра (т.е. 10−9 метра).

  1.  Внутреняя разрядность или разрядность внутренних регистров определяется количеством бит, одновременно обрабатываемых внутри МПр, а внешняя - количеством бит, которым МПр может обмениваться с другими элементами ЭВМ.

  1.  Рабочее напряжение процессора обеспечивается материнской платой, поэтому разным маркам процессоров соответствуют разные материнские платы. Рабочее напряжение процессоров не превышает 3 В. Снижение рабочего напряжения позволяет уменьшить размеры МП, а также уменьшить тепловыделение в МП, что повышает его производительность без угрозы перегрева.

  1.  Помимо указанных выше факторов производительность МПр зависит от технологии обработки команд и данных. В составе современных МПр имеются несколько исполнительных устройств. Это позволяет одновременно обрабатывать несколько инструкций. Обработка ведется в так называемом конвейерном режиме. Для повышения эффективности заполняемости конвейеров предусмотрен механизм предсказания того, какая инструкция должна обрабатываться следующей.

     6.  Особенности архитектуры

Многоядерный процессорцентральный процессор, содержащий два и более вычислительных ядра на одном процессорном кристалле или в одном корпусе.

В настоящее время существуют 2, 4, 6, 8 ядерные процессоры.

Первый многоядерный чип был выпущен в 2001 году.

в мае 2005-го-  двухъядерный 64-битным микропроцессор

2012год

Если речь идет об абсолютной мощности центрального процессора вне зависимости от его стоимости, здесь нет равных современным чипам от компании Intel. Если же мы попробуем теоретически подсчитать эффективность работы конкретного £ CPU от каждой затраченной на его покупку копейки, то выиграют как раз модели производства AMD в целом и шестиядерный AMD Phenom II Х6 1100Т Black Edition в частности.     

2014 год файл 2

Системная шина

В основе устройства ЭВМ лежит системная шина, которая служит для обмена командами и данными между компонентами ЭВМ, расположенными на материнской плате. ПУ подключаются к шине через контроллеры. Такая архитектура ЭВМ называется открытой, так как легко может быть расширена за счет подключения новых устройств. Передача информации по системной шине также осуществляется по тактам.

Системная шина включает в себя:

кодовую шину данных для параллельной передачи всех разрядов числового кода (машинного слова) операнда из ОЗУ в МПП и обратно; имеет 64 разряда;

кодовую шину адреса для параллельной передачи всех разрядов адреса ячейки ОЗУ; имеет 32 разряда;

кодовую шину инструкций для передачи команд (управляющих сигналов, импульсов) во все блоки ЭВМ; простые команды кодируются одним байтом, но есть и команды, кодируемые двумя, тремя и более байтами; имеет 32 разряда;

шину питания для подключения блоков ЭВМ к системе энергопитания.

Системная шина обеспечивает три направления передачи информации:

1) между МП и ОЗУ;

2) между МП и контроллерами устройств;

3) между ОЗУ и внешними устройствами (ВЗУ и ПУ, в режиме прямого доступа к памяти).

Все устройства подключаются к системной шине через контроллеры – устройства, которые обеспечивают взаимодействие внешних устройств и системной шины.

Чтобы освободить МП от управления обменом информацией между ОЗУ и внешними устройствами, например при чтении или записи информации, предусмотрен режим прямого доступа в память (DMADirect Memory Access). Таким образом, МП может заниматься выполнением других команд, не отвлекаясь на копирование информации между ОЗУ и внешними устройствами.

Характеристиками системной шины являются количество обслуживаемых ею устройств и ее пропускная способность, то есть максимально возможная скорость передачи информации. Пропускная способность шины зависит от следующих параметров:

разрядность или ширина шины – количество бит, которое может быть передано по шине одновременно (существуют 8-, 16-, 32- и 64-разрядные шины);

тактовая частота шины – частота, с которой передаются биты информации по шине.

Основные характеристики шин

Характеристика

PCI

AGP

Разрядность шины данных/адреса, бит

32/32

32/32

Рабочая частота, МГц

66

133

Пропускная способность, Мбит/с

264

2112

Число подключаемых устройств, шт.

10

1

       

Постоянное и оперативное ЗУ

Запоминающие устройства, используемые в ЭВМ, состоят из последовательности ячеек. Каждая ячейка содержит значение одного байта и имеет собственный номер (адрес), по которому происходит обращение к ее содержимому. Все данные в ЭВМ хранятся в двоичном виде нулей и единиц.

