74332

Характерные значения удельных (погонных) параметров схем замещения и электрических режимов воздушных и кабельных линий электропередачи и соотношения между ними

Доклад

Энергетика

Волновые параметры реальной линии волновое сопротивление ZB и коэффициент распространения волны γо определяются через ее удельные погонные отнесенные к 1 км параметры: где β0 коэффициент затухания α0 коэффициент изменения фазы фазовый угол. Удобно определять параметры Побразной схемы замещения линии через удельные погонные сопротивления Zo=RojX0 Ом км и проводимости Yo=g0jb0 См км. При этом равномерную распределенность параметров линии по длине учитывают приближенно с помощью поправочных коэффициентов по формулам Z...

Русский

2014-12-30

496 KB

2 чел.

31. Характерные значения удельных (погонных) параметров схем замещения и электрических режимов воздушных и кабельных линий электропередачи и соотношения между ними.

Волновые параметры реальной линии — волновое сопротивление ZB и коэффициент распространения волны γо — определяются через ее удельные (погонные, отнесенные к 1 км) параметры:

где (β0— коэффициент затухания, α0— коэффициент изменения фазы, ξфазовый угол.

Модуль волнового сопротивления ZB и коэффициент изменения фазы α0 с достаточной точностью могут быть определены по формулам

Справедливых для идеализированных линий (линий без потерь активной мощности), когда R0=0 и g0=0.

Удобно определять параметры П-образной схемы замещения линии через удельные (погонные) сопротивления Zo=Ro+jX0, Ом/км, и проводимости Yo=g0+jb0, См/км. При этом равномерную распределенность параметров линии по длине учитывают приближенно, с помощью поправочных коэффициентов, по формулам Z = Z0Lkz;   Y = Y0LkY, где поправочные коэффициенты определяются в виде Учитывая значенияи ,окончательно находим

Для определения основных характеристик (токов, напряжений, предельной передаваемой мощности) некомпенсированная воздушная линия протяженностью до 500—600 км может быть представлена П-образной схемой замещения по всей линии в целом (рис). В этом случае распределенность параметров вдоль линии может быть учтена поправочными коэффициентами, вычисленными по приближенным формулам при g=0.

,

Параметры схемы замещения в этом случае определяются следующим образом:

R= R0LkR; X = X0Lkx; B = b0LkB.

Заметное уточнение параметров (более 1 %) посредством поправочных коэффициентов проявляется для ВЛ длиной более 300 км и для кабельных линий, превышающих 50 км.

Приближенно распределенность параметров вдоль линии можно также учесть, представляя протяженную ЛЭП цепочной схемой замещения с сосредоточенными параметрами (рис. 2.10).

Всю ЛЭП разбивают на участки длиной 250—300 км и моделируют рядом последовательно включенных П-образных схем замещения. Расчет режима линии по цепочной схеме замещения ведут последовательно от одного участка к другому. При этом потери на коронирование учитываются по участкам и представляются в виде нагрузок между участками (рис. 2.10, б). Этот прием позволяет определить соотношения между напряжениями и токами не только по концам, но и находить их значения в промежуточных точках длинной линии.

Линии электропередачи с номинальным напряжением 330, 500, 750 кВ разделяют посредством переключательных пунктов на участки в 250—350 км, что локализует и уменьшает влияние поврежденных участков на изменение параметров режима и устойчивость работы сети (рис. 2.10, а). Такое построение линии, а также включение промежуточных подстанций разбивает электропередачу на участки, и ее удобно моделировать цепочной схемой замещения.

Протяженные линии в режиме минимальных нагрузок имеют избыток реактивной мощности, генерируемой линией. Для компенсации этой мощности и предотвращения опасного для изоляции сети превышения напряжения на приемном конце и вдоль линии устанавливают шунтовые реакторы, располагая их на переключательных пунктах или промежуточных подстанциях.

Избыток емкостной генерации ЛЭП может компенсироваться потреблением реактивной мощности нагрузкой подстанций. Включение реактора на шинах ВН станции обеспечивает возбуждение генераторов, необходимое для их устойчивой работы.

Рис. 2.10. Принципиальная схема (а) и цепочная схема замещения (б) протяженной линии электропередачи


 

А также другие работы, которые могут Вас заинтересовать

7466. Информатизация общества, понятие информации и системы управления 136.5 KB
  Тема 1 Информатизация общества, понятие информации и системы управления 1. Информация и различные аспекты ее обработки 2. Система и системный подход в управлении Измерение производительности - способ оценки возможностей страны обеспечить повыше...
7467. Метрологическое обеспечение на этапах жизненного цикла продукции 36.5 KB
  Тема 1.1 Метрологическое обеспечение на этапах жизненного цикла продукции Студент должен иметь представление: - о роли и значении метрологического обеспечения в управление качеством продукции - об отражении треб...
7468. Метрологическая экспертиза технической документации 51.5 KB
  Тема 1.2 Метрологическая экспертиза технической документации Студент должен иметь представление: - о необходимости метрологической экспертизы технической документации знать: - порядок метрологической экспертизы т...
7469. Метрологическое обеспечение технологического процесса изготовления продукции 71 KB
  Тема 1.3 Метрологическое обеспечение технологического процесса изготовления продукции Студент должен иметь представление: - о необходимости метрологического обеспечения средств измерений, обеспечивающих стабильность технологическо...
7470. Рулевое управление ВАЗ 2121 62 KB
  Рулевое управление ВАЗ 2121 Рис. Рулевое управление. 1. Боковая тяга 2. Сошка 3. Средняя тяга 4. Маятниковый рычаг 5. Регулировочная муфта 6. Нижний шаровой шарнир подвески 7. Поворотный кулак 8. Верхний шаровой шарнир подвески 9. Подшипник ...
7471. Исследование напряженно-деформированного состояния элементов составных балок 9.79 MB
  Исследование напряженно-деформированного состояния элементов составных балок Введение Балки являются одним из самых употребляемых строительных элементов любых зданий и сооружений. По своей статической схеме балки представляют конструкцию, как правил...
7472. Исследование электромеханических свойств двигателя постоянного тока последовательного возбуждения 108.09 KB
  Исследование электромеханических свойств двигателя постоянного тока последовательного возбуждения. Цель работы: Исследовать способы регулирования скорости вращения и реверсирования якоря двигателя, построить рабочие характеристики двигателя. Пояснен...
7473. Снятие кривой нагрева электродвигателя и определение постоянной времени нагрева 63.24 KB
  Снятие кривой нагрева электродвигателя и определение постоянной времени нагрева. Цель работы: Изучить процесс нагрева двигателя, получить опытным путем данные построения кривой нагрева электродвигателя и определить значение постоянной времени нагрев...
7474. Исследование трехфазного асинхронного двигателя 55.54 KB
  Исследование трехфазного асинхронного двигателя Цель работы: Экспериментально снять механическую характеристику трехфазного асинхронного двигателя и осуществить его реверс. Пояснения к работе: Для выполнения данной работы используют трехфазный асинх...