74339

Моделирование (представление) линии эл.передачи 0,38-220 кВ. характерные данные и основные соотношения между параметрами схем замещения ЛЭП

Доклад

Энергетика

Характерные данные и основные соотношения между параметрами схем замещения ЛЭП. Выше приведена характеристика отдельных элементов схем замещения линий. При расчете симметричных установившихся режимов ЭС схему замещения составляют для одной фазы

Русский

2014-12-30

210.5 KB

3 чел.

28. моделирование (представление) линии эл.передачи 0,38-220 кВ. характерные данные и основные соотношения между параметрами схем замещения ЛЭП.

Выше приведена характеристика отдельных элементов схем замещения линий. В соответствии с их физическим проявлением при моделировании электрических сетей используют схемы ВЛ, КЛ и шинопроводов, представленные на рис.2.5 - 2.7. Приведем некоторые обобщающие пояснения к этим схемам.

При расчете симметричных установившихся режимов ЭС схему замещения составляют для одной фазы, т. е. продольные ее параметры, сопротивления Z = R + jX изображают и вычисляют для одного фазного провода (жилы), а при расщеплении фазы — с учетом количества проводов в фазе и эквивалентного радиуса фазной конструкции ВЛ.

Емкостная проводимость Вс, как отмечено в параграфе 2.1, учитывает проводимости (емкости) между фазами, между фазами и землей и отражает генерацию зарядной мощности всей трехфазной конструкции линии:

                               и   

Активная проводимость линии G, изображаемая в виде шунта между фазой (жилой) и точкой нулевого потенциала схемы (землей), включает суммарные потери активной мощности на корону (или в изоляции) трех фаз:                         и    

Поперечные проводимости (шунты) Y = G + jB в схемах замещения можно не изображать, а заменять мощностями этих шунтов (рис. 2.5, б и рис. 2.6, б). Например, вместо активной проводимости показывают потери активной мощности в ВЛ

(2.29) или в изоляции КЛ (2.30)

Взамен емкостной проводимости указывают генерацию зарядной мощности

(2.30 а)

Указанный учет поперечных ветвей ЛЭП нагрузками упрощает оценку электрических режимов, выполняемых вручную. Такие схемы замещения линий именуют расчетными (рис. 2.5, б и рис. 2.6, б).

В ЛЭП напряжением до 220 кВ при определенных условиях можно не учитывать те или иные параметры, если их влияние на работу сети несущественно. В связи с этим схемы замещения линий, показанные на рис. 2.1, в ряде случаев могут быть упрощены.

В ВЛ напряжением до 220 кВ потери мощности на корону, а в КЛ напряжением до 35 кВ диэлектрические потери незначительны. Поэтому в расчетах электрических режимов ими пренебрегают и соответственно принимают равной нулю активную проводимость (рис. 2.6). Учет активной проводимости необходим для ВЛ напряжением 220 кВ и для КЛ напряжением 110 кВ и выше в расчетах, требующих вычисления потерь электроэнергии, а для ВЛ напряжением 330 кВ и выше также при расчете электрических режимов (рис. 2.5).

Рис. 2.5. Схема замещения ВЛ 330(220)—500 кВ и КЛ 110—500 кВ: а — полная с поперечными проводимостями; б — расчетная

Рис. 2.6. Схема замещения ВЛ 110—220 кВ и КЛ 35 кВ: а — с емкостными проводимостями, б — с зарядной мощностью вместо проводимостей

Необходимость учета емкости и зарядной мощности линии зависит от соизмеряемости зарядной и нагрузочной мощности. В местных сетях небольшой протяженности при номинальных напряжениях до 35 кВ зарядные токи и мощности значительно меньше нагрузочных. Поэтому в КЛ емкостную проводимость учитывают только при напряжениях 20 и 35 кВ, а в ВЛ ею можно пренебречь.

В районных сетях (110 кВ и выше) со значительными протяженностями (40—50 км и больше) зарядные мощности могут оказаться соизмеримыми с нагрузочными и подлежат обязательному учету либо непосредственно (рис. 2.6, б), либо введением емкостных проводимостей (рис. 2.6, а).