Запоминающие устройства характеризуются двумя параметрами:

объем памяти – размер в байтах, доступных для хранения информации;

- время доступа к ячейкам памяти – средний временной интервал, в течение которого находится требуемая ячейка памяти и из нее извлекаются данные.

Оперативное запоминающее устройство (ОЗУ; RAMRandom Access Memory) предназначено для оперативной записи, хранения и чтения информации (программ и данных), непосредственно участвующей в информационно-вычислительном процессе, выполняемом ЭВМ в текущий период времени. После выключения питания ЭВМ, информация в ОЗУ уничтожается, поэтому она не подходит для долговременного хранения информации. Каждая ячейка памяти имеет свой адрес, выраженный числом. В ЭВМ на базе процессоров Intel Pentium используется 32-разрядная адресация. Это означает, что число независимых адресов равно 232, то есть возможное адресное пространство составляет 4,3 Гбайт. Объем ОЗУ превышает 4096 Мбайт (2011 г.), время доступа 0,005-0,02 мкс. 1 с = 106 мкс.

Постоянное запоминающее устройство (ПЗУ; ROMRead Only Memory) хранит неизменяемую (постоянную) информацию: программы, выполняемые во время загрузки системы, и постоянные параметры ЭВМ. В момент включения ЭВМ в его ОЗУ отсутствуют данные, так как ОЗУ не сохраняет данные после выключения ЭВМ. Но МП необходимы команды, в том числе и сразу после включения. Поэтому МП обращается по специальному стартовому адресу, который ему всегда известен, за своей первой командой. Этот адрес из ПЗУ. Основное назначение программ из ПЗУ состоит в том, чтобы проверить состав и работоспособность системы и обеспечить взаимодействие с клавиатурой, монитором, жесткими и гибкими дисками. Обычно изменить информацию ПЗУ нельзя. Объем ПЗУ 128-256 Кбайт, время доступа 0,035-0,1 мкс. Так как объем ПЗУ небольшой, но время доступа больше, чем у ОЗУ, при запуске все содержимое ПЗУ считывается в специально выделенную область ОЗУ.

Кроме ПЗУ существует энергонезависимая память CMOS RAM (Complementary Metal-Oxide Semiconductor RAM), в которой хранятся данные об аппаратной конфигурации ЭВМ: о подключенных к ЭВМ устройствах и их параметры, параметры загрузки, пароль на вход в систему, текущее время и дата. Питание памяти CMOS RAM осуществляется от батарейки. Если заряд батарейки заканчивается, то настройки, хранящиеся в памяти CMOS RAM, сбрасываются, и ЭВМ использует настройки по умолчанию.

ПЗУ и память CMOS RAM составляют базовую систему ввода-вывода (BIOSBasic Input-Output System).

Внешние ЗУ

Внешние запоминающие устройства (ВЗУ) предназначены для долговременного хранения и транспортировки информации. ВЗУ взаимодействуют с системной шиной через контроллеры внешних запоминающих устройств (КВЗУ). КВЗУ обеспечивают интерфейс ВЗУ и системной шины в режиме прямого доступа к памяти, то есть без участия МП.

ВЗУ можно разделить по критерию транспортировки на переносные и стационарные.

Переносные ВЗУ состоят из носителя, подключаемого к порту ввода-вывода (обычно USB), (флэш-память) или носителя и привода (накопители на гибких магнитных дисках, приводы CD и DVD).

В стационарных ВЗУ носитель и привод объединены в единое устройство (накопитель на жестких магнитных дисках). Стационарные ВЗУ предназначены для хранения информации внутри ЭВМ.

Перед первым использованием или в случае сбоев ВЗУ необходимо отформатировать – записать на носитель служебную информацию, необходимую в дальнейшем при операциях чтения-записи с носителя.

Рассмотрим три типа ВЗУ, разделенные по критерию физической основы или технологии производства носителя:

1) магнитные носители;

2) оптические носители;

3) флэш-память.

Магнитные носители

Магнитные носители основаны на свойстве материалов находиться в двух состояниях: «не намагничено»-«намагничено», кодирующие 0 и 1. По поверхности носителя перемещается головка, которая может считывать состояние или изменять его. Запись данных на магнитный носитель осуществляется следующим образом. При изменении силы тока, проходящего через головку, происходит изменение напряженности динамического магнитного поля на поверхности магнитного носителя, и состояние ячейки меняется с «не намагничено» на «намагничено» или наоборот. Операция считывания происходит в обратном порядке. Из-за контакта головки с поверхностью носителя через некоторое время носитель приходит в негодность.

Рассмотрим три типа магнитных носителей.

1. Накопители на жестких магнитных дисках (НЖМД; harddisk – жесткий диск) представляют собой несколько дисков с магнитным покрытием, нанизанные на шпиндель, в герметичном металлическом корпусе. При вращении диска происходит быстрый доступ головки к любой части диска.

В НЖМД может быть до десяти дисков. Их поверхность размечается дорожками (track). Каждая дорожка имеет свой номер. Дорожки с одинаковыми номерами, расположенные одна над другой на разных дисках образуют цилиндр. Дорожки на диске разбиты на секторы (нумерация начинается с единицы). Сектор занимает 571 байт. Из них 512 байт отведено для записи данных. Оставшиеся 59 байт отведены под заголовок (префикс), определяющий начало и номер сектора и окончание (суффикс), где записана контрольная сумма, необходимая для проверки целостности хранимых данных. Секторы и дорожки формируются во время форматирования диска. Разметка секторов зависит от типа диска. Жесткие диски устанавливаются в системном блоке и являются основным ВЗУ ЭВМ. Объем жестких дисков превышает 1 Тбайт (2011 г.), а время доступа – 0,005-0,03 с.

2. Накопители на гибких магнитных дисках (НГМД; FDDFloppy Disk Drive) предназначены для записи информации на переносные носители – дискеты. Дискета представляет собой гибкий диск с магнитным покрытием, помещенный в жесткий корпус со шторкой, открываемой для доступа головки к диску, и прорезью для защиты от записи. Как и в случае жесткого диска, поверхность гибкого диска разбивается на дорожки, которые в свою очередь разбиваются на секторы. Секторы и дорожки формируются во время форматирования дискеты. Дискеты могут быть двух размеров 5,25 дюймов (133 мм; является устаревшим) и 3,5 дюймов (89 мм). Для каждого типа дискеты нужен свой НГМД. Объем дискет – до 1,44 Мбайт, время доступа – 0,065-0,1 с. В настоящее время НГМД вытеснены флэш-памятью.

3. Дисковые массивы RAID (Redundant Array of Inexpensive Disks – массив недорогих дисков с избыточностью) используются для хранения данных в суперкомпьютерах (мощных ЭВМ предназначенных для решения крупных вычислительных задач) и серверах (подключенных к сети ЭВМ, предоставляющих доступ к хранящимся в них данным). Массивы RAID – это несколько запоминающих устройств на жестких дисках, объединенные в один большой накопитель, обслуживаемый специальным RAID-контроллером. Одна и та же информация хранится на различных жестких дисках и при потере информации на одном жестком диске восстанавливает ее с другого жесткого диска. RAID-массивы поддерживают технологию Plug and Play, то есть замену одного из дисков без остановки всего массива.

Оптические носители

Оптические носители представляют собой компакт-диски диаметром 12 см (4,72 дюйма) или мини-диски диаметром 8 см (3,15 дюйма).

В центре компакт-диска находится круглое отверстие, надеваемое на шпиндель привода компакт-дисков.

Запись и считывание информации на компакт-диск осуществляется головкой, которая может испускать лазерный луч. Физический контакт между головкой и поверхностью диска отсутствует, что увеличивает срок службы компакт-диска.

Фаза второго пластикового слоя, кристаллическая или аморфная, изменяется в зависимости от скорости остывания после разогрева поверхности лазерным лучом в процессе записи, выполняемой в приводе. При медленном остывании пластик переходит в кристаллическое состояние и информация стирается (записывается «0»); при быстром остывании (если разогрета только микроскопическая точка) элемент пластика переходит в аморфное состояние (записывается «1»). Ввиду разницы коэффициентов отражения от кристаллических и аморфных микроскопических точек активного слоя при считывании происходит модуляция интенсивности отраженного луча, воспринимаемого головкой чтения.

Компакт-диск выдерживает несколько сотен циклов перезаписи. Считывание информации осуществляется при вращении компакт-диска с частотой более 10 000 оборотов/мин.

В зависимости от возможности чтения/записи все компакт-диски можно разделить на три типа:

1ROM (Read Only Memory) – только для чтения; запись невозможна;

2) (Recordable) – для однократной записи и многократного чтения; диск может быть однажды записан; записанную информацию изменить нельзя и она доступна только для чтения;

3RW (ReWritable) – для многократной записи и чтения; информация на диске может быть многократно перезаписана.