Рис. 2.7. Схема замещения: а — ВЛ 0,38—35 кВ и КЛ 0,38—20 кВ б — КЛ 0,38—10 кВ малых сечений

В проводах ВЛ при малых сечениях (16—35 мм2) преобладают активные сопротивления, а при больших сечениях (240 мм2 и более в районных сетях напряжением 220 кВ и выше) свойства сетей определяются их индуктивностями. Активные и индуктивные сопротивления проводов средних сечений (50—185 мм2) близки друг к другу. В КЛ напряжением до 10 кВ небольших сечений (50 мм2 и менее) определяющим является активное сопротивление, и в таком случае индуктивные сопротивления могут не учитываться (рис. 2.7, б).

Необходимость учета индуктивных сопротивлений зависит также от доли реактивной составляющей тока в общей электрической нагрузке. При анализе электрических режимов с низкими коэффициентами мощности (cosφ<0,8) индуктивные сопротивления КЛ необходимо учитывать. В противном случае возможны ошибки, приводящие к уменьшению действительной величины потери напряжения (см. гл. 5).

Схемы замещения ЛЭП постоянного тока могут рассматриваться как частный случай схем замещения ЛЭП переменного тока при X = 0 и b = 0.


 

А также другие работы, которые могут Вас заинтересовать

73037. Назначение и принцип действия дифференциальной защиты 123.57 KB
  Дифференциальное реле КА включается параллельно вторичным обмоткам трансформаторов тока. При таком соединении в случае внешнего КЗ и при токе нагрузки вторичные токи JiB и ц замыкаются по обмотке реле КА и направлены в ней встречно поэтому ток в реле...
73038. ЗАЩИТA ГЕНЕРАТОРОВ 21.18 KB
  Большинство повреждений генератора вызывается нарушением изоляции обмоток статора и ротора которые происходят вследствие старения изоляции ее увлажнения наличия в ней дефектов а также в результате перенапряжений механических повреждений например из-за вибрации стержней обмоток...
73039. ДИСТАНЦИОННАЯ ЗАЩИТА ЛИНИЙ 138.84 KB
  Выдержка времени ДЗ t З зависит от расстояния дистанциирис. Ближайшая к месту повреждения ДЗ имеет меньшую выдержку времени чем более удаленные ДЗ. Зависимость времени действия ДЗ от расстояния или сопротивления до места КЗ называется характеристикой выдержки времени ДЗ.
73040. Особенности психофизического развития умственно-отсталых слепоглухих 67 KB
  Современные исследования показывают, что нет необучаемых детей и даже самых тяжелых можно чему-то научить, используя специфические методы, приемы и средства обучения, организуя «пошаговое» обучение, глубокую дифференциацию и индивидуализацию обучения, обязательное включение родителей в педагогический процесс.
73041. Противоаварийная автоматика и втоматика частотной разгрузки 20.22 KB
  Противоаварийная автоматика, обеспечивающая сохранение устойчивости ЭЭС (ОЭС), должна дублироваться и выполняться по разным принципам выявления нарушений нормального режима. Одновременный вывод обоих комплектов из работы допускается лишь после разработки...
73042. Релейная защита 13.75 KB
  Действия средств релейной защиты организованы по принципу непрерывной оценки технического состояния отдельных контролируемых элементов электроэнергетических систем. Быстродействие это свойство релейной защиты характеризующее скорость выявления и отделения...
73043. Силовой трансформатор 15.86 KB
  Силовой трансформатор — стационарный прибор с двумя или более обмотками, который посредством электромагнитной индукции преобразует систему переменного напряжения и тока в другую систему переменного напряжения и тока, как правило, различных значений при той же частоте в целях передачи электроэнергии без изменения её передаваемой мощности.
73044. Нетрадиционные источники энергии 14.79 KB
  Солнечные устройства служат для отопления и вентиляции зданий опреснения воды производства электроэнергии. В последнее время интерес к проблеме использования солнечной энергии резко возрос. Использование всего лишь 00125 количества энергии Солнца могло бы обеспечить все сегодняшние потребности мировой энергетики.
73045. Особенности конденсационных электростанций 185.27 KB
  В отечественной энергетике на долю КЭС приходится до 60 выработки электроэнергии. Основными особенностями КЭС являются: удаленность от потребителей электроэнергии что определяет в основном выдачу мощности на высоких и сверхвысоких напряжениях и блочный принцип построения электростанции.