Эти типы дисков отличаются материалом, из которого изготовлен второй пластиковый слой.

Рассмотрим виды компакт-дисков CD (Compact Disc), DVD (Digital Versatile Disc – цифровой универсальный (многосторонний) диск) и Blu-Ray, имеющие одинаковый размер 4,72 дюйма.

Объем CD равен 650 или 700 Мбайт. Музыкальные диски относятся к CD и предназначены только для чтения с них музыки. Время доступа к CD – 0,05-0,3 с.

Формат DVD являются развитием CD, их объем составляет 4,7 Гбайт за счет более плотной записи. DVD продолжают совершенствоваться. Существует несколько конкурирующих форматов DVD: DVD-, DVD+ и DVD-RAM.

Формат Blu-Ray является дальнейшим развитием DVD и позволяет записывать 25 Гбайт информации на один слой.

Названия форматов CD и DVD в зависимости от возможности чтения/записи представлены в таблице.

Типы компакт-дисков

CD

DVD

ROM

CD-ROM

DVD-ROM

R

CD-R

DVD-R, DVD+R

RW

CD-RW

DVD-RW, DVD+RW, DVD-RAM

Дисковод для оптических носителей состоит из следующих частей:

электродвигатель, который вращает диск;

оптическая система, состоящая из лазерного излучателя, оптических линз и датчиков и предназначенная для считывания информации с поверхности диска;

микропроцессор, который руководит механикой привода, оптической системой и декодирует прочитанную информацию в двоичный код.

Для приводов оптических дисков указывается максимальная скорость чтения и записи для различных форматов дисков CD и DVD, кратная однократной скорости для CD – 150 Кбайт/с и для DVD – 1350 Кбайт/с. Например, скорость чтения 8x для CD означает, что данные считываются со скоростью 1200 Кбайт/с. Максимальная скорость чтения с дисков Blu-Ray работы составляет 12x (54 Мбайт/с).

Оптические носители могут храниться до 100 лет, но они восприимчивы к царапинам, колебаниям температуры и механическим повреждениям. Следует соблюдать следующие правила при работе с оптическими носителями:

- не класть диски отражающим слоем на стол или другие поверхности;

- хранить диски в коробках, а коробки в вертикальном положении;

- для длительного хранения информации выбирать диски однократной записи (-R), а не многократной (-RW);

- подписывать диск только на внешней стороне диска;

- не наклеивать наклейки и не использовать деформированные диски, так как это может привести к разбалансировке диска;

- не подвергать диск воздействию прямых солнечных лучей.

Флэш-память

Флэш-память представляет собой микросхемы памяти, заключенные в пластиковый корпус, и предназначена для долговременного хранения информации с возможностью многократной перезаписи. Микросхемы флэш-памяти не имеют движущихся частей. При работе указатели в микросхеме перемещаются на начальный адрес блока, и затем байты данных передаются в последовательном порядке. При производстве микросхем флэш-памяти используются логические элементы NAND (И-НЕ). Количество циклов перезаписи флэш-памяти превышает 1 млн. В настоящее время размер флэш-памяти превышает 64 Гбайт (c 2011 г.), что позволило флэш-памяти вытеснить дискеты. Флэш-память подключается к порту USB.

Компания Samsung выпустила новые потребительские твердотельные накопители модели 850 Pro. Они представлены в вариантах ёмкостью 128 ГБ, 256 ГБ, 512 ГБ и 1 ТБ. Однако главной особенностью модельного ряда стало применение пространственной 3D V-NAND флеш-памяти от Samsung.

Файл 3

Видеоподсистема ЭВМ

Видеокарта

Видеоподсистема ЭВМ включает два устройства:

1) монитор (дисплей), отображающий на своем экране текстовую и графическую информацию пользователю;

2видеокарта (ВК; видеоконтроллер, видеоадаптер), обеспечивающая формирование изображения, его хранение, обновление и преобразование в сигнал, отображаемый монитором.

Видеокарта представляет собой плату, устанавливаемую в специальный слот на материнской плате или интегрированную в материнскую плату.

Видеокарта содержит следующие элементы:

графический процессор, обрабатывающий изображение и преобразующий его в сигнал для монитора;

- видеопамять, хранящую воспроизводимую на экране информацию; объем видеопамяти превышает 1 Гбайт (2011 г.);

видеоакселераторы; различают два типа видеоакселераторов: для плоской (2D) и трехмерной (3D) графики; первые эффективны для работы с прикладными программами общего назначения, вторые ориентированы на работу с разными мультимедийными и развлекательными программами; видеоакселераторы позволяют производить математические вычисления для построения трехмерных сцен на двухмерном экране без участия МП.

Монитор

Основными характеристиками мониторов являются размер экрана, разрешение, размер зерна и частота развертки монитора.

Размер экрана монитора задается величиной его диагонали в дюймах. Приняты следующие типоразмеры экранов 12, 14, 15, 17, 19, 21 и 22 дюйма. 1 дюйм = 2,54 см. Чем больше размер экрана монитора, тем удобнее работать с ним.

Разрешение монитора измеряется в пикселях. Пиксель – это точка на экране монитора. Количество точек по горизонтали и вертикали составляют разрешение монитора. Приняты стандартные разрешения мониторов, некоторые из которых имеют названия (таблица).

Обычно соотношение количества пикселей по горизонтали и вертикали составляет 4:3 (стандартные) или 16:9 (широкоэкранные). Бóльшее разрешение делает картинку на экране более четкой.

Размер зерна (шаг точки) определяет расстояние между двумя соседними пикселями. Чем меньше размер зерна, тем выше четкость и тем меньше устает глаз. Величина зерна современных мониторов имеет значения от 0,25 до 0,28 мм.

Частота развертки монитора (частота регенерации) определяется количеством обновлений изображений на экране монитора в единицу времени и измеряется в герцах. Чем больше частота, тем меньше усталость глаз и больше времени можно работать непрерывно. Маленькая частота приводит к появлению мерцания. Современные мониторы обеспечивают частоту развертки монитора 70-80 Гц.

Типичные разрешения мониторов

Разрешение

Количество

пикселей

Название

Соотношение сторон

640  480

307 200

VGA

4:3

800  600

480 000

SVGA

4:3

1024  768

786 432

XGA

4:3

1280  800

1 024 000

8:5

1280  1024

1 310 720

SXGA

4:3

1360  768

1 044 480

HD Ready

16:9

1600  1200

1 920 000

4:3

1920  1080

2 073 600

Full HD

16:9

1920  1200

2 304 000

8:5

2560  1440

3 686 400

16:9

Рассмотрим три типа мониторов:

1) на основе электронно-лучевой трубки;

2) жидкокристаллические;

3) плазменные.

Первый тип мониторов является аналоговым, а остальные – цифровыми. Ко всем этим типам мониторов применимы перечисленные в предыдущем разделе характеристики.

ЭЛТ-мониторы бывают монохромными или цветными. В цветном ЭЛТ-мониторе используются три электронные пушки, в отличие от одной пушки, применяемой в монохромных мониторах. Каждая пушка отвечает за один из трех основных цветов: красный (Red), зеленый (Green) и синий (Blue), путем смешивания которых создаются все остальные цвета и цветовые оттенки. Поэтому цветные мониторы называют RGB-мониторами, по первым буквам основных цветов. Недостатком ЭЛТ-мониторов является высокое потребление электроэнергии и вредное для здоровья человека излучение.

Для жидкокристаллических и плазменных мониторов вводятся еще две характеристики: время отклика и контрастность.

Время отклика – это минимальный временной промежуток, в течение которого пиксель может полностью поменять свой цвет – от черного к белому и обратно (составляет 6-8 мс).

Контрастность – это отношение яркости самого светлого и самого темного пикселя (составляет 30 000:1).

В плазменных мониторах (PDPPlasma Display Panel) изображение формируется сопровождаемыми излучением света газовыми разрядами в пикселях панели. Фактически, каждый пиксель на экране работает, как обычная флуоресцентная лампа (лампа дневного света).

Недостатками плазменных мониторов являются высокое энергопотребление и низкая разрешающая способность.

Контроллеры портов ввода-вывода

Контроллер порта ввода-вывода (КПВВ) обеспечивает интерфейс между периферийным устройством, подключенным к порту КПВВ, и системной шиной.

Интерфейс – это совокупность связей с унифицированными сигналами и аппаратуры, предназначенной для обмена данными между устройствами вычислительной системы.

Порты ввода-вывода делятся на два типа в зависимости от количества бит, проходящих за один такт передачи:

- параллельные, в которых за один такт проходит несколько бит (например, 8 или 16 бит);

последовательные, в которых за один такт проходит один бит.

Наиболее распространенные порты ввода-вывода.

RS-232 (COM) – интерфейс обмена данными по последовательному коммуникационному порту (СОМ-порту). С помощью данного интерфейса осуществляется работа и подключение таких устройств, как внешний модем, мышь и т. д.

USB (Universal Serial Bus – универсальная последовательная шина) – универсальный последовательный интерфейс, пришедший на смену устаревшим портам RS-232 и IEEE 1284. Поддерживает технологию Plug and Play с возможностью «горячей» замены, то есть замены устройств без необходимости выключения или перезагрузки компьютера. Для адекватной работы интерфейса необходима операционная система, которая корректно с ним работает. Поддержка USB введена в Microsoft Windows 2000. К портам USB можно подключить до 127 устройств. Каждое устройство, подключенное непосредственно к порту, может работать в качестве разветвителя, то есть можно подключать к нему другие устройства. Скорость передачи через порт – 480 Мбит/с. Кроме данных, через порт подается электропитание. В настоящее время большинство ПУ подключаются через порт USB.

PS/2 (Personal System – персональная система) – последовательный порт, разработанный фирмой IBM в середине 1980-х для своей серии персональных компьютеров IBM PS/2. В отличие от порта RS-232 порт PS/2 имеет более компактный разъем. Через порт подается также электропитание. В настоящее время используется вместе с портом USB.

IEEE 1394 (FireWire, iLink) – последовательный интерфейс, использующийся для подключения цифровых видеоустройств (видеокамер). Через порт возможна передача видеоизображения со скоростью 100-400 Мбит/с. Поддерживает технологию Plug and Play.

Периферийные устройства

Клавиатура

Клавиатура – это стандартное клавишное устройство ввода, предназначенное для ввода алфавитно-цифровых данных и команд управления. Клавиатуры имеют по 101-104 клавиши, размещенные по стандарту QWERTY (в верхнем левом углу алфавитной части клавиатуры находятся клавиши Q, W, E, R, T, Y).

Набор клавиш клавиатуры разбит на несколько функциональных групп:

- алфавитно-цифровые клавиши (буквы и цифры) предназначены для ввода знаковой информации и команд, которые набираются посимвольно;

- функциональные клавиши (F1-F12); функции клавиш зависят от конкретной, работающей в данный момент времени программы;

- клавиши управления курсором подают команды на передвижение курсора по экрану монитора относительно текущего изображения (стрелки, а также клавиши PAGE UP, PAGE DOWN, HOME, END); курсор – экранный элемент, указывающий на место ввода знаковой информации;

- служебные клавиши используются для разных вспомогательных целей, таких как, изменение регистра, режимов вставки, образование сочетаний «горячих» клавиш и т. д. (SHIFT, CAPS LOCK, ENTER, CTRL, ALT, ESC, DEL, INSERT, TAB, BACKSPACE);

- клавиши дополнительной панели дублируют действие цифровых клавиш, клавиш управления курсором и некоторых служебных клавиш.

Клавиатура подсоединяется к системной шине через специальный контроллер, содержащий буфер ввода, где хранятся введенные символы до тех пор, пока они не будут затребованы.

Клавиатура имеет свойство повторения знаков, используемое для автоматизации процесса ввода. Оно состоит в том, что при продолжительном нажатии клавиши начинается автоматический ввод символа, связанного с этой клавишей.

Манипулятор типа «мышь»

«Мышь» предназначена для быстрого доступа к элементам интерфейса пользователя и инициирования на них событий с помощью кнопок. Обычно «мышь» имеет 2-3 кнопки.

Принцип работы «мыши» заключается в отслеживании перемещения корпуса «мыши» по поверхности и синхронизации перемещения по экрану монитора курсора.

Существует два типа «мышей». Внутри шариковых мышей находится шарик, вращающий два валика. Вращение валиков позволяет отследить перемещение «мыши». В основе оптических «мышей» лежит светодиод, посылающий световой сигнал и считывающий его отражение. При перемещении «мыши» посланный луч отражается под другим углом, что позволяет выявить направление движения «мыши».

Все перемещения «мыши» и нажатия ее клавиш (клики) рассматриваются как события, анализируя которые устанавливается, состоялось ли событие и в каком месте экрана в этот момент находится курсор «мыши».

Основной характеристикой «мыши» является разрешающая способность – насколько точно можно отследить самое мельчайшее перемещение «мыши». Измеряется в точках (dot) на дюйм (dpidots per inch).

Клавиатура и «мышь» подсоединяются к портам PS/2 или USB.

Принтеры

Печатающие устройства (принтеры) – это устройства вывода данных из ЭВМ и фиксирующие их на бумаге. Основными характеристиками принтеров являются разрешающая способность, скорость печати, объем установленной памяти и максимальный поддерживаемый формат бумаги.

Разрешающая способность или разрешение печати измеряется числом элементарных точек (dot), которые размещаются на одном дюйме (dpi). Например, разрешение 1440 dpi означает, что на длине одного дюйма бумаги размещается 1440 точек. Запись 720  360 dpi означает разрешение печати по горизонтали и вертикали соответственно. Чем больше разрешение, тем точнее воспроизводятся детали изображения, но при этом возрастает время печати.

Единицей измерения скорости печати информации служит число печатаемых страниц формата A4 (210  297 мм) в минуту (ppmpages per minute).

Данные с ЭВМ хранятся во встроенной памяти принтера. Далее принтер уже самостоятельно печатает файл без участия ЭВМ. Такая печать называется фоновой. Если данные для печати полностью не помещаются в память принтера, ЭВМ ждет, пока принтер распечатает данные и освободит память, и вновь загружает следующий блок данных в память принтера.

Максимальный поддерживаемый формат бумаги для большинства принтеров A4 или A3 (297  420 мм).

Принтеры подключаются к ЭВМ через порты LPT или USB.

Рассмотрим три наиболее распространенных типа принтеров: 1) матричные; 2) струйные; 3) лазерные.

В матричных принтерах печать точек осуществляется тонкими иглами (pin). Между бумагой и иглой находится красящая лента. При каждом ударе иглы по ленте краска переносится на бумагу. Цвет изображения на бумаге определяется цветом красящей ленты. Каждая игла управляется собственным электромагнитом. Печатающая головка с иглами перемещается в горизонтальном направлении листа, и знаки в строке печатаются последовательно. Количество иголок в печатающей головке определяет качество печати. Обычно матричные принтеры оснащены 9, 18 или 24 иглами.

Достоинства матричных принтеров:

- низкая стоимость принтера и расходных материалов для него (красящей ленты);

- низкая себестоимость копии;

- возможность одновременной печати нескольких копий с помощью копирки.

Недостатки матричных принтеров:

- невысокие качество и скорость печати;

- шум при печати.

Струйные принтеры в печатающем узле вместо иголок имеют тонкие трубочки – сопла, через которые на бумагу выбрасываются мельчайшие капельки красителя (чернил) («пузырьковая» технология). Матрица печатающей головки обычно содержит от 12 до 64 сопел (дюз).

Основные достоинства струйных принтеров:

- высокое качество печати для принтеров с большим количеством сопел с разрешением до 720  1440 dpi; возможна печать фотографий;

- высокая скорость печати – до 10 страниц в минуту;

- бесшумность работы.

Основные недостатки струйных принтеров:

- использование хорошей бумаги, чтобы не растекались чернила;

- опасность засыхания чернил внутри сопла, что иногда приводит к необходимости замены печатающего узла;

- высокая стоимость расходных материалов, в частности, картриджей с чернилами.

В лазерных принтерах для создания сверхтонкого светового луча служит лазер. Лазер вычерчивает на поверхности предварительно заряженного электрически положительно светочувствительного фотобарабана контуры невидимого точечного электронного изображения. На барабан наносится красящий порошок (тонер). В тех точках барабана, на которые попал лазерный луч, меняется заряд, и к этим местам притягивается частицы тонера. Лист втягивается с лотка и ему передается электрический заряд. При наложении на барабан, лист притягивает к себе частицы тонера с барабана. Для фиксации тонера, лист снова заряжается и проходит между валами, нагретыми до 180 градусов. По окончании печати барабан разряжается, очищается от тонера и снова используется. В результате получаются отпечатки, не боящиеся влаги, устойчивые к истиранию и выцветанию.

Широко используются цветные лазерные принтеры.

Достоинства лазерных принтеров:

- высокая скорость печати – от 10 до 40 и выше страниц в минуту;

- скорость печати не зависит от разрешения;

- высокое качество печати до 2880 dpi;

- нетребовательность к качеству бумаги;

- низкая себестоимость копии (на втором месте после матричных принтеров);

- бесшумность.

Недостатки лазерных принтеров:

- высокая цена принтеров, особенно цветных;

- невысокое качество цветных изображений, напечатанных на цветных лазерных принтерах;

- высокое потребление электроэнергии.

Сканеры

Сканер – это устройство для ввода в ЭВМ информации с бумаги, слайдов или фотопленки.

Различают планшетные и ручные сканеры.

Принцип работы планшетных сканеров заключается в следующем. Сканируемый оригинал помещается на прозрачном неподвижном стекле. Вдоль стекла передвигается сканирующий сенсор с источником света. Оптическая система планшетного сканера проецирует световой поток, отражаемый от сканируемого оригинала, на сканирующий сенсор.

В сканирующем сенсоре уровни освещенности преобразуются в уровни напряжения и формируется аналоговый сигнал. Затем, после коррекции и обработки, аналоговый сигнал преобразуется в цифровой аналого-цифровым преобразователем (АЦП). Цифровой сигнал поступает в ЭВМ, где данные, соответствующие изображению оригинала обрабатываются и преобразовываются под управлением драйвера сканера.

Скорость сканирования страницы формата A4 составляет 5-15 секунд.

В отличие от планшетного, пользователь сам двигает сканирующую головку ручного сканера по оригиналу. Ручные сканеры применяются в магазинах для считывания скан-кодов товаров.

Основными характеристиками сканеров являются разрешающая способность, скорость сканирования и максимальный поддерживаемый формат бумаги. Эти характеристики аналогичны характеристикам принтеров.

 


 

А также другие работы, которые могут Вас заинтересовать

70509. Понятие системы маркетинговой информации 17.31 KB
  Она предназначена для сбора классификации анализа оценки и распространения актуальной своевременной и точной информации с целью совершенствования планирования и контроля за исполнением маркетинговых мероприятий.
70510. Анализ рынка (микросистема) 16.19 KB
  Анализ Рынка анализ ситуации на фирмах или предприятиях в русле событий происходящих на рынке. Анализ рынка подразумевает сопоставление и анализирование результатов деятельности бизнеса с общей конъюнктурой рынка. В рамках анализа рынка маркетинга изучается спрос предложение поведение...
70511. Маркетинговый анализ предприятия 20.65 KB
  Необходимыми условиями достижения самоокупаемости и самофинансирования предприятия в условиях рынка являются ориентация производства на потребителей и конкурентов гибкое приспособление к изменяющейся рыночной конъюнктуре. От этого зависят конечные финансовые результаты воспроизводство...
70512. Работа с продуктом. Разработка нового продукта 17.96 KB
  Можно выделить несколько уровней новизны продукта: от полностью нового продукта до продукта с новой маркой или упаковкой. Разработка нового продукта это разработка оригинальных продуктов улучшение продуктов и их модернизация создание новых марок продуктов путем проведения...
70513. Понятие распределения. Прямой и непрямой сбыт 21.22 KB
  Распределение в экономической системе выступает либо как момент самого производства в дальнейшем будем употреблять этот привычный для экономической теории термин подразумевая под ним и другие виды присвоения либо как акт следующий непосредственно за актом производства.
70514. Анализ макросреды 17.19 KB
  Этот анализ направлен на изучение окружающей макросреды которая не имеет прямой связи с рынком но в равной степени влияет на все предприятия этой сферы деятельности в данном конкретном регионе. Стратегическими факторами макросреды считаются такие направления ее развития которые...
70515. Сегментация рынков. Критерии сегментации 53.85 KB
  Сегментация рынка — разбивка рынка на участки (сегменты) по различным признакам. Метод сегментации заключается в определении на рынке групп покупателей, имеющих аналогичные покупательские потребности и характеристики. Преимущества использования сегментационного подхода.
70516. Поддержка сбыта. Паблик рилейшнз 18.64 KB
  Функция поддержки сбыта является мощным инструментом который помогает сотрудникам эффективно выполнять их задание и освобождает их от рутинных административных задач. Поддержка сбыта предоставляет внутренней службе сбыта и выездному персоналу ежеминутную информацию варьируемой степени детализации.
70517. Продукт (товар, услуга) и потребность. Развитие потребности от мотивации до момента покупки 19.09 KB
  Потребности это то без чего нельзя поддерживать не только жизнь человека но и его развитие как личности и как члена общества. Потребности человека это состояние объективной нужды организма в чем-то что составляет необходимое условие его нормального функционирования